1
|
Sprang M, Möllmann J, Andrade-Navarro MA, Fontaine JF. Overlooked poor-quality patient samples in sequencing data impair reproducibility of published clinically relevant datasets. Genome Biol 2024; 25:222. [PMID: 39152483 PMCID: PMC11328481 DOI: 10.1186/s13059-024-03331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/08/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Reproducibility is a major concern in biomedical studies, and existing publication guidelines do not solve the problem. Batch effects and quality imbalances between groups of biological samples are major factors hampering reproducibility. Yet, the latter is rarely considered in the scientific literature. RESULTS Our analysis uses 40 clinically relevant RNA-seq datasets to quantify the impact of quality imbalance between groups of samples on the reproducibility of gene expression studies. High-quality imbalance is frequent (14 datasets; 35%), and hundreds of quality markers are present in more than 50% of the datasets. Enrichment analysis suggests common stress-driven effects among the low-quality samples and highlights a complementary role of transcription factors and miRNAs to regulate stress response. Preliminary ChIP-seq results show similar trends. Quality imbalance has an impact on the number of differential genes derived by comparing control to disease samples (the higher the imbalance, the higher the number of genes), on the proportion of quality markers in top differential genes (the higher the imbalance, the higher the proportion; up to 22%) and on the proportion of known disease genes in top differential genes (the higher the imbalance, the lower the proportion). We show that removing outliers based on their quality score improves the resulting downstream analysis. CONCLUSIONS Thanks to a stringent selection of well-designed datasets, we demonstrate that quality imbalance between groups of samples can significantly reduce the relevance of differential genes, consequently reducing reproducibility between studies. Appropriate experimental design and analysis methods can substantially reduce the problem.
Collapse
Affiliation(s)
- Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany
| | - Jannik Möllmann
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany.
| | - Jean-Fred Fontaine
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany
- Central Institute for Decision Support Systems in Crop Protection (ZEPP), Rüdesheimer Str. 60-68, Bad Kreuznach, 55545, Germany
| |
Collapse
|
2
|
Li M, Li H, Yuan T, Liu Z, Li Y, Tan Y, Long Y. MUC21: a new target for tumor treatment. Front Oncol 2024; 14:1410761. [PMID: 38933439 PMCID: PMC11199685 DOI: 10.3389/fonc.2024.1410761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
MUC21, also known as Epiglycanin, is a high-molecular-weight glycoprotein with transmembrane mucin properties. It consists of a tandem repeat domain, a stem domain, a transmembrane domain and a cytoplasmic tail. MUC21 is expressed is observed in normal tissues in organs like the thymus, testes, lungs, and large intestine. Research has shown that MUC21 is expressed in esophageal squamous cell carcinoma, lung adenocarcinoma, glioblastoma, thyroid cancer, melanoma, and various other malignant tumors in distinctive manner. Additionally, tumor invasion, metastasis, and poor prognosis are linked to it. Some researchers believe that MUC21 has the potential to become a new target in cancer treatment. This review aims to deliver a comprehensive overview of the glycosylation, function, and research progress of MUC21 in multiple types of cancer and infectious diseases.
Collapse
Affiliation(s)
- Miao Li
- Jishou University Zhuzhou Clinical College, Medical College, Jishou University, Zhuzhou, Hunan, China
- Medical College, Jishou University, Jishou, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan, China
| | - Hui Li
- Medical College, Jishou University, Jishou, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan, China
| | - Ting Yuan
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Zhi Liu
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yingzheng Tan
- Jishou University Zhuzhou Clinical College, Medical College, Jishou University, Zhuzhou, Hunan, China
- Medical College, Jishou University, Jishou, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yunzhu Long
- Jishou University Zhuzhou Clinical College, Medical College, Jishou University, Zhuzhou, Hunan, China
- Medical College, Jishou University, Jishou, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
3
|
Liu N, Sun W, Gao W, Yan S, Yang C, Zhang J, Ni B, Zhang L, Zang J, Zhang S, Xu D. CD300e: Emerging role and mechanism as an immune-activating receptor. Int Immunopharmacol 2024; 133:112055. [PMID: 38677094 DOI: 10.1016/j.intimp.2024.112055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
As a transmembrane protein, CD300e is primarily expressed in myeloid cells. It belongs to the CD300 glycoprotein family, functioning as an immune-activating receptor. Dysfunction of CD300e has been suggested in many diseases, such as infections, immune disorders, obesity, and diabetes, signifying its potential as a key biomarker for disease diagnosis and treatment. This review is aimed to explore the roles and potential mechanisms of CD300e in regulating oxidative stress, immune cell activation, tissue damage and repair, and lipid metabolism, shedding light on its role as a diagnostic marker or a therapeutic target, particularly for infections and autoimmune disorders.
Collapse
Affiliation(s)
- Na Liu
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Wenchang Sun
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Weixing Gao
- Office of the First Clinical Medical College, Shandong Second Medical University, Weifang 261000, China
| | - Shushan Yan
- Department of Colorectal and Anal Surgery of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Chunjuan Yang
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China; Department of Rheumatology of the Affiliated Hospital, Shandong Second Medical University, Weifang, 261053, China
| | - Jin Zhang
- Department of Colorectal and Anal Surgery of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Biao Ni
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Lili Zhang
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Jie Zang
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Sue Zhang
- Department of Anesthesiology, Weifang People's Hospital, Weifang 261000, China.
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China; Department of Rheumatology of the Affiliated Hospital, Shandong Second Medical University, Weifang, 261053, China; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Mu X, Ono M, Nguyen HTT, Wang Z, Zhao K, Komori T, Yonezawa T, Kuboki T, Oohashi T. Exploring the Regulators of Keratinization: Role of BMP-2 in Oral Mucosa. Cells 2024; 13:807. [PMID: 38786031 PMCID: PMC11119837 DOI: 10.3390/cells13100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism.
Collapse
Affiliation(s)
- Xindi Mu
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Ha Thi Thu Nguyen
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| | - Kun Zhao
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| | - Taishi Komori
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan;
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| |
Collapse
|
5
|
Koidou VP, Hagi-Pavli E, Nibali L, Donos N. Elucidating the molecular healing of intrabony defects following non-surgical periodontal therapy: A pilot study. J Periodontal Res 2024; 59:53-62. [PMID: 38010805 DOI: 10.1111/jre.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE To elucidate the molecular healing of intrabony defects following non-surgical periodontal therapy (NSPT) using gingival crevicular fluid (GCF). BACKGROUND DATA Currently limited information is available regarding the GCF of intrabony defects and the change in biomarker levels in the GCF at early time points following treatment interventions. METHODS Twenty-one patients (Periodontitis Stage III or IV) who have received NSPT, contributing one intrabony defect and one healthy site were included in this study. GCF sampling was performed at baseline, 1 day, 5 days and 3 months after NSPT. Multiplex bead immunoassays allowed the profiling of GCF for 27 markers, associated with inflammation and repair/regeneration. A mixed effects model with Bonferroni correction for multiple comparisons was employed to compare the changes in the levels of GCF markers over time. RESULTS Following NSPT, changes were observed for several GCF markers, marked by significant increases 1 day post-intervention, before returning to baseline levels by 3 months. Specifically, GCF concentrations of IL-2, IL-4, IL-6, IL-8, MMP-1, MMP-3, TIMP-1 and FGFb significantly increased 1 day after NSPT. Signs of activation of cellular senescence were observed 1 day following treatment of intrabony defects, rapidly regressing by 5 days. CONCLUSION Significant molecular changes are observed as early as 1 day following NSPT in intrabony defects, along with activation of cellular senescence.
