1
|
Fawzy El-Sayed K, Mahlandt E, Schlicht K, Enthammer K, Tölle J, Wagner J, Hartmann K, Ebeling PR, Graetz C, Laudes M, Dörfer CE, Schulte DM. Effects of oxidized LDL versus IL-1ß/TNF-ɑ/INFɣ on human gingival mesenchymal stem cells properties. J Periodontal Res 2024. [PMID: 38952262 DOI: 10.1111/jre.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
AIMS Oxidized low-density lipoprotein (oxLDL) is an important player in the course of metabolic inflammatory diseases. oxLDL was identified in the gingival crevicular fluid, denoting possible associations between oxLDL-induced inflammation and periodontal disease. The current investigation compared for the first-time direct effects of oxLDL to a cytokine cocktail of IL-1ß/TNF-ɑ/INF-γ on gingival mesenchymal stem cells' (G-MSCs) attributes. METHODS Human third passage G-MSCs, isolated from connective tissue biopsies (n = 5) and characterized, were stimulated in three groups over 7 days: control group, cytokine group (IL-1β[1 ng/mL], TNF-α[10 ng/mL], IFN-γ[100 ng/mL]), or oxLDL group (oxLDL [50 μg/mL]). Next Generation Sequencing and KEGG pathway enrichment analysis, stemness gene expression (NANOG/SOX2/OCT4A), cellular proliferation, colony-formation, multilinear potential, and altered intracellular pathways were investigated via histochemistry, next-generation sequencing, and RT-qPCR. RESULTS G-MSCs exhibited all mesenchymal stem cells' characteristics. oxLDL group and cytokine group displayed no disparities in their stemness markers (p > .05). Next-generation-sequencing revealed altered expression of the TXNIP gene in response to oxLDL treatment compared with controls (p = .04). Following an initial boosting for up to 5 days by inflammatory stimuli, over 14 day, cellular counts [median count ×10-5 (Q25/Q75)] were utmost in control - [2.6607 (2.0804/4.5357)], followed by cytokine - [0.0433 (0.0026/1.4215)] and significantly lowered in the oxLDL group [0.0274 (0.0023/0.7290); p = .0047]. Osteogenic differentiation [median relative Ca2+ content(Q25/Q75)] was significantly lower in cytokine - [0.0066 (0.0052/0.0105)] compared to oxLDL - [0.0144 (0.0108/0.0216)] (p = .0133), with no differences notable for chondrogenic and adipogenic differentiation (p > .05). CONCLUSIONS Within the current investigation's limitations, in contrast to cytokine-mediated inflammation, G-MSCs appear to be minimally responsive to oxLDL-mediated metabolic inflammation, with little negative effect on their differentiation attributes and significantly reduced cellular proliferation.
Collapse
Affiliation(s)
- Karim Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, University Hospital of Schleswig-Holstein, Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem Cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Elena Mahlandt
- Institute of Diabetes and Clinical Metabolic Research, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Kim Enthammer
- Institute of Diabetes and Clinical Metabolic Research, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Johannes Tölle
- Clinic for Conservative Dentistry and Periodontology, University Hospital of Schleswig-Holstein, Kiel, Germany
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Juliane Wagner
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Katharina Hartmann
- Institute of Diabetes and Clinical Metabolic Research, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Christian Graetz
- Clinic for Conservative Dentistry and Periodontology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Mathias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Hospital of Schleswig-Holstein, Kiel, Germany
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Dominik M Schulte
- Institute of Diabetes and Clinical Metabolic Research, University Hospital of Schleswig-Holstein, Kiel, Germany
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
2
|
Jiang N, Tian X, Wang Q, Hao J, Jiang J, Wang H. Regulation Mechanisms and Maintenance Strategies of Stemness in Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:455-483. [PMID: 38010581 DOI: 10.1007/s12015-023-10658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Stemness pertains to the intrinsic ability of mesenchymal stem cells (MSCs) to undergo self-renewal and differentiate into multiple lineages, while simultaneously impeding their differentiation and preserving crucial differentiating genes in a state of quiescence and equilibrium. Owing to their favorable attributes, including uncomplicated isolation protocols, ethical compliance, and ease of procurement, MSCs have become a focal point of inquiry in the domains of regenerative medicine and tissue engineering. As age increases or ex vivo cultivation is prolonged, the functionality of MSCs decreases and their stemness gradually diminishes, thereby limiting their potential therapeutic applications. Despite the existence of several uncertainties surrounding the comprehension of MSC stemness, considerable advancements have been achieved in the clarification of the potential mechanisms that lead to stemness loss, as well as the associated strategies for stemness maintenance. This comprehensive review provides a systematic overview of the factors influencing the preservation of MSC stemness, the molecular mechanisms governing it, the strategies for its maintenance, and the therapeutic potential associated with stemness. Finally, we underscore the obstacles and prospective avenues in present investigations, providing innovative perspectives and opportunities for the preservation and therapeutic utilization of MSC stemness.
