1
|
Li J, Li Z, Liu Y, Li Y, Wu Y, Manyande A, Li Z, Xiang H. Lysophosphatidylcholine induced by fat transplantation regulates hyperalgesia by affecting the dysfunction of ACC perineuronal nets. iScience 2024; 27:111274. [PMID: 39640595 PMCID: PMC11617398 DOI: 10.1016/j.isci.2024.111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
The pathogenesis of hyperalgesia is complex and can lead to poor clinical treatment. Our study revealed that epididymal white adipose tissue (eWAT) from spared nerve injury (SNI) mice is involved in the occurrence of hyperalgesia after adipose tissue transplantation. We also showed that lysophosphatidylcholine (LPC) is enriched in the eWAT of SNI mice using non-targeted metabolomic analysis and verified that the levels of LPC in plasma and the anterior cingulate cortex (ACC) region increased following eWAT transplantation. Based on the immunohistochemistry results, we observed that LPC in the ACC region activated microglia via the TRPV1/CamkⅡ pathway. Meanwhile, the disruption of perineuronal nets (PNNs) around PV+ neurons in ACC promoted hyperalgesia, and the loss of PNNs and PV+ interneurons might be due to microglial phagocytosis. These findings elucidate the mechanism underlying hyperalgesia from the perspective of lipid metabolite LPC and PNNs and provide potential strategies for the treatment of hyperalgesia.
Collapse
Affiliation(s)
- Juan Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanbo Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yijing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanqiong Wu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan 430030, China
| |
Collapse
|
2
|
Yan Z, Zhao W, Zhao N, Liu Y, Yang B, Wang L, Liu J, Wang D, Wang J, Jiao X, Cao J, Li J. PRMT1 alleviates isoprenaline-induced myocardial hypertrophy by methylating SRSF1. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39659162 DOI: 10.3724/abbs.2024175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Myocardial hypertrophy (MH) is an important factor contributing to severe cardiovascular disease. Previous studies have demonstrated that specific deletion of the protein arginine methyltransferase 1 (PRMT1) leads to MH, but the exact mechanism remains unclear. Serine/arginine-rich splicing factor 1 (SRSF1) affects the development and progression of cardiovascular disease by selectively splicing downstream signaling proteins. The present study is designed to determine whether PRMT1 is involved in MH by regulating SRSF1 and, if so, to explore the underlying mechanisms. Adult male mice and H9C2 cardiomyocytes are treated with isoprenaline (ISO) to establish MH models. The expression levels of PRMT1 are significantly decreased in the ISO-induced MH models, and inhibiting PRMT1 worsens MH, whereas overexpression of PRMT1 ameliorates MH. SRSF1 serves as the downstream target of PRMT1, and its expression is markedly elevated in MH. Moreover, SRSF1 increases the mRNA expressions of CaMKIIδ A and CaMKIIδ B, decreases the mRNA expression of CaMKIIδ C by altering the selective splicing of CaMKIIδ, and further participates in MH. In addition, there is an interaction between PRMT1 and SRSF1, whereby PRMT1 reduces the phosphorylation level of SRSF1 via methylation, thus further altering its functional activity and eventually improving MH. Our present study demonstrates that PRMT1 relieves MH by methylating SRSF1, which is expected to provide a new theoretical basis for the pathogenic mechanism of MH and potential drug targets for reducing MH and associated cardiovascular disease.