Collapse
Affiliation(s)
- Vasiliki P Koidou
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eleni Hagi-Pavli
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Luigi Nibali
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Periodontology Unit, Centre for Host Microbiome Interactions, King's College London, London, UK
| | - Nikolaos Donos
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Taş D, Kurgan Ş, Güney Z, Serdar MA, Tatakis DN. The effect of smoking on clinical and biochemical early healing outcomes of coronally advanced flap with connective tissue graft: Prospective cohort study. J Periodontol 2024; 95:17-28. [PMID: 37436705 DOI: 10.1002/jper.23-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND This study aimed to determine the effects of smoking on early (≤3 months) clinical outcomes and relevant molecular biomarkers following root coverage surgery. METHODS Eighteen smokers and 18 nonsmokers, status biochemically verified, with RT1 gingival recession defects were recruited and completed study procedures. All patients received coronally advanced flap plus connective tissue graft. Baseline and 3 month recession depth (RD), recession width (RW), keratinized tissue width (KTW), clinical attachment level (CAL), and gingival phenotype (GP) were recorded. Root coverage (RC) percentage and complete root coverage (CRC) were calculated. Recipient (gingival crevicular fluid) and donor (wound fluid) site VEGF-A, HIF-1α, 8-OHdG, and ANG levels were determined. RESULTS There were no significant intergroup differences for any baseline or postoperative clinical parameters (P > 0.05), except for whole mouth gingival index (increased in nonsmokers at 3 months; P < 0.05). Compared to baseline, RD, RW, CAL, KTW, and GP significantly improved postoperatively, without significant intergroup differences. There were no significant intergroup differences for RC (smokers = 83%, nonsmokers = 91%, P = 0.069), CRC (smokers = 50%, nonsmokers = 72%, P = 0.177), and CAL gain (P = 0.193). The four biomarker levels significantly increased postoperatively (day 7; P ≤ 0.042) in both groups and returned to baseline (day 28) without significant intergroup differences (P > 0.05). Similarly, donor site parameters were not different between groups. Strong correlations, consistent over time, were found between biomarkers implicated in angiogenesis (VEGF-A, HIF-1α, and ANG). CONCLUSIONS The early (3 month) clinical and molecular changes after root coverage surgery utilizing a coronally advanced flap plus connective tissue graft are similar between smokers and nonsmokers.
Collapse
Affiliation(s)
- Duygu Taş
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Şivge Kurgan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Zeliha Güney
- Department of Periodontology, Faculty of Dentistry, Ankara Medipol University, Ankara, Turkey
| | - Muhittin A Serdar
- Department of Medical Biochemistry, School of Medicine, Acıbadem University, Ankara, Turkey
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Tavelli L, Barootchi S, Stefanini M, Zucchelli G, Giannobile WV, Wang HL. Wound healing dynamics, morbidity, and complications of palatal soft-tissue harvesting. Periodontol 2000 2023; 92:90-119. [PMID: 36583690 DOI: 10.1111/prd.12466] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 12/31/2022]
Abstract
Palatal-tissue harvesting is a routinely performed procedure in periodontal and peri-implant plastic surgery. Over the years, several surgical approaches have been attempted with the aim of obtaining autogenous soft-tissue grafts while minimizing patient morbidity, which is considered the most common drawback of palatal harvesting. At the same time, treatment errors during the procedure may increase not only postoperative discomfort or pain but also the risk of developing other complications, such as injury to the greater palatine artery, prolonged bleeding, wound/flap sloughing, necrosis, infection, and inadequate graft size or quality. This chapter described treatment errors and complications of palatal harvesting techniques, together with approaches for reducing patient morbidity and accelerating donor site wound healing. The role of biologic agents, photobiomodulation therapy, local and systemic factors, and genes implicated in palatal wound healing are also discussed.
Collapse
Affiliation(s)
- Lorenzo Tavelli
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shayan Barootchi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Martina Stefanini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Zucchelli
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Chopra A, Song J, Weiner J, Keceli HG, Dincer PR, Cruz R, Carracedo A, Blanco J, Dommisch H, Schaefer AS. RSPO4 is a potential risk gene of stages III-IV, grade C periodontitis through effects on innate immune response and oral barrier integrity. J Clin Periodontol 2023; 50:476-486. [PMID: 36507580 DOI: 10.1111/jcpe.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
AIM R-spondin 4 (RSPO4) is a suggestive risk gene of stage III-IV, grade C periodontitis and upregulated in gingiva of mice resistant to bacteria-induced alveolar bone loss. We aimed to replicate the association, identify and characterize the putative causal variant(s) and molecular effects, and understand the downstream effects of RSPO4 upregulation. MATERIALS AND METHODS We performed a two-step association study for RSPO4 with imputed genotypes of a German-Dutch (896 stage III-IV, grade C periodontitis cases, 7104 controls) and Spanish sample (441 cases and 1141 controls). We analysed the allelic effects on transcription factor binding sites with reporter gene and antibody electrophoretic mobility shift assays. We used CRISPR/dCas9 activation and RNA sequencing to pinpoint RSPO4 as the target gene and to analyse downstream effects. RESULTS RSPO4 was associated with periodontitis (rs6056178, pmeta = 4.6 × 10-5 ). rs6056178 contains a GATA-binding motif. The rs6056178 T-allele abolished reporter activity (p = .004) and reduced GATA binding (-14.5%). CRISPRa of the associated region increased RSPO4 expression (25.8 ± 6.5-fold, p = .003). RSPO4 activation showed strongest induction of Gliomedin (439-fold) and Mucin 21 (178-fold) and of the gene set "response to interferon-alpha" (area under the curve [AUC] = 0.8, p < 5 × 10-6 ). The most repressed gene set was "extracellular matrix interactions" (AUC = 0.8, padj = .00016). CONCLUSION RSPO4 is a potential periodontitis risk gene and modifies host defence and barrier integrity.
Collapse
Affiliation(s)
- Avneesh Chopra
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Jiahui Song
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - January Weiner
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Huseyin G Keceli
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Pervin R Dincer
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Raquel Cruz
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- CIBERER-Instituto de Salud Carlos III, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Carracedo
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- CIBERER-Instituto de Salud Carlos III, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Blanco
- Grupo de Investigación en Odontología Médico-Quirúrgica (OMEQUI), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Henrik Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Arne S Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
9
|
Leonardo TR, Chen L, Schrementi ME, Shi J, Marucha PT, Glass K, DiPietro LA. Transcriptional changes in human palate and skin healing. Wound Repair Regen 2023; 31:156-170. [PMID: 36571451 PMCID: PMC10006330 DOI: 10.1111/wrr.13068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Most human tissue injuries lead to the formation of a fibrous scar and result in the loss of functional tissue. One adult tissue that exhibits a more regenerative response to injury with minimal scarring is the oral mucosa. We generated a microarray gene expression dataset to examine the response to injury in human palate and skin excisional biopsies spanning the first 7 days after wounding. Differential expression analyses were performed in each tissue to identify genes overexpressed or underexpressed over time when compared to baseline unwounded tissue gene expression levels. To attribute biological processes of interest to these gene expression changes, gene set enrichment analysis was used to identify core gene sets that are enriched over the time-course of the wound healing process with respect to unwounded tissue. This analysis identified gene sets uniquely enriched in either palate or skin wounds and gene sets that are enriched in both tissues in at least one time point after injury. Finally, a cell type enrichment analysis was performed to better understand the cell type distribution in these tissues and how it changes over the time course of wound healing. This work provides a source of human wound gene expression data that includes two tissue types with distinct regenerative and scarring phenotypes.