Collapse
Affiliation(s)
- Nizhou Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiliang Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanxiang Wang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
| | - Jian Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| | - Hong Wang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| |
Collapse
|
3
|
Fawzy El-Sayed KM, Rudert A, Geiken A, Tölle J, Mekhemar M, Dörfer CE. Toll-like receptor expression profile of stem/progenitor cells from human exfoliated deciduous teeth. Int J Paediatr Dent 2023; 33:607-614. [PMID: 37158295 DOI: 10.1111/ipd.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Stem/progenitor cells from human exfoliated deciduous teeth (SHED) show remarkable pluripotent, regenerative, and immunological capacities. During in vivo regenerative processes, there could be the presence of SHED in the surrounding inflammatory microenvironment, through toll-like receptors (TLRs). AIM The aim of this paper was to present a characteristic TLR expression profile on SHED for the first time. DESIGN Cells were harvested from extracted primary teeth (n = 10), anti-STRO-1 immunomagnetically sorted and cultivated, through colony-forming units (CFUs). SHED were examined for mesenchymal stem/progenitor cell traits, including the expression of clusters of differentiation (CDs) 14, 34, 45, 73, 90, 105, and 146, and their multilineage differentiation aptitude. TLRs 1-10 expression was investigated for SHED in uninflamed and inflamed (25 ng/mL IL-1β, 103 U/mL IFN-γ, 50 ng/mL TNF-α, and 3 × 103 U/mL IFN-α; SHED-i) microenvironmental conditions. RESULTS SHED were negative for CDs 14, 34, and 45, but were positive for CDs 73, 90, 105, and 146, and demonstrated characteristic multilineage differentiation. In an uninflamed microenvironment, SHED expressed TLRs 1, 2, 3, 4, 6, 8, 9, and 10. The inflammatory microenvironment downregulated TLR7 significantly on gene level and upregulated TLR8 on gene and protein levels (p < .05; Wilcoxon signed-rank test). CONCLUSION There appears to be a unique TLR expression profile on SHED, which could modulate their immunological and regenerative abilities in oral tissue engineering approaches.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem Cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Antonia Rudert
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Antje Geiken
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Johannes Tölle
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Mohamed Mekhemar
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Christof E Dörfer
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
4
|
Tölle J, Koch A, Schlicht K, Finger D, Kaehler W, Höppner M, Graetz C, Dörfer C, Schulte DM, Fawzy El-Sayed K. Effect of Hyperbaric Oxygen and Inflammation on Human Gingival Mesenchymal Stem/Progenitor Cells. Cells 2023; 12:2479. [PMID: 37887323 PMCID: PMC10605813 DOI: 10.3390/cells12202479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The present study explores for the first time the effect of hyperbaric oxygen (HBO) on gingival mesenchymal stem cells' (G-MSCs) gene expression profile, intracellular pathway activation, pluripotency, and differentiation potential under an experimental inflammatory setup. G-MSCs were isolated from five healthy individuals (n = 5) and characterized. Single (24 h) or double (72 h) HBO stimulation (100% O2, 3 bar, 90 min) was performed under experimental inflammatory [IL-1β (1 ng/mL)/TNF-α (10 ng/mL)/IFN-γ (100 ng/mL)] and non-inflammatory micro-environment. Next Generation Sequencing and KEGG pathway enrichment analysis, G-MSCs' pluripotency gene expression, Wnt-/β-catenin pathway activation, proliferation, colony formation, and differentiation were