Collapse
Affiliation(s)
- Zi Yan
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Wenhui Zhao
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Naixin Zhao
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Yufeng Liu
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Bowen Yang
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Li Wang
- Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - Jingyi Liu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan 030001, China
| | - Deping Wang
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jin Wang
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiangying Jiao
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jimin Cao
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jianguo Li
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, China
| |
Collapse
|
3
|
Qian X, Yao M, Xu J, Dong N, Chen S. From cancer therapy to cardiac safety: the role of proteostasis in drug-induced cardiotoxicity. Front Pharmacol 2024; 15:1472387. [PMID: 39611175 PMCID: PMC11602306 DOI: 10.3389/fphar.2024.1472387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Drug-induced cardiotoxicity (DICT) poses a significant challenge in the prognosis of cancer patients, particularly with the use of antineoplastic agents like anthracyclines and targeted therapies such as trastuzumab. This review delves into the intricate interplay between drugs and proteins within cardiac cells, focusing on the role of proteostasis as a therapeutic target for mitigating cardiotoxicity. We explore the in vivo modeling of proteostasis, highlighting the complex intracellular environment and the emerging techniques for monitoring proteostasis. Additionally, we discuss how cardiotoxic drugs disrupt protein homeostasis through direct chemical denaturation, endoplasmic reticulum stress, unfolded protein response, chaperone dysfunction, impairment of the proteasome system, and dysregulation of autophagy. Finally, we provide insights into the applications of cardioprotective drugs targeting proteostasis to prevent cardiotoxicity and the adoption of structural proteomics to evaluate potential cardiotoxicity. By gaining a deeper understanding of the role of proteostasis underlying DICT, we can pave the way for the development of targeted therapeutic strategies to safeguard cardiac function while maximizing the therapeutic potential of antineoplastic drugs.
Collapse
Affiliation(s)
- Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengdong Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyu Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Song L, Qiu Q, Ju F, Zheng C. Mechanisms of doxorubicin-induced cardiac inflammation and fibrosis; therapeutic targets and approaches. Arch Biochem Biophys 2024; 761:110140. [PMID: 39243924 DOI: 10.1016/j.abb.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Doxorubicin plays a pivotal role in the treatment of various malignancies. Despite its efficacy, the cardiotoxicity associated with doxorubicin limits its clinical utility. The cardiotoxic nature of doxorubicin is attributed to several mechanisms, including its interference with mitochondrial function, the generation of reactive oxygen species (ROS), and the subsequent damage to cardiomyocyte DNA, proteins, and lipids. Furthermore, doxorubicin disrupts the homeostasis of cardiac-specific transcription factors and signaling pathways, exacerbating cardiac dysfunction. Oxidative stress, cell death, and other severe changes, such as mitochondrial dysfunction, activation of pro-oxidant enzymes, the renin-angiotensin system (RAS), endoplasmic reticulum (ER) stress, and infiltration of immune cells in the heart after treatment with doxorubicin, may cause inflammatory and fibrotic responses. Fibrosis and inflammation can lead to a range of disorders in the heart, resulting in potential cardiac dysfunction and disease. Various adjuvants have shown potential in preclinical studies to mitigate these challenges associated with cardiac inflammation and fibrosis. Antioxidants, plant-based products, specific inhibitors, and cardioprotective drugs may be recommended to alleviate cardiotoxicity. This review explores the complex mechanisms of doxorubicin-induced heart inflammation and fibrosis, identifies possible cellular and molecular targets, and investigates potential substances that could help reduce these harmful effects.
Collapse
Affiliation(s)
- Linghua Song
- Department of Pharmacy, Yantai Mountain Hospital, Yantai City, Shandong Province, 264001, China
| | - Qingzhuo Qiu
- Medical Imaging Department of Qingdao Women and Children's Hospital, 266000, China
| | - Fei Ju
- Department of Critical Care, Medicine East Hospital of Qingdao Municipal Hospital, 266000, China
| | - Chunyan Zheng
- Cadre Health Office of Zibo Central Hospital in Shandong Province, 255000, China.