Collapse
Affiliation(s)
- Trevor R Leonardo
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, Illinois, USA
| | - Lin Chen
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, Illinois, USA
| | - Megan E Schrementi
- Department of Science and Health, DePaul University, Chicago, Illinois, USA
| | - Junhe Shi
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, Illinois, USA
- National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Phillip T Marucha
- Department of Periodontics, College of Dentistry, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Kimberly Glass
- Channing Division of Network Medicine,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, Massachusetts, USA
| | - Luisa A DiPietro
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Orlova E, Dudding T, Chernus JM, Alotaibi RN, Haworth S, Crout RJ, Lee MK, Mukhopadhyay N, Feingold E, Levy SM, McNeil DW, Foxman B, Weyant RJ, Timpson NJ, Marazita ML, Shaffer JR. Association of Early Childhood Caries with Bitter Taste Receptors: A Meta-Analysis of Genome-Wide Association Studies and Transcriptome-Wide Association Study. Genes (Basel) 2022; 14:59. [PMID: 36672800 PMCID: PMC9858612 DOI: 10.3390/genes14010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Although genetics affects early childhood caries (ECC) risk, few studies have focused on finding its specific genetic determinants. Here, we performed genome-wide association studies (GWAS) in five cohorts of children (aged up to 5 years, total N = 2974, cohorts: Center for Oral Health Research in Appalachia cohorts one and two [COHRA1, COHRA2], Iowa Fluoride Study, Iowa Head Start, Avon Longitudinal Study of Parents and Children [ALSPAC]) aiming to identify genes with potential roles in ECC biology. We meta-analyzed the GWASs testing ~3.9 million genetic variants and found suggestive evidence for association at genetic regions previously associated with caries in primary and permanent dentition, including the β-defensin anti-microbial proteins. We then integrated the meta-analysis results with gene expression data in a transcriptome-wide association study (TWAS). This approach identified four genes whose genetically predicted expression was associated with ECC (p-values < 3.09 × 10−6; CDH17, TAS2R43, SMIM10L1, TAS2R14). Some of the strongest associations were with genes encoding members of the bitter taste receptor family (TAS2R); other members of this family have previously been associated with caries. Of note, we identified the receptor encoded by TAS2R14, which stimulates innate immunity and anti-microbial defense in response to molecules released by the cariogenic bacteria, Streptococcus mutans and Staphylococcus aureus. These findings provide insight into ECC genetic architecture, underscore the importance of host-microbial interaction in caries risk, and identify novel risk genes.
Collapse
Affiliation(s)
- Ekaterina Orlova
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tom Dudding
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Jonathan M. Chernus
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rasha N. Alotaibi
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Simon Haworth
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Richard J. Crout
- Department of Periodontics, School of Dentistry, West Virginia University, Morgantown, WV 26505, USA
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nandita Mukhopadhyay
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Steven M. Levy
- Department of Preventive & Community Dentistry, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Daniel W. McNeil
- Department of Psychology & Department of Dental Public Health and Professional Practice, West Virginia University, Morgantown, WV 26505, USA
| | - Betsy Foxman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert J. Weyant
- Dental Public Health, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nicholas J. Timpson
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, University of Bristol, Bristol BS8 1QU, UK
- Avon Longitudinal Study of Parents and Children, University of Bristol, Bristol BS8 1QU, UK
| | - Mary L. Marazita
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
11
|
lncRNA cytoskeleton regulator RNA (CYTOR): Diverse functions in metabolism, inflammation and tumorigenesis, and potential applications in precision oncology. Genes Dis 2021; 10:415-429. [DOI: 10.1016/j.gendis.2021.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
|
12
|
van Praagh JB, de Wit JG, Olinga P, de Haan JJ, Nagengast WB, Fehrmann RSN, Havenga K. Colorectal anastomotic leak: transcriptomic profile analysis. Br J Surg 2021; 108:326-333. [PMID: 33793728 DOI: 10.1093/bjs/znaa066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/17/2020] [Accepted: 10/03/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Anastomotic leakage in patients undergoing colorectal surgery is associated with morbidity and mortality. Although multiple risk factors have been identified, the underlying mechanisms are mainly unknown. The aim of this study was to perform a transcriptome analysis of genes underlying the development of anastomotic leakage. METHODS A set of human samples from the anastomotic site collected during stapled colorectal anastomosis were used in the study. Transcriptomic profiles were generated for patients who developing anastomotic leakage and case-matched controls with normal anastomotic healing to identify genes and biological processes associated with the development of anastomotic leakage. RESULTS The analysis included 22 patients with and 69 without anastomotic leakage. Differential expression analysis showed that 44 genes had adjusted P < 0.050, consisting of two upregulated and 42 downregulated genes. Co-functionality analysis of the 150 most upregulated and 150 most downregulated genes using the GenetICA framework showed formation of clusters of genes with different enrichment for biological pathways. The enriched pathways for the downregulated genes are involved in immune response, angiogenesis, protein metabolism, and collagen cross-linking. The enriched pathways for upregulated genes are involved in cell division. CONCLUSION These data indicate that patients who develop anastomotic leakage start the healing process with an error at the level of gene regulation at the time of surgery. Despite normal macroscopic appearance during surgery, the transcriptome data identified several differences in gene expression between patients who developed anastomotic leakage and those who did not. The expressed genes and enriched processes are involved in the different stages of wound healing. These provide therapeutic and diagnostic targets for patients at risk of anastomotic leakage.
Collapse
Affiliation(s)
- J B van Praagh
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - J G de Wit
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - P Olinga
- Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - J J de Haan
- Department of Medical Oncology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - W B Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - R S N Fehrmann
- Department of Medical Oncology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - K Havenga
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| |
Collapse
|
13
|
CTHRC1 Knockdown Promotes Inflammatory Responses Partially by p38 MAPK Activation in Human Periodontal Ligament Cells. Inflammation 2021; 44:1831-1842. [PMID: 33846931 DOI: 10.1007/s10753-021-01461-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Collagen triple helix repeat containing 1 (CTHRC1), a secreted glycoprotein, is widely expressed in many tissues. It has been recently defined as a novel marker for rheumatoid arthritis (RA), a systemic inflammatory disorder. However, the precise role of CTHRC1 in other chronic inflammatory diseases, like periodontal disease, remains unclear. This research aimed to explore the presence of CTHRC1 in periodontal inflammation, determine the precise role in inflammatory response modulation in periodontal ligament cells (PDLCs), and explore its underlying mechanisms. In vivo gingival crevicular fluid (GCF) and gingivae were obtained from healthy people and chronic periodontitis patients. Maxillary tissues of mice with or without ligature-induced periodontitis were immunostained for CTHRC1. In vitro human PDLCs were treated with tumor necrosis factor alpha (TNF-α) to mimic the inflammatory environment. Small interfering RNA (siRNA) was used to silence CTHRC1. SB203580 was used to inhibit the p38 mitogen-activated protein kinase (MAPK) pathway. CTHRC1 was highly expressed in GCF and gingival tissues of periodontitis patients. Animal models also revealed the same tendency. CTHRC1 knockdown promoted inflammatory cytokine production and activated the p38 MAPK signaling pathway in PDLCs. Inhibiting the p38 MAPK signaling pathway partially attenuated the inflammatory responses. This study revealed that CTHRC1 was highly expressed in periodontitis and suggested that CTHRC1 might play an important role in modulating periodontal inflammation.
Collapse
|
14
|
Rojas MA, Ceccarelli S, Gerini G, Vescarelli E, Marini L, Marchese C, Pilloni A. Gene expression profiles of oral soft tissue-derived fibroblast from healing wounds: correlation with clinical outcome, autophagy activation and fibrotic markers expression. J Clin Periodontol 2021; 48:705-720. [PMID: 33527447 DOI: 10.1111/jcpe.13439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/14/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
AIM Our aim was to evaluate gene expression profiling of fibroblasts from human alveolar mucosa (M), buccal attached gingiva (G) and palatal (P) tissues during early wound healing, correlating it with clinical response. MATERIALS AND METHODS M, G and P biopsies were harvested from six patients at baseline and 24 hr after surgery. Clinical response was evaluated through Early wound Healing Score (EHS). Fibrotic markers expression and autophagy were assessed on fibroblasts isolated from those tissues by Western blot and qRT-PCR. Fibroblasts from two patients were subjected to RT2 profiler array, followed by network analysis of the differentially expressed genes. The expression of key genes was validated with qRT-PCR on all patients. RESULTS At 24 hr after surgery, EHS was higher in P and G than in M. In line with our clinical results, no autophagy and myofibroblast differentiation were observed in G and P. We observed significant variations in mRNA expression of key genes: RAC1, SERPINE1 and TIMP1, involved in scar formation; CDH1, ITGA4 and ITGB5, contributing to myofibroblast differentiation; and IL6 and CXCL1, involved in inflammation. CONCLUSIONS We identified some genes involved in periodontal soft tissue clinical outcome, providing novel insights into the molecular mechanisms of oral repair (ClinicalTrial.gov-NCT04202822).
Collapse
Affiliation(s)
- Mariana Andrea Rojas
- Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrica Vescarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Marini
- Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Pilloni
- Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Liu H, Li T, Zhong S, Yu M, Huang W. Intestinal epithelial cells related lncRNA and mRNA expression profiles in dextran sulphate sodium-induced colitis. J Cell Mol Med 2021; 25:1060-1073. [PMID: 33300279 PMCID: PMC7812259 DOI: 10.1111/jcmm.16174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022] Open
Abstract
Intestinal epithelial barrier damage caused by intestinal epithelial cells (IECs) dysfunction plays a crucial role in the pathogenesis and development of inflammatory bowel disease (IBD). Recently, some studies have suggested the emerging role of long non-coding RNAs (lncRNAs) in IBD. The aim of this study was to reveal lncRNAs and mRNA expression profiles in IECs from a mouse model of colitis and to expand our understanding in the intestinal epithelial barrier regulation. IECs from the colons of wild-type mice and dextran sulphate sodium (DSS)-induced mice were isolated for high-throughput RNA-sequencing. A total of 254 up-regulated and 1013 down-regulated mRNAs and 542 up-regulated and 766 down-regulated lncRNAs were detected in the DSS group compared with the Control group. Four mRNAs and six lncRNAs were validated by real-time quantitative PCR. Function analysis showed that dysregulated mRNAs participated in TLR7 signalling pathway, IL-1 receptor activity, BMP receptor binding and IL-17 signalling pathway. Furthermore, the possibility of indirect interactions between differentially expressed mRNAs and lncRNAs was illustrated by the competing endogenous RNA (ceRNA) network. LncRNA ENSMUST00000128026 was predicted to bind to mmu-miR-6899-3p, regulating Dnmbp expression. LncRNA NONMMUT143162.1 was predicted to competitively bind to mmu-miR-6899-3p, regulating Tnip3 expression. Finally, the protein-protein interaction (PPI) network analysis was constructed with 311 nodes and 563 edges. And the highest connectivity degrees were Mmp9, Fpr2 and Ccl3. These results provide novel insights into the functions of lncRNAs and mRNAs involved in the regulation of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Huan Liu
- The Precision Medicine InstituteThe Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
- Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Teming Li
- Department of General SurgeryXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Shizhen Zhong
- Guangdong Engineering Research Center for Translation of Medical 3D Printing ApplicationGuangdong Provincial Key Laboratory of Medical BiomechanicsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Min Yu
- Department of General SurgeryXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Wenhua Huang
- The Precision Medicine InstituteThe Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Engineering Research Center for Translation of Medical 3D Printing ApplicationGuangdong Provincial Key Laboratory of Medical BiomechanicsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Pathological Diagnosis and Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
16
|
Alfonso García SL, Parada-Sanchez MT, Arboleda Toro D. The phenotype of gingival fibroblasts and their potential use in advanced therapies. Eur J Cell Biol 2020; 99:151123. [PMID: 33070040 DOI: 10.1016/j.ejcb.2020.151123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023] Open
Abstract
Advanced therapies in medicine use stem cells, gene editing, and tissues to treat a wide range of conditions. One of their goals is to stimulate endogenous repair of tissues and organs by manipulating stem cells and their niche, as well as to optimize the intrinsic characteristics and plasticity of differentiated cells in adult tissues. In this context, fibroblasts emerge as an alternative source to stem cells because they share phenotypic and regenerative characteristics. Specifically, fibroblasts of the oral mucosae have been shown to have improved regenerative capacity compared to other fibroblast populations. Additionally, their easy access by means of minimally invasive procedures without generating aesthetic problems, with easy and rapid in vitro expansion and with great capacity to respond to extrinsic factors, make oral fibroblasts an attractive and interesting resource for regenerative medicine. This review summarizes current concepts regarding the phenotypic and functional aspects of human Gingival Fibroblasts and their niche, differentiating them from other fibroblast populations of oral-lining mucosa and skin fibroblasts. Furthermore, some applications are presented in regenerative medicine, emphasizing on the biological potential of human Gingival Fibroblasts.
Collapse
Affiliation(s)
- Sandra Liliana Alfonso García
- Department of Integrated Basic Studies, Faculty of Dentistry, Universidad de Antioquia, Medellín, 050010, Colombia; Department of Oral Health, Faculty of Dentistry, Universidad Nacional de Colombia, Bogotá, 111311, Colombia.
| | | | - David Arboleda Toro
- Department of Integrated Basic Studies, Faculty of Dentistry, Universidad de Antioquia, Medellín, 050010, Colombia
| |
Collapse
|
17
|
Wang Y, Tatakis DN. Integrative mRNA/miRNA expression analysis in healing human gingiva. J Periodontol 2020; 92:863-874. [PMID: 32857863 DOI: 10.1002/jper.20-0397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are implicated in the epigenetic regulation of complex biological processes. Their possible role in human oral wound healing, a process that differs from cutaneous wound healing by being faster and typically scar-free, has been unexplored. This report presents the miRNA expression profile of experimental human oral wounds and an integrative analysis of mRNA/miRNA expression. METHODS Nine healthy volunteers provided standardized normal and 5-day healing palatal biopsies, used for next generation miRNA and mRNA sequencing analysis, correlation and network analysis, real-time PCR (qPCR) and immunohistochemistry. RESULTS On average, 169 significantly regulated precursor miRNAs were detected, including 21 novel miRNAs, selectively confirmed by PCR. Hsa-miR-223-3p and hsa-miR-124-3p were, respectively, the most up- and downregulated miRNAs in healing gingiva. Hsa-miR-124-3p had the most predicted mRNA target interactions, with angiogenesis-related genes the most enriched. Correlation analysis showed the highest correlation between hsa-miR-181a-3p and SERPINB1; hsa-miR-223-5p and SLC2A3; hsa-miR-1301 and MS4A7. In addition, SERPINB1 mRNA had the most associations with differentially regulated miRNAs. IL33 was the only cytokine significantly correlated with miRNAs (ρ > 0.95). qPCR and immunohistochemistry verified the significant upregulation of SERPINB1 and IL33 in healing gingiva. CONCLUSIONS This study is the first to report on the miRNome of healing human gingiva and to provide an integrative analysis of miRNA/mRNA expression during human oral wound healing; the results offer novel insights into the participating molecular mechanisms and raise the possibility of SERPINB1 and IL-33 as potential wound healing therapeutic targets.
Collapse
Affiliation(s)
- Yun Wang
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Chen J, Wang Z, Wang W, Ren S, Xue J, Zhong L, Jiang T, Wei H, Zhang C. SYT16 is a prognostic biomarker and correlated with immune infiltrates in glioma: A study based on TCGA data. Int Immunopharmacol 2020; 84:106490. [PMID: 32289666 DOI: 10.1016/j.intimp.2020.106490] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/16/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Glioma is the most lethal primary brain tumor. Lower-grade glioma (LGG) is the crucial pathological type of Glioma. Immune-infiltration of the tumor microenvironment positively associated with overall survival in LGG. SYT16 is a gene has not been reported in cancer. We assess the role of SYT16 in LGG, via the publicly available TCGA database. METHODS Gene Expression Profiling Interactive Analysis (GEPIA) was used to analyze the expression of SYT16 in LGG. We evaluated the influence of SYT16 on survival of LGG patients by survival module. Then, datasets of LGG were downloaded from TCGA. The correlations between the clinical information and SYT16 expression were analyzed using logistic regression. Univariable survival and Multivariate Cox analysis was used to compare several clinical characteristics with survival. we also explore the correlation between SYT16 and cancer immune infiltrates using CIBERSORT and correlation module of GEPIA. Gene set enrichment analysis (GSEA) was performed using the TCGA dataset. In addition, we use TIMER to explore the collection of SYT16 Expression and Immune Infiltration Level in LGG and to explore cumulative survival in LGG. RESULTS The univariate analysis using logistic regression, indicated that increased SYT16 expression significantly correlated with the tumor grade. Moreover, multivariate analysis revealed that the up-regulated SYT16 expression is an independent prognostic factor for good prognosis. Specifically, SYT16 expression level has significant negative correlations with infiltrating levels of B cell, CD4+ T cells, Macrophages, Neutrophils and DCs in LGG. In addition, GSEA identified ingle organism behavior, gated channel activity, cognition, transporter complex and ligand gated channel activity in Gene Ontology (GO) were differentially enriched in the high SYT16 expression phenotype pathway. Neuroactive ligand receptor interaction, calcium signaling pathway, long term potentiation, type II diabetes mellitus and long term depression were identified as differentially enriched pathway in Kyoto Encyclopedia of Genes and Genomes (KEGG). CONCLUSION SYT16 is a Prognostic Biomarker and Correlated with Immune Infiltrates in LGG.
Collapse
Affiliation(s)
- Jianfeng Chen
- Department of Spine, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214000, PR China.
| | - Ziheng Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China; Nantong University Xinling College, Nantong, Jiangsu 226001, PR China
| | - Wei Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China; Nantong University Xinling College, Nantong, Jiangsu 226001, PR China
| | - Shiqi Ren
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China; Nantong University Xinling College, Nantong, Jiangsu 226001, PR China
| | - Jinbiao Xue
- Department of Orthopaedics, Qidong Hospital of Chinese Medicine, Nantong, Jiangsu 226200, PR China
| | - Lin Zhong
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 2210023, PR China
| | - Tao Jiang
- Department of Spine, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214000, PR China; Nanjing University of Chinese Medicine, Nanjing, Jiangsu 2210023, PR China
| | - Hualin Wei
- Department of Spine, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214000, PR China; Nanjing University of Chinese Medicine, Nanjing, Jiangsu 2210023, PR China
| | - Chenlin Zhang
- Department of Orthopaedics, Qidong Hospital of Chinese Medicine, Nantong, Jiangsu 226200, PR China.
| |
Collapse
|
19
|
Lin GC, Leitgeb T, Vladetic A, Friedl HP, Rhodes N, Rossi A, Roblegg E, Neuhaus W. Optimization of an oral mucosa in vitro model based on cell line TR146. Tissue Barriers 2020; 8:1748459. [PMID: 32314665 PMCID: PMC7549749 DOI: 10.1080/21688370.2020.1748459] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
During the last years, the popularity of saliva has been increasing for its applicability as a diagnostic fluid. Blood biomarker molecules have to cross the blood-saliva barrier (BSB) in order to appear in saliva. The BSB consists of all oral and salivary gland epithelial barriers. Within this context, the optimization of in vitro models for mechanistic studies about the transport of molecules across the oral mucosa is an important task. Here, we describe the optimization and comprehensive characterization of a Transwell model of the oral mucosa based on the epithelial cell line TR146. Through systematic media optimization investigating 12 different set-ups, a significant increase of barrier integrity upon airlift cultivation is described here for TR146 cell layers. The distinct improvement of the paracellular barrier was described by measurements of transepithelial electrical resistance (TEER) and carboxyfluorescein permeability assays. Histological characterization supported TEER data and showed a stratified, non-keratinized multilayer of the optimized TR146 model. High-Throughput qPCR using 96 selected markers for keratinization, cornification, epithelial-mesenchymal transition, aquaporins, mucins, tight junctions, receptors, and transporter proteins was applied to comprehensively characterize the systematic optimization of the cellular model and validate against human biopsy samples. Data revealed the expression of several genes in the oral mucosa epithelium for the first time and elucidated novel regulations dependent on culture conditions. Moreover, functional activity of ABC-transporters ABCB1 and ABCC4 was shown indicating the applicability of the model for drug transport studies. In conclusion, a Transwell model of the oral mucosa epithelium was optimized suitably for transport studies.
Collapse
Affiliation(s)
- Grace C. Lin
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, Austrian Institute of Technology (AIT) GmbH, Vienna, Austria
| | - Tamara Leitgeb
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, Austrian Institute of Technology (AIT) GmbH, Vienna, Austria
| | - Alexandra Vladetic
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, Austrian Institute of Technology (AIT) GmbH, Vienna, Austria
| | - Heinz-Peter Friedl
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, Austrian Institute of Technology (AIT) GmbH, Vienna, Austria
| | - Nadine Rhodes
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Würzburg, Germany
| | - Angela Rossi
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Würzburg, Germany
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Graz, Austria
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, Austrian Institute of Technology (AIT) GmbH, Vienna, Austria
| |
Collapse
|
20
|
Bao X, Wiehe R, Dommisch H, Schaefer A. Entamoeba gingivalis Causes Oral Inflammation and Tissue Destruction. J Dent Res 2020; 99:561-567. [DOI: 10.1177/0022034520901738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A metagenomics analysis showed a strongly increased frequency of the protozoan Entamoeba gingivalis in inflamed periodontal pockets, where it contributed the second-most abundant rRNA after human rRNA. This observation and the close biological relationship to Entamoeba histolytica, which causes inflammation and tissue destruction in the colon of predisposed individuals, raised our concern about its putative role in the pathogenesis of periodontitis. Histochemical staining of gingival epithelium inflamed from generalized severe chronic periodontitis visualized the presence of E. gingivalis in conjunction with abundant neutrophils. We showed that on disruption of the epithelial barrier, E. gingivalis invaded gingival tissue, where it moved and fed on host cells. We validated the frequency of E. gingivalis in 158 patients with periodontitis and healthy controls by polymerase chain reaction and microscopy. In the cases, we detected the parasite in 77% of inflamed periodontal sites and 22% of healthy sites; 15% of healthy oral cavities were colonized by E. gingivalis. In primary gingival epithelial cells, we demonstrated by quantitative real-time polymerase chain reaction that infection with E. gingivalis but not with the oral bacterial pathogen Porphyromonas gingivalis strongly upregulated the inflammatory cytokine IL8 (1,900 fold, P = 2 × 10–4) and the epithelial barrier gene MUC21 (8-fold, P = 7 × 10–4). In gingival fibroblasts, we showed upregulation of the collagenase MMP13 (11-fold, P = 3 × 10–4). Direct contact of E. gingivalis to gingival epithelial cells inhibited cell proliferation. We indicated the strong virulence potential of E. gingivalis and showed that the mechanisms of tissue invasion and destruction are similar to the colonic protozoan parasite E. histolytica. In conjunction with abundant colonization of inflamed periodontal sites and the known resistance of Entamoeba species to neutrophils, antimicrobial peptides, and various antibiotics, our results raise the awareness of this protozoan as a potential and, to date, underrated microbial driver of destructive forms of periodontitis.
Collapse
Affiliation(s)
- X. Bao
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Dept. of Periodontology and Synoptic Dentistry, Berlin, Germany
| | - R. Wiehe
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Dept. of Periodontology and Synoptic Dentistry, Berlin, Germany
| | - H. Dommisch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Dept. of Periodontology and Synoptic Dentistry, Berlin, Germany
| | - A.S. Schaefer
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Dept. of Periodontology and Synoptic Dentistry, Berlin, Germany
| |
Collapse
|
21
|
Liu D, Yang Y, Yan A, Yang Y. SPOCD1 accelerates ovarian cancer progression and inhibits cell apoptosis via the PI3K/AKT pathway. Onco Targets Ther 2020; 13:351-359. [PMID: 32021280 PMCID: PMC6974139 DOI: 10.2147/ott.s200317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer (OC) is the most common type of gynecological malignant tumors with poor prognosis. The spen paralogue and orthologue C-terminal domain containing 1 (SPOCD1) is a newly identified molecule that has been indicated to discriminate progressive in human solid tumors. However, the role of SPOCD1 in OC remains unknown. Methods The expression of SPOCD1 in OC and non-cancerous tissue was detected by Realtime polymerase chain reaction and immunohistochemical staining. The expression of SPOCD1 in OC cells (SKOV3 and CAOV3) was also detected by immunohistochemical staining. The effect of SPOCD1 on cell proliferation was analyzed by Cell Counting Kit 8 and colony formation assay, and cell migration was analyzed by transwell assay. Apoptosis was analyzed by flow cytometry. The protein expression of SPOCD1, PTEN, PI3K, p-AKT, and mTOR in OC cells was measured by Western blot. Results SPOCD1 expression was significantly upregulated in OC tissues compared with non-cancerous tissues (P<0.01), and was positively correlated to FIGO stage and tumor grade of OC. Also, SPOCD1 was significantly expressed in nucleus and cytoplasm of SKOV3 and CAOV3 cells. Kaplan–Meier analysis indicated that patients with high SPOCD1 expression had shorter overall survival (HR =1.512, 95%CI: 1.321–2.793, P=0.031) and progression-free survival (HR =1.875, 95%CI: 1.435–3.157, P=0.028). SPOCD1 was upregulated in OC SKOV3 and CAOV3 cells. Further investigation revealed that downregulation of SPOCD1 inhibited the SKOV3 and CAOV3 cells proliferation and migration. In addition, the deficit of SPOCD1 increased the apoptosis in SKOV3 and CAOV3 cells. PI3K/AKT pathway was inhibited by knockdown of SPOCD1 in SKOV3 and CAOV3 cells. Conclusions Our data suggest that SPOCD1 may act as a carcinogenesis factor by activating the PI3K/AKT pathway to restrained cell apoptosis in OC.
Collapse
Affiliation(s)
- Dajiang Liu
- Department of Obstetrics and Gynecology, The First Hospital of Lan Zhou University, Lanzhou, China
| | - Yuan Yang
- The Reproductive Medicine Special Hospital, The First Hospital of Lanzhou University, Lanzhou, China
| | - Aiqin Yan
- Department of Obstetrics and Gynecology, Zhang ye People's Hospital Affiliated to Hexi University, Zhangye, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First Hospital of Lan Zhou University, Lanzhou, China
| |
Collapse
|
22
|
Wu D, Zhou M, Li L, Leng X, Zhang Z, Wang N, Sun Y. Severe Burn Injury Progression and Phasic Changes of Gene Expression in Mouse Model. Inflammation 2020; 42:1239-1251. [PMID: 30877509 DOI: 10.1007/s10753-019-00984-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Patients with severe burns are susceptible to infectious complications including burn-site infections and sepsis. The purpose of this study was to explore the pathologic development of burn injury in a mouse model and to screen genes dysregulated at different time points on the basis of gene expression microarrays. Differential expression analysis identified a total 223 genes that related to only time progression independent of burn injury and 214 genes with aberrant expression due to burn injury. Weighted gene co-expression network analysis (WGCNA) of the 214 genes obtained seven gene modules which named as red, blue, turquoise, green, brown, yellow, and gray module, and the blue module was found to be significantly associated with severe burn injury progression, and in which several genes were previously reported being associated with inflammation and immune response, such as interleukin IL-6, IL-8, and IL-1b. Functional enrichment analysis indicated significant enrichment of biological processes that related to metabolism and catabolism, and pathways of proteasome, notch signaling and cell cycle. This result supports a phase progression of severe burn with gene expression changes and interpretation of biological processes in mouse.
Collapse
Affiliation(s)
- Dan Wu
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China.
| | - Ming Zhou
- Department of Joint Surgery, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Liang Li
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Xiangfeng Leng
- Department of Plastic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Zheng Zhang
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Ning Wang
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Yanwei Sun
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| |
Collapse
|
23
|
Wang Y, Anderson EP, Tatakis DN. Whole transcriptome analysis of smoker palatal mucosa identifies multiple downregulated innate immunity genes. J Periodontol 2020; 91:756-766. [DOI: 10.1002/jper.19-0467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yun Wang
- Division of PeriodontologyCollege of DentistryThe Ohio State University Columbus OH
| | - Eric P. Anderson
- Division of PeriodontologyCollege of DentistryThe Ohio State University Columbus OH
- Private practice Aurora CO
| | - Dimitris N. Tatakis
- Division of PeriodontologyCollege of DentistryThe Ohio State University Columbus OH
| |
Collapse
|
24
|
Li X, Chu SG, Shen XN, Hou XH, Xu W, Ou YN, Dong Q, Tan L, Yu JT. Genome-wide association study identifies SIAH3 locus influencing the rate of ventricular enlargement in non-demented elders. Aging (Albany NY) 2019; 11:9862-9874. [PMID: 31711042 PMCID: PMC6874439 DOI: 10.18632/aging.102435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022]
Abstract
Ventricular enlargement occurs in several neurodegenerative and psychiatric diseases. A large genome-wide association study (GWAS) has identified seven loci associated with ventricular volume. The rate of ventricular enlargement increased in the progression of disease from normal cognition to dementia. Here, we aimed to use the rate of ventricular enlargement as an endophenotype for the development and progression of neurodegenerative diseases to discover more common genetic variants. We performed a GWAS of the rate of ventricular enlargement using 507 nondemented non-Hispanic white participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Linear regression model was used to identify the association of the rate of ventricular enlargement with single nucleotide polymorphisms (SNPs) in PLINK software. The associations of genome-wide significant SNPs with other four phenotypes were further discussed. Two SNPs (rs11620312, P = 4.04×10−8; rs79174114, P = 4.28×10−8) within SIAH3 gene in linkage disequilibrium (LD) reached genome-wide significance for association with increased rate of ventricular enlargement. Some intergenic SNPs and SNPs within NKAIN2, TBC1D2, GALNT18, ABCC1 and SRCIN1 genes were identified as potential candidates. SIAH3 rs11620312-C carriers were associated with poor cognition and brain hypometabolism longitudinally. Our findings indicated that SIAH3 gene may have potential influence on the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xian Li
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Shu-Guang Chu
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Chavez MB, Kolli TN, Tan MH, Zachariadou C, Wang C, Embree MC, Lira Dos Santos EJ, Nociti FH, Wang Y, Tatakis DN, Agarwal G, Foster BL. Loss of Discoidin Domain Receptor 1 Predisposes Mice to Periodontal Breakdown. J Dent Res 2019; 98:1521-1531. [PMID: 31610730 DOI: 10.1177/0022034519881136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The discoidin domain receptors, DDR1 and DDR2, are nonintegrin collagen receptors and tyrosine kinases. DDRs regulate cell functions, and their extracellular domains affect collagen fibrillogenesis and mineralization. Based on the collagenous nature of dentoalveolar tissues, we hypothesized that DDR1 plays an important role in dentoalveolar development and function. Radiography, micro-computed tomography (micro-CT), histology, histomorphometry, in situ hybridization (ISH), immunohistochemistry (IHC), and transmission electron microscopy (TEM) were used to analyze Ddr1 knockout (Ddr1-/-) mice and wild-type (WT) controls at 1, 2, and 9 mo, and ISH and quantitative polymerase chain reaction (qPCR) were employed to assess Ddr1/DDR1 messenger RNA expression in mouse and human tissues. Radiographic images showed normal molars but abnormal mandibular condyles, as well as alveolar bone loss in Ddr1-/- mice versus WT controls at 9 mo. Histological, histomorphometric, micro-CT, and TEM analyses indicated no differences in enamel or dentin Ddr1-/- versus WT molars. Total volumes (TVs) and bone volumes (BVs) of subchondral and ramus bone of Ddr1-/- versus WT condyles were increased and bone volume fraction (BV/TV) was reduced at 1 and 9 mo. There were no differences in alveolar bone volume at 1 mo, but at 9 mo, severe periodontal defects and significant alveolar bone loss (14%; P < 0.0001) were evident in Ddr1-/- versus WT mandibles. Histology, ISH, and IHC revealed disrupted junctional epithelium, connective tissue destruction, bacterial invasion, increased neutrophil infiltration, upregulation of cytokines including macrophage colony-stimulating factor, and 3-fold increased osteoclast numbers (P < 0.05) in Ddr1-/- versus WT periodontia at 9 mo. In normal mouse tissues, ISH and qPCR revealed Ddr1 expression in basal cell layers of the oral epithelia and in immune cells. We confirmed a similar expression pattern in human oral epithelium by ISH and qPCR. We propose that DDR1 plays an important role in periodontal homeostasis and that absence of DDR1 predisposes mice to periodontal breakdown.
Collapse
Affiliation(s)
- M B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - C Zachariadou
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - C Wang
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M C Embree
- TMJ Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - E J Lira Dos Santos
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.,Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, SP, Brazil
| | - F H Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, SP, Brazil
| | - Y Wang
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - D N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - G Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Orlova E, Carlson JC, Lee MK, Feingold E, McNeil DW, Crout RJ, Weyant RJ, Marazita ML, Shaffer JR. Pilot GWAS of caries in African-Americans shows genetic heterogeneity. BMC Oral Health 2019; 19:215. [PMID: 31533690 PMCID: PMC6751797 DOI: 10.1186/s12903-019-0904-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Dental caries is the most common chronic disease in the US and disproportionately affects racial/ethnic minorities. Caries is heritable, and though genetic heterogeneity exists between ancestries for a substantial portion of loci associated with complex disease, a genome-wide association study (GWAS) of caries specifically in African Americans has not been performed previously. METHODS We performed exploratory GWAS of dental caries in 109 African American adults (age > 18) and 96 children (age 3-12) from the Center for Oral Health Research in Appalachia (COHRA1 cohort). Caries phenotypes (DMFS, DMFT, dft, and dfs indices) assessed by dental exams were tested for association with 5 million genotyped or imputed single nucleotide polymorphisms (SNPs), separately in the two age groups. The GWAS was performed using linear regression with adjustment for age, sex, and two principal components of ancestry. A maximum of 1 million adaptive permutations were run to determine empirical significance. RESULTS No loci met the threshold for genome-wide significance, though some of the strongest signals were near genes previously implicated in caries such as antimicrobial peptide DEFB1 (rs2515501; p = 4.54 × 10- 6) and TUFT1 (rs11805632; p = 5.15 × 10- 6). Effect estimates of lead SNPs at suggestive loci were compared between African Americans and Caucasians (adults N = 918; children N = 983). Significant (p < 5 × 10- 8) genetic heterogeneity for caries risk was found between racial groups for 50% of the suggestive loci in children, and 12-18% of the suggestive loci in adults. CONCLUSIONS The genetic heterogeneity results suggest that there may be differences in the contributions of genetic variants to caries across racial groups, and highlight the critical need for the inclusion of minorities in subsequent and larger genetic studies of caries in order to meet the goals of precision medicine and to reduce oral health disparities.
Collapse
Affiliation(s)
- E Orlova
- Department of Human Genetics, Pittsburgh, USA
| | - J C Carlson
- Department of Biostatistics, Graduate School of Public Health, Pittsburgh, USA
| | - M K Lee
- Center for Craniofacial and Dental Genetics, Dept. of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Feingold
- Department of Human Genetics, Pittsburgh, USA
- Department of Biostatistics, Graduate School of Public Health, Pittsburgh, USA
- Center for Craniofacial and Dental Genetics, Dept. of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - D W McNeil
- Departments of Psychology, & Dental Practice and Rural Health, West Virginia University, Morgantown, USA
| | - R J Crout
- Department of Periodontics, School of Dentistry, West Virginia University, Morgantown, WV, USA
| | - R J Weyant
- Department of Dental Public Health and Information Management, Pittsburgh, USA
| | - M L Marazita
- Department of Human Genetics, Pittsburgh, USA
- Center for Craniofacial and Dental Genetics, Dept. of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - J R Shaffer
- Department of Human Genetics, Pittsburgh, USA.
- Center for Craniofacial and Dental Genetics, Dept. of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Culp DJ, Stewart C, Wallet SM. Oral epithelial membrane-associated mucins and transcriptional changes with Sjögren's syndrome. Oral Dis 2019; 25:1325-1334. [PMID: 30920100 DOI: 10.1111/odi.13098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To determine expression and localization of membrane-associated mucins within human keratinized and non-keratinized oral epithelia, and to explore transcriptional changes associated with primary Sjögren's syndrome. SUBJECTS AND METHODS Mucin transcripts and glycoproteins were determined by RT-PCR and immunohistochemistry, respectively, in oral keratinized (hard palate) and non-keratinized (buccal) epithelia obtained from three cadavers. Mucin transcripts assessed by quantitative PCR were compared between cells harvested by brushing buccal and palatal epithelia of 25 female primary Sjögren's syndrome patients vs 25 healthy age-matched female control subjects. RESULTS In hard palate, MUC4 is absent and MUC1 localized to deeper cell layers. Both mucins are within the apical layers of buccal epithelium. MUC15 is localized throughout all palatal cell layers and in all but the basal layer of buccal epithelia. MUC16, MUC20, and MUC21 glycoproteins are localized within all but the basal cell layer of both tissue types. In buccal cells of primary Sjögren's patients, MUC21 transcripts are down-regulated 3.4-fold and MUC20 2.6-fold. Dysregulation of select epithelial mucins may therefore contribute to xerostomia. CONCLUSIONS Differential expression of multiple mucins and down-regulation in Sjögren's syndrome support further study of oral epithelial mucin physiology and pathophysiology, including their functions in hydration and lubrication of the oral mucosal pellicle.
Collapse
Affiliation(s)
- David J Culp
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Carol Stewart
- Department of Oral & Maxillofacial Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida
| | - Shannon M Wallet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| |
Collapse
|
28
|
Evaluation of MEDAG gene expression in papillary thyroid microcarcinoma: associations with histological features, regional lymph node metastasis and prognosis. Sci Rep 2019; 9:5800. [PMID: 30967566 PMCID: PMC6456583 DOI: 10.1038/s41598-019-41701-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
Papillary thyroid microcarcinoma accounts for a large proportion of papillary thyroid carcinoma, especially among new cases. Many PTMC patients have regional lymph node metastasis, with some experiencing recurrence and even death. However, the risk factors and mechanism by which PTMC relates to these factors are unknown. In this study, differentially expressed genes were identified with microarray from The Cancer Genome Atlas, followed by analysis using the Kyoto Encyclopedia of Genes and Genomes. Immunohistochemistry, immunofluorescence, western blot and Oil Red O staining were carried out to evaluate expression levels and functional alterations. Mesenteric Estrogen Dependent Adipogenesis expression was observed in almost all cases of papillary thyroid microcarcinomas, and the location of expression was associated with histological subtype. High expression was correlated with metastasis and poor disease-free survival. Furthermore, the enrichment analysis indicated that Mesenteric Estrogen Dependent Adipogenesis expression may be associated with metabolic reprogramming to influence metastasis and prognosis. These findings contribute to a better understanding of how Mesenteric Estrogen Dependent Adipogenesis affects metastasis and the prognosis of papillary thyroid microcarcinoma patients and suggest that Mesenteric Estrogen Dependent Adipogenesis expression may be a novel prognostic marker in these patients.
Collapse
|
29
|
Qin S, Zheng JH, Xia ZH, Qian J, Deng CL, Yang SL. CTHRC1 promotes wound repair by increasing M2 macrophages via regulating the TGF-β and notch pathways. Biomed Pharmacother 2019; 113:108594. [PMID: 30849639 DOI: 10.1016/j.biopha.2019.01.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
The healing of acute wounds is vital to humans and is a well-orchestrated process that involves systemic and local factors. However, there is a lack of effective and safe clinical therapies. The collagen triple helix repeat containing 1 (CTHRC1) protein is a type of exocrine protein that has been recently reported to contribute to tissue repair. Our aim is to validate the promoting effects of CTHRC1 on the healing of acute wounds and to elucidate the underlying molecular mechanism. Therefore, we first established acute wound healing mouse models and confirmed that CTHRC1 accelerates the healing process of acute wounds. Then, we characterized wound macrophages using a polyvinylalcohol (PVA) sponge model and used Western blotting to investigate the molecular mechanism. We found that CTHRC1 increased the M2 macrophage population and the TGF-β expression level as a result of the activation of the TGF-β and Notch pathways, which eventually contributed to the promotion of wound healing. Inhibition of the Notch pathway showed attenuated M2 macrophage recruitment, and it decreased the TGF-β expression level. These results substantiate our hypothesis that CTHRC1 promotes wound healing by recruiting M2 macrophages and regulating the TGF-β and Notch pathways.
Collapse
Affiliation(s)
- Shu Qin
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Jiang-Hong Zheng
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Zi-Huan Xia
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Jin Qian
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Chen-Liang Deng
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Song-Lin Yang
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
30
|
Binh TD, Pham TLA, Men TT, Dang TTP, Kamei K. LSD-2 dysfunction induces dFoxO-dependent cell death in the wing of Drosophila melanogaster. Biochem Biophys Res Commun 2018; 509:491-497. [PMID: 30595382 DOI: 10.1016/j.bbrc.2018.12.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 11/27/2022]
Abstract
Lipid storage droplet-2 (LSD-2) of Drosophila melanogaster is a member of the lipid storage droplet membrane surface-binding protein family. LSD-2 is detected in many specific tissues: germline precursor cells, fat body, and is associated with lipid metabolism, lipid storage, and regulation of lipid droplet transport. However, the roles of this gene in development remain unclear. To investigate these functions, we performed tissue-specific knockdown of Lsd-2 in Drosophila using the combination of GAL4/UAS system and RNAi. Here we report that the knockdown of Lsd-2 in the wing led to abnormal wing phenotype and cell death in the wing pouch of 3rd-instar larvae, suggesting an essential role of Lsd-2 in development of the Drosophila wing. This function of Lsd-2 is dependent on the transcription factor dFoxO, as dFoxO depletion suppresses cell death and the abnormal wing pattern formation induced by Lsd-2-knockdown. Furthermore, Lsd-2-knockdown up-regulated the expression of the dFoxO transcription target reaper, which constitutes a pro-apoptosis gene. This study provides the first evidence that Lsd-2-knockdown causes cell death mediated by dfoxO.
Collapse
Affiliation(s)
- Tran Duy Binh
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan.
| | - Tuan L A Pham
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan.
| | - Tran Thanh Men
- Department of Biology, Cantho University, Cantho City, 900000, Viet Nam.
| | - Thao T P Dang
- Department of Molecular and Environmental Biotechnology, University of Natural Science, Vietnam National University-HCM, Ho Chi Minh City, 700000, Viet Nam.
| | - Kaeko Kamei
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan.
| |
Collapse
|
31
|
Liang J, Zhao H, Hu J, Liu Y, Li Z. SPOCD1 promotes cell proliferation and inhibits cell apoptosis in human osteosarcoma. Mol Med Rep 2017; 17:3218-3225. [PMID: 29257309 DOI: 10.3892/mmr.2017.8263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is the most common type of malignant bone tumors that typically affects adolescents and children. The spen paralogue and orthologue C‑terminal domain containing 1 (SPOCD1) is a newly identified molecule that has been indicated to discriminate progressive from non‑progressive bladder cancers. However, the role of SPOCD1 in human solid tumors remains largely unknown. In the present study, SPOCD1 was upregulated in clinical osteosarcoma tissues compared with adjacent non‑cancerous tissues. Furthermore, SPOCD1 was upregulated in osteosarcoma cell lines and expression was particularly increased in highly invasive cells MG63 and SAOS2. Further investigation revealed that downregulation of SPOCD1 inhibited the MG63 and SAOS2 osteosarcoma cell colony formation and proliferation capacity. In addition, cell apoptosis was promoted by knockdown of SPOCD1 in MG63 and SAOS2 cells. These effects were confirmed by measuring the Ki67 and PCNA expression. In addition, SPOCD1 positively regulated the expression of vascular endothelial growth factor A (VEGF‑A). Knockdown of VEGF‑A blunted SPOCD1 downregulation‑mediated inhibition of cell proliferation and induction of cell apoptosis. These results suggested that SPOCD1 may act as a pro‑oncogenic factor in osteosarcoma. Inhibition of VEGF may aid in treating osteosarcoma in clinic.
Collapse
Affiliation(s)
- Jinqian Liang
- Department of Orthorpaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Hong Zhao
- Department of Orthorpaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Jianhua Hu
- Department of Orthorpaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Yong Liu
- Department of Orthorpaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Zheng Li
- Department of Orthorpaedic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| |
Collapse
|
32
|
Vescarelli E, Pilloni A, Dominici F, Pontecorvi P, Angeloni A, Polimeni A, Ceccarelli S, Marchese C. Autophagy activation is required for myofibroblast differentiation during healing of oral mucosa. J Clin Periodontol 2017. [PMID: 28646601 DOI: 10.1111/jcpe.12767] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM It is known that periodontal tissues heal faster that skin, and gingiva in particular heal without scar formation. The mechanisms regulating this behaviour are still unclear. The aim of our work was to compare wound healing in oral mucosa and gingiva, investigating the role of α-smooth muscle actin (αSMA)-expressing myofibroblasts and autophagy. MATERIALS AND METHODS Biopsies were obtained from seven patients immediately before and 24 hr after vertical releasing incision in oral mucosa and attached gingiva. Both whole biopsies and primary cultures of fibroblasts derived from the same tissues were subjected to immunofluorescence, Western blot and quantitative real-time PCR analyses. RESULTS We demonstrated that in oral mucosa, characterized by partially fibrotic outcome during repair, the activation of autophagy determined an increase in αSMA and collagen 1a1 production. Conversely, wound healing did not stimulate autophagy in attached gingiva, and subsequently, no increase in myofibroblast differentiation and collagen deposition could be seen, thus justifying its scarless outcome. CONCLUSIONS The elucidation of the differential regulation of autophagy in periodontal tissues and its correlation with myofibroblast differentiation and fibrotic outcome could allow the identification of new molecules involved in periodontal healing and the development of new surgical approaches for periodontal treatment that could improve the outcome of postoperative wounds.
Collapse
Affiliation(s)
- Enrica Vescarelli
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| | - Andrea Pilloni
- Section of Periodontology, Sapienza University of Rome, Roma, Italy
| | | | - Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| | - Antonio Angeloni
- Department of Molecular Medicine, Sapienza University of Rome, Roma, Italy
| | | | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| |
Collapse
|
33
|
Wang C, Gu W, Sun B, Zhang Y, Ji Y, Xu X, Wen Y. CTHRC1 promotes osteogenic differentiation of periodontal ligament stem cells by regulating TAZ. J Mol Histol 2017. [PMID: 28647773 DOI: 10.1007/s10735-017-9729-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Collagen triple helix repeat containing 1 (CTHRC1) is associated with bone metabolism. Alveolar bone has an ability to rapidly remodel itself to adapt its biomechanical environment and function. However, whether CTHRC1 is expressed in alveolar bone tissue and the role of CTHRC1 in alveolar bone remodeling remain unclear. We used orthodontic tooth movement (OTM) rat model to study the effects of CHTRC1 in alveolar bone remodeling in vivo. We found that CTHRC1 was expressed in normal physiological condition of osteocytes, bone matrix, and periodontal ligament cells in rat. During the OTM, the expression of CTHRC1, Runx2 and TAZ were increased. We further studied the effects of CTHRC1 on osteogenic differentiation of human periodontal ligament stem cells in vitro. CTHRC1 can positively regulate the expression of TAZ and osteogenic differentiation markers like Col1, ALP, Runx2 and OCN. Overexpression of CHTRC1 increased osteogenic differentiation of PDLSCs, which could be abolished by TAZ siRNA. Our results suggest that CTHRC1 plays an important role in alveolar bone remodeling and osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Chengze Wang
- School of Stomatology, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, People's Republic of China
| | - Weiting Gu
- Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Baiyu Sun
- School of Stomatology, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, People's Republic of China
| | - Yunpeng Zhang
- School of Stomatology, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, People's Republic of China
| | - Yawen Ji
- School of Stomatology, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, People's Republic of China
| | - Xin Xu
- School of Stomatology, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, People's Republic of China.
| | - Yong Wen
- School of Stomatology, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, People's Republic of China.
| |
Collapse
|