investigated. G-MSCs demonstrated all mesenchymal stem/progenitor cells' characteristics. The beneficial effect of a single HBO stimulation was evident, with anti-inflammatory effects and induction of differentiation (TLL1, ID3, BHLHE40), proliferation/cell survival (BMF, ID3, TXNIP, PDK4, ABL2), migration (ABL2) and osteogenic differentiation (p < 0.05). A second HBO stimulation at 72 h had a detrimental effect, significantly increasing the inflammation-induced cellular stress and ROS accumulation through HMOX1, BHLHE40, and ARL4C amplification and pathway enrichment (p < 0.05). Results outline a positive short-term single HBO anti-inflammatory, regenerative, and differentiation stimulatory effect on G-MSCs. A second (72 h) stimulation is detrimental to the same properties. The current results could open new perspectives in the clinical application of short-termed HBO induction in G-MSCs-mediated periodontal reparative/regenerative mechanisms.
Collapse
Affiliation(s)
- Johannes Tölle
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
| | - Andreas Koch
- German Naval Medical Institute, 24119 Kiel, Germany; (A.K.); (W.K.)
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University Hospital Schleswig-Holstein, 24105 Kiel, Germany; (K.S.); (D.M.S.)
| | - Dirk Finger
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
| | - Wataru Kaehler
- German Naval Medical Institute, 24119 Kiel, Germany; (A.K.); (W.K.)
| | - Marc Höppner
- Institute of Clinical Molecular Biology, School of Medicine, Christian-Albrechts-University, 24105 Kiel, Germany;
| | - Christian Graetz
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
| | - Christof Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
| | - Dominik M. Schulte
- Institute of Diabetes and Clinical Metabolic Research, University Hospital Schleswig-Holstein, 24105 Kiel, Germany; (K.S.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Karim Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
5
|
Thymoquinone-Mediated Modulation of Toll-like Receptors and Pluripotency Factors in Gingival Mesenchymal Stem/Progenitor Cells. Cells 2022; 11:cells11091452. [PMID: 35563755 PMCID: PMC9101758 DOI: 10.3390/cells11091452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Thymoquinone (TQ), the key active component of Nigella sativa (NS), demonstrates very promising biomedical anti-inflammatory, antioxidant, antimicrobial and anticancer properties. Several investigations have inspected the modulative activities of TQ on different stem/progenitor cell types, but its possible role in the regulation of gingival mesenchymal stem/progenitor cells (G-MSCs) has not yet been characterized. For the first time, this study investigates the effects of TQ on G-MSCs’ stemness and Toll-like receptor expression profiles. G-MSCs (n = 5) were isolated, sorted via anti-STRO-1 antibodies and then disseminated on cell culture dishes to create colony-forming units (CFUs), and their stem/progenitor cell attributes were characterized. TQ stimulation of the G-MSCs was performed, followed by an examination of the expression of pluripotency-related factors using RT-PCR and the expression profiles of TLRs 1−10 using flowcytometry, and they were compared to a non-stimulated control group. The G-MSCs presented all the predefined stem/progenitor cells’ features. The TQ-activated G-MSCs displayed significantly higher expressions of TLR3 and NANOG with a significantly reduced expression of TLR1 (p < 0.05, Wilcoxon signed-rank test). TQ-mediated stimulation preserves G-MSCs’ pluripotency and facilitates a cellular shift into an immunocompetent-differentiating phenotype through increased TLR3 expression. This characteristic modulation might impact the potential therapeutic applications of G-MSCs.