| |
Collapse
|
5
|
Yang Y, Wang Z, Wang N, Yang J, Yang L. CaMKII Exacerbates Doxorubicin-Induced Cardiotoxicity by Promoting Ubiquitination Through USP10 Inhibition. Cancer Med 2024; 13:e70286. [PMID: 39517125 PMCID: PMC11549063 DOI: 10.1002/cam4.70286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Doxorubicin (DOX) is an effective anticancer drug, but it has a problem of cardiotoxicity that cannot be ignored. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is tightly associated with the pathological progression of DOX-induced cardiotoxicity. Ubiquitin-specific protease 10 (USP10) plays an important role in many biological processes and cancers. However, its association with DOX-induced cardiotoxicity and CaMKII remains unclear. METHODS H9C2 cells, HL-1 cells and C57BL/6 mice were used to establish the DOX-induced cardiotoxicity model, and the CaMKII-specific inhibitor KN-93 and USP10 specific inhibitor Spautin-1 were used to observe the CaMKII and USP10 effect. In cell experiments, CCK-8 method was used to assess cell viability, LDH kit was used to assess lactate dehydrogenase expression, DCFH-DA staining was used to observe changes in active oxygen content, TUNEL staining was used to observe cell apoptosis, and Western blotting method was used to detect relevant protein markers. The expression of p-CaMKII and USP10 was assessed by immunofluorescence staining. In animal experiments, mouse echocardiograph was used were used to evaluate cardiac function, and HE staining and Masson staining were used to evaluate myocardial injury. Cardiomyocyte apoptosis was detected by TUNEL staining. Western blotting method was used to detect relevant protein markers. RESULTS Our results demonstrated that activation of CaMKII and inhibition of USP10 pathway related to DOX-induced cardiotoxicity. Inhibition of CaMKII with KN-93 ameliorated DOX-induced cardiac dysfunction and cytotoxicity. In addition, CaMKII inhibition prevented DOX-induced apoptosis and ubiquitination. Furthermore, CaMKII inhibition increased USP10 expression in DOX-treated mouse hearts, H9C2 cells and HL-1 cells. At last, the USP10 inhibitor, Spautin-1, blocked the regulatory effect of CaMKII inhibition on apoptosis and ubiquitination in DOX-induced cardiotoxicity. CONCLUSION Our findings revealed that DOX-induced myocardial apoptosis and activated CaMKII through cellular and animal levels, while providing a novel probe into the mechanism of CaMKII action: promoting ubiquitination by inhibiting USP10 aggravated apoptosis.
Collapse
Affiliation(s)
- Yitong Yang
- Department of AnesthesiologyChildren's Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
- Department of Children's Respiratory AsthmaSecond Affiliated Hospital of Shaanxi University of Chinese MedicineXianyangShaanxiChina
| | - Zhenyi Wang
- Department of AnesthesiologyChildren's Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Nisha Wang
- Department of AnesthesiologyChildren's Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Jian Yang
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Lifang Yang
- Department of AnesthesiologyChildren's Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
6
|
Sun M, Zhang X, Tan B, Zhang Q, Zhao X, Dong D. Potential role of endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity-an update. Front Pharmacol 2024; 15:1415108. [PMID: 39188945 PMCID: PMC11345228 DOI: 10.3389/fphar.2024.1415108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
As a chemotherapy agent, doxorubicin is used to combat cancer. However, cardiotoxicity has limited its use. The existing strategies fail to eliminate doxorubicin-induced cardiotoxicity, and an in-depth exploration of its pathogenesis is in urgent need to address the issue. Endoplasmic reticulum stress (ERS) occurs when Endoplasmic Reticulum (ER) dysfunction results in the accumulation of unfolded or misfolded proteins. Adaptive ERS helps regulate protein synthesis to maintain cellular homeostasis, while prolonged ERS stimulation may induce cell apoptosis, leading to dysfunction and damage to tissue and organs. Numerous studies on doxorubicin-induced cardiotoxicity strongly link excessive activation of the ERS to mechanisms including oxidative stress, calcium imbalance, autophagy, ubiquitination, and apoptosis. The researchers also found several clinical drugs, chemical compounds, phytochemicals, and miRNAs inhibited doxorubicin-induced cardiotoxicity by targeting ERS. The present review aims to outline the interactions between ERS and other mechanisms in doxorubicin-induced cardiotoxicity and summarize ERS's role in this type of cardiotoxicity. Additionally, the review enumerates several clinical drugs, phytochemicals, chemical compounds, and miRNAs targeting ERS for considering therapeutic regimens that address doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xin Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Boxuan Tan
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Qingya Zhang
- Innovation Institute, China Medical University, Shenyang, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Tan YQ, Zhang W, Xie ZC, Li J, Chen HW. CaMK II in Cardiovascular Diseases, Especially CaMK II-δ: Friends or Enemies. Drug Des Devel Ther 2024; 18:3461-3476. [PMID: 39132626 PMCID: PMC11314529 DOI: 10.2147/dddt.s473251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) tend to affect the young population and are associated with a significant economic burden and psychological distress to the society and families. The physiological and pathological processes underlying CVDs are complex. Ca2+/calmodulin-dependent kinase II (CaMK II), a protein kinase, has multiple biological functions. It participates in multiple pathological processes and plays a central role in the development of CVDs. Based on this, this paper analyzes the structural characteristics and distribution of CaMK II, the mechanism of action of CaMK II, and the relationship between CaMK II and CVDs, including ion channels, ischemia-reperfusion injury, arrhythmias, myocardial hypertrophy, cardiotoxicity, hypertension, and dilated cardiomyopathy. Given the different regulatory mechanisms of different isoforms of CaMK II, the clinical use of specific targeted inhibitors or novel compounds should be evaluated in future research to provide new directions.
Collapse
Affiliation(s)
- Yu-Qing Tan
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Wang Zhang
- Department of Pharmacy, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Zi-Cong Xie
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Jun Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Heng-Wen Chen
- New Drug Research and Development Office, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| |
Collapse
|
8
|
Yue F, Xu J, Meng L, Wang Q, Tan M, Zhang A, Yan S, Jiang D. A new insight into Cd exposure-induced hemocyte reduction in Lymantria dispar larvae: Involvement of the ROS-ATF6-ER stress-apoptosis pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134061. [PMID: 38508113 DOI: 10.1016/j.jhazmat.2024.134061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Hemocytes are important targets for heavy metal-induced immunotoxicity in insects. This study aimed to investigate the mechanism by which cadmium (Cd) exposure affects the hemocyte count in Lymantria dispar larvae. The results showed that the number of larval hemocytes was significantly decreased under Cd exposure, accompanied by a significant increase in the apoptosis rate and the expression of Caspase-3. The endoplasmic reticulum (ER) of hemocytes in the Cd-treated group showed irregular swelling. Expression levels of ER stress indicator genes (CHOP, Bip1, Bip2, Bip3, and Bip4) were significantly higher in the Cd-treated group. Among the three pathways that potentially mediate ER stress, only the key genes in the ATF6 pathway (ATF6, S1P-1, S1P-2, and WFS1) exhibited differential responses to Cd exposure. Cd exposure significantly increased the levels of reactive oxygen species (ROS) and the expression of oxidative stress-related genes (CNCC, P38, and ATF2) in hemocytes. Studies using inhibitors confirmed that apoptosis mediated the decrease in hemocyte count, ER stress mediated apoptosis, ATF6 pathway mediated ER stress, and ROS or oxidative stress mediated ER stress through the activation of the ATF6 pathway. Taken together, the ROS-ATF6-ER stress-apoptosis pathway is responsible for the reduction in the hemocyte count of Cd-treated L. dispar larvae.
Collapse
Affiliation(s)
- Fusen Yue
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Jinsheng Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Linyi Meng
- School of Forestry, Beihua University, Jilin 132013, PR China
| | - Qi Wang
- Forest Conservation Institute, Chinese Academy of Forestry, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
9
|
Chen J, Yang X, Li W, Lin Y, Lin R, Cai X, Yan B, Xie B, Li J. Endoplasmic reticulum stress-related gene expression causes the progression of dilated cardiomyopathy by inducing apoptosis. Front Genet 2024; 15:1366087. [PMID: 38699233 PMCID: PMC11063246 DOI: 10.3389/fgene.2024.1366087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Background: Previous studies have shown that endoplasmic reticulum stress (ERS) -induced apoptosis is involved in the pathogenesis of dilated cardiomyopathy (DCM). However, the molecular mechanism involved has not been fully characterized. Results: In total, eight genes were obtained at the intersection of 1,068 differentially expressed genes (DEGs) from differential expression analysis between DCM and healthy control (HC) samples, 320 module genes from weighted gene co-expression network analysis (WGCNA), and 2,009 endoplasmic reticulum stress (ERGs). These eight genes were found to be associated with immunity and angiogenesis. Four of these genes were related to apoptosis. The upregulation of MX1 may represent an autocompensatory response to DCM caused by a virus that inhibits viral RNA and DNA synthesis, while acting as an autoimmune antigen and inducing apoptosis. The upregulation of TESPA1 would lead to the dysfunction of calcium release from the endoplasmic reticulum. The upregulation of THBS4 would affect macrophage differentiation and apoptosis, consistent with inflammation and fibrosis of cardiomyocytes in DCM. The downregulation of MYH6 would lead to dysfunction of the sarcomere, further explaining cardiac remodeling in DCM. Moreover, the expression of genes affecting the immune micro-environment was significantly altered, including TGF-β family member. Analysis of the co-expression and competitive endogenous RNA (ceRNA) network identified XIST, which competitively binds seven target microRNAs (miRNAs) and regulates MX1 and THBS4 expression. Finally, bisphenol A and valproic acid were found to target MX1, MYH6, and THBS4. Conclusion: We have identified four ERS-related genes (MX1, MYH6, TESPA1, and THBS4) that are dysregulated in DCM and related to apoptosis. This finding should help deepen understanding of the role of endoplasmic reticulum stress-induced apoptosis in the development of DCM.
Collapse
Affiliation(s)
- Jinhao Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xu Yang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Weiwen Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Ying Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Run Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xianzhen Cai
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Baoxin Yan
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Bin Xie
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jilin Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
10
|
Dutta Gupta S, Ta M. ADAMTS13 regulates angiogenic markers via Ephrin/Eph signaling in human mesenchymal stem cells under serum-deprivation stress. Sci Rep 2024; 14:560. [PMID: 38177376 PMCID: PMC10766954 DOI: 10.1038/s41598-023-51079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are known to facilitate angiogenesis and promote neo-vascularization via secretion of trophic factors. Here, we explored the molecular mechanism adopted by ADAMTS13 in modulating the expression of some key angiogenic markers in human umbilical cord-derived MSCs under serum-deprivation stress. Wharton's jelly MSCs (WJ-MSCs) were isolated from the perivascular region of human umbilical cords by explant culture. ADAMTS13 was upregulated at both mRNA and protein levels in WJ-MSCs under serum-deprivation stress. Correspondingly, some key angiogenic markers were also seen to be upregulated. By screening signaling pathways, p38 and JNK pathways were identified as negative and positive regulators for expression of ADAMTS13, and the angiogenic markers, respectively. Our results also indicated the Notch pathway and p53 as other probable partners modulating the expression of ADAMTS13 and the angiogenic markers. Knockdown of ADAMTS13 using siRNA led to reversal in the expression of these angiogenic markers. Further, ADAMTS13 was shown to act via the EphrinB2/EphB4 axis followed by ERK signaling to control expression of the angiogenic markers. Interestingly, stronger expression levels were noted for ADAMTS13, VEGF and PDGF under a more stringent nutrient stress condition. Thus, we highlight a novel role of ADAMTS13 in WJ-MSCs under nutrient stress condition.
Collapse
Affiliation(s)
- Srishti Dutta Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata (IISER Kolkata), Mohanpur Campus, Dist: Nadia, Kolkata, West Bengal, 741246, India
| | - Malancha Ta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata (IISER Kolkata), Mohanpur Campus, Dist: Nadia, Kolkata, West Bengal, 741246, India.
| |
Collapse
|
11
|
Li X. Doxorubicin-mediated cardiac dysfunction: Revisiting molecular interactions, pharmacological compounds and (nano)theranostic platforms. ENVIRONMENTAL RESEARCH 2023; 234:116504. [PMID: 37356521 DOI: 10.1016/j.envres.2023.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Although chemotherapy drugs are extensively utilized in cancer therapy, their administration for treatment of patients has faced problems that regardless of chemoresistance, increasing evidence has shown concentration-related toxicity of drugs. Doxorubicin (DOX) is a drug used in treatment of solid and hematological tumors, and its function is based on topoisomerase suppression to impair cancer progression. However, DOX can also affect the other organs of body and after chemotherapy, life quality of cancer patients decreases due to the side effects. Heart is one of the vital organs of body that is significantly affected by DOX during cancer chemotherapy, and this can lead to cardiac dysfunction and predispose to development of cardiovascular diseases and atherosclerosis, among others. The exposure to DOX can stimulate apoptosis and sometimes, pro-survival autophagy stimulation can ameliorate this condition. Moreover, DOX-mediated ferroptosis impairs proper function of heart and by increasing oxidative stress and inflammation, DOX causes cardiac dysfunction. The function of DOX in mediating cardiac toxicity is mediated by several pathways that some of them demonstrate protective function including Nrf2. Therefore, if expression level of such protective mechanisms increases, they can alleviate DOX-mediated cardiac toxicity. For this purpose, pharmacological compounds and therapeutic drugs in preventing DOX-mediated cardiotoxicity have been utilized and they can reduce side effects of DOX to prevent development of cardiovascular diseases in patients underwent chemotherapy. Furthermore, (nano)platforms are used comprehensively in treatment of cardiovascular diseases and using them for DOX delivery can reduce side effects by decreasing concentration of drug. Moreover, when DOX is loaded on nanoparticles, it is delivered into cells in a targeted way and its accumulation in healthy organs is prevented to diminish its adverse impacts. Hence, current paper provides a comprehensive discussion of DOX-mediated toxicity and subsequent alleviation by drugs and nanotherapeutics in treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, 200072, China.
| |
Collapse
|
12
|
Feng X, Zhang J, Yang R, Bai J, Deng B, Cheng L, Gao F, Xie J, Zhang B. The CaMKII Inhibitory Peptide AIP Alleviates Renal Fibrosis Through the TGF- β/Smad and RAF/ERK Pathways. J Pharmacol Exp Ther 2023; 386:310-322. [PMID: 37419684 DOI: 10.1124/jpet.123.001621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023] Open
Abstract
Renal fibrosis is characterized by the excessive deposition of extracellular matrix that destroys and replaces the functional renal parenchyma, ultimately leading to organ failure. It is a common pathway by which chronic kidney disease can develop into end-stage renal disease, which has high global morbidity and mortality, and there are currently no good therapeutic agents available. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been indicated to be closely related to the occurrence of renal fibrosis, and its specific inhibitory peptide, autocamtide-2-related inhibitory peptide (AIP), was shown to directly bind the active site of CaMKII. In this study, we examined the effect of AIP on the progression of renal fibrosis and its possible mechanism. The results showed that AIP could inhibit the expression of the fibrosis markers fibronectin, collagen I, matrix metalloproteinase 2, and α-smooth muscle actin in vivo and in vitro. Further analysis revealed that AIP could inhibit the expression of various epithelial-to-mesenchymal transformation-related markers, such as vimentin and Snail 1, in vivo and in vitro. Mechanistically, AIP could significantly inhibit the activation of CaMKII, Smad 2, Raf, and extracellular regulated protein kinases (ERK) in vitro and in vivo and reduce the expression of transforming growth factor-β (TGF-β) in vivo. These results suggested that AIP could alleviate renal fibrosis by inhibiting CaMKII and blocking activation of the TGF-β/Smad2 and RAF/ERK pathways. Our study provides a possible drug candidate and demonstrates that CaMKII is a potential pharmacological target for the treatment of renal fibrosis. SIGNIFICANCE STATEMENT: We have demonstrated that AIP significantly attenuated transforming growth factor-β-1-induced fibrogenesis and ameliorated unilateral ureteral obstruction-induced renal fibrosis through the CaMKII/TGF-β/Smad and CaMKII/RAF/ERK signaling pathways in vitro and in vivo. Our study provides a possible drug candidate and demonstrates that CaMKII can be a potential pharmacological target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiaocui Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Jianfeng Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Runling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Jingya Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Bochuan Deng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Lu Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Feiyun Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Durço AO, Souza DS, Rhana P, Costa AD, Marques LP, Santos LABO, de Souza Araujo AA, de Aragão Batista MV, Roman-Campos D, Santos MRVD. d-Limonene complexed with cyclodextrin attenuates cardiac arrhythmias in an experimental model of doxorubicin-induced cardiotoxicity: Possible involvement of calcium/calmodulin-dependent protein kinase type II. Toxicol Appl Pharmacol 2023; 474:116609. [PMID: 37392997 DOI: 10.1016/j.taap.2023.116609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Arrhythmias are one manifestation of the cardiotoxicity that results from doxorubicin (Doxo) administration. Although cardiotoxicity is an anticipated outcome in anticancer therapies, there is still a lack of treatment options available for its effective management. This study sought to evaluate the possible cardioprotective effect of complex d-limonene (DL) plus hydroxypropyl-β-cyclodextrin (HβDL) during treatment with Doxo, focusing on the arrhythmic feature. METHODS Cardiotoxicity was induced in Swiss mice with Doxo 20 mg/kg, with 10 mg/kg of HβDL being administered 30 min before the Doxo. Plasma CK-MB and LDH levels were analyzed. Cellular excitability and susceptibility to cardiac and cardiomyocyte arrhythmias were evaluated using in vivo (pharmacological cardiac stress) and in vitro (burst pacing) ECG protocols. Ca2+ dynamics were also investigated. The expression of CaMKII and its activation by phosphorylation and oxidation were evaluated by western blot, and molecular docking was used to analyze the possible interaction between DL and CaMKII. RESULTS Electrocardiograms showed that administration of 10 mg/kg of HβDL prevented Doxo-induced widening of the QRS complex and QT interval. HβDL also prevented cardiomyocyte electrophysiological changes that trigger cellular arrhythmias, such as increases in action potential duration and variability; decreased the occurrence of delayed afterdepolarizations (DADs) and triggered activities (TAs), and reduced the incidence of arrhythmia in vivo. Ca2+ waves and CaMKII overactivation caused by phosphorylation and oxidation were also decreased. In the in silico study, DL showed potential inhibitory interaction with CaMKII. CONCLUSION Our results show that 10 mg/kg of βDL protects the heart against Doxo-induced cardiotoxicity arrhythmias, and that this is probably due to its inhibitory effect on CaMKII hyperactivation.
Collapse
Affiliation(s)
- Aimée Obolari Durço
- Health Science Graduate Program, Federal University of Sergipe, Aracaju, Brazil
| | - Diego Santos Souza
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Paula Rhana
- Department of Physiology and Membrane Biology, University of California, Davis, USA
| | | | | | | | - Adriano Antunes de Souza Araujo
- Health Science Graduate Program, Federal University of Sergipe, Aracaju, Brazil; Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Danilo Roman-Campos
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Marcio Roberto Viana Dos Santos
- Health Science Graduate Program, Federal University of Sergipe, Aracaju, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil.
| |
Collapse
|
14
|
Leiva O, Bohart I, Ahuja T, Park D. Off-Target Effects of Cancer Therapy on Development of Therapy-Induced Arrhythmia: A Review. Cardiology 2023; 148:324-334. [PMID: 36702116 PMCID: PMC10614257 DOI: 10.1159/000529260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Advances in cancer therapeutics have improved overall survival and prognosis in this patient population; however, this has come at the expense of cardiotoxicity including arrhythmia. SUMMARY Cancer and its therapies are associated with cardiotoxicity via several mechanisms including inflammation, cardiomyopathy, and off-target effects. Among cancer therapies, anthracyclines and tyrosine kinase inhibitors (TKIs) are particularly known for their pro-arrhythmia effects. In addition to cardiomyopathy, anthracyclines may be pro-arrhythmogenic via reactive oxygen species (ROS) generation and altered calcium handling. TKIs may mediate their cardiotoxicity via inhibition of off-target tyrosine kinases. Ibrutinib-mediated inhibition of CSK may be responsible for the increased prevalence of atrial fibrillation. Further investigation is warranted to further elucidate the mechanisms behind arrhythmias in cancer therapies. KEY MESSAGES Arrhythmias are a common cardiotoxicity of cancer therapies. Cancer therapies may induce arrhythmias via off-target effects. Understanding the mechanisms underlying arrhythmogenesis associated with cancer therapies may help design cancer therapies that can avoid these toxicities.
Collapse
Affiliation(s)
- Orly Leiva
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| | - Isaac Bohart
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| | - Tania Ahuja
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| | - David Park
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| |
Collapse
|