Collapse
|
6
|
Fawzy El-Sayed KM, Bittner A, Schlicht K, Mekhemar M, Enthammer K, Höppner M, Es-Souni M, Schulz J, Laudes M, Graetz C, Dörfer CE, Schulte DM. Ascorbic Acid/Retinol and/or Inflammatory Stimuli's Effect on Proliferation/Differentiation Properties and Transcriptomics of Gingival Stem/Progenitor Cells. Cells 2021; 10:cells10123310. [PMID: 34943818 PMCID: PMC8699152 DOI: 10.3390/cells10123310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The present study explored the effects of ascorbic-acid (AA)/retinol and timed inflammation on the stemness, the regenerative potential, and the transcriptomics profile of gingival mesenchymal stem/progenitor cells' (G-MSCs). STRO-1 (mesenchymal stem cell marker) immuno-magnetically sorted G-MSCs were cultured in basic medium (control group), in basic medium with IL-1β (1 ng/mL), TNF-α (10 ng/mL) and IFN-γ (100 ng/mL, inflammatory-medium), in basic medium with AA (250 µmol/L) and retinol (20 µmol/L) (AA/retinol group) or in inflammatory medium with AA/retinol (inflammatory/AA/retinol group; n = 5/group). The intracellular levels of phosphorylated and total β-Catenin at 1 h, the expression of stemness genes over 7 days, the number of colony-forming units (CFUs) as well as the cellular proliferation aptitude over 14 days, and the G-MSCs' multilineage differentiation potential were assessed. Next-generation sequencing was undertaken to elaborate on up-/downregulated genes and altered intracellular pathways. G-MSCs demonstrated all mesenchymal stem/progenitor cells characteristics. Controlled inflammation with AA/retinol significantly elevated NANOG (p < 0.05). The AA/retinol-mediated reduction in intracellular phosphorylated β-Catenin was restored through the effect of controlled inflammation (p < 0.05). Cellular proliferation was highest in the AA/retinol group (p < 0.05). AA/retinol counteracted the inflammation-mediated reduction in G-MSCs' clonogenic ability and CFUs. Amplified chondrogenic differentiation was observed in the inflammatory/AA/retinol group. At 1 and 3 days, the differentially expressed genes were associated with development, proliferation, and migration (FOS, EGR1, SGK1, CXCL5, SIPA1L2, TFPI2, KRATP1-5), survival (EGR1, SGK1, TMEM132A), differentiation and mineral absorption (FOS, EGR1, MT1E, KRTAP1-5, ASNS, PSAT1), inflammation and MHC-II antigen processing (PER1, CTSS, CD74) and intracellular pathway activation (FKBP5, ZNF404). Less as well as more genes were activated the longer the G-MSCs remained in the inflammatory medium or AA/retinol, respectively. Combined, current results point at possibly interesting interactions between controlled inflammation or AA/retinol affecting stemness, proliferation, and differentiation attributes of G-MSCs.
Collapse
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Stem cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence:
| | - Amira Bittner
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Kim Enthammer
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Marc Höppner
- Institute of Clinical Molecular Biology, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany;
| | - Martha Es-Souni
- Department of Orthodontics, School of Dental Medicine, University Clinic Schleswig-Holstein (UKSH), Christian-Albrechts University of Kiel, 24105 Kiel, Germany;
| | - Juliane Schulz
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Christian Graetz
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Dominik M. Schulte
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| |
Collapse
|
7
|
Sallustio F, Picerno A, Tatullo M, Rampino A, Rengo C, Valletta A, Torretta S, Falcone RM. Toll-Like Receptors in Stem/Progenitor Cells. Handb Exp Pharmacol 2021; 276:175-212. [PMID: 34595583 DOI: 10.1007/164_2021_539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the bridges that control the cross-talk between the innate and adaptive immune systems is toll-like receptors (TLRs). TLRs interact with molecules shared and maintained by the source pathogens, but also with endogenous molecules derived from injured tissues (damage/danger-associated molecular patterns - DAMPs). This is likely why some kinds of stem/progenitor cells (SCs) have been found to express TLRs. The role of TLRs in regulating basal motility, proliferation, processes of differentiation, self-renewal, and immunomodulation has been demonstrated in these cells. In this book chapter, we will discuss the many different functions assumed by the TLRs in SCs, pointing out that, depending on the context and the type of ligands they perceive, they may have different effects. In addition, the role of TLR in SC's response to specific tissue damage and in reparative processes will be addressed, as well as how the discovery of molecules mediating TLR signaling's differential function may be decisive for the development of new therapeutic strategies. Given the available studies on TLRs in SCs, the significance of TLRs in sensing an injury to stem/progenitor cells and evaluating their action and reparative activity, which depends on the circumstances, will be discussed here. It could also be possible that SCs used in therapy could theoretically be exposed to TLR ligands, which could modulate their in vivo therapeutic potential. In this context, we need to better understand the mechanisms of action of TLRs on SCs and learn how to regulate these receptors and their downstream pathways in a precise way in order to modulate SC proliferation, survival, migration, and differentiation in the pathological environment. In this way, cell therapy may be strengthened and made safer in the future.
Collapse
Affiliation(s)
- Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy.
| | - Angela Picerno
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", Bari, Italy
| | - Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs-University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Carlo Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Torretta
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Rosa Maria Falcone
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
8
|
Ascorbic Acid, Inflammatory Cytokines (IL-1 β/TNF- α/IFN- γ), or Their Combination's Effect on Stemness, Proliferation, and Differentiation of Gingival Mesenchymal Stem/Progenitor Cells. Stem Cells Int 2020; 2020:8897138. [PMID: 32879629 PMCID: PMC7448213 DOI: 10.1155/2020/8897138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Ascorbic acid (AA) and controlled inflammatory stimuli are postulated to possess the ability to independently exert positive effects on a variety of proliferative, pluripotency, and differentiation attributes of gingival mesenchymal stem/progenitor cells (G-MSCs). The current study's objective was to explore and compare for the first time the impact of the major inflammatory cytokines (IL-1β/TNF-α/IFN-γ), AA, or their combination on multipotency/pluripotency, proliferative, and differentiation characteristics of G-MSCs. Design Human G-MSCs (n = 5) were isolated and cultured in basic medium (control group), in basic medium with major inflammatory cytokines; 1 ng/ml IL-1β, 10 ng/ml TNF-α, and 100 ng/ml IFN-γ (inflammatory group), in basic medium with 250 μmol/l AA (AA group) and in inflammatory medium supplemented by AA (inflammatory/AA group). All media were renewed three times per week. In stimulated G-MSCs intracellular β-catenin at 1 hour, pluripotency gene expression at 1, 3, and 5 days, as well as colony-forming units (CFUs) ability and cellular proliferation over 14 days were examined. Following a five-days stimulation in the designated groups, multilineage differentiation was assessed via qualitative and quantitative histochemistry as well as mRNA expression. Results β-Catenin significantly decreased intracellularly in all experimental groups (p = 0.002, Friedman). AA group exhibited significantly higher cellular counts on days 3, 6, 7, and 13 (p < 0.05) and the highest CFUs at 14 days [median-CFUs (Q25/Q75); 40 (15/50), p = 0.043]. Significantly higher Nanog expression was noted in AA group [median gene-copies/PGK1 (Q25/Q75); 0.0006 (0.0002/0.0007), p < 0.01, Wilcoxon-signed-rank]. Significant multilineage differentiation abilities, especially into osteogenic and chondrogenic directions, were further evident in the AA group. Conclusions AA stimulation enhances G-MSCs' stemness, proliferation, and differentiation properties, effects which are associated with a Wnt/β-catenin signaling pathway activation. Apart from initially boosting cellular metabolism as well as Sox2 and Oct4A pluripotency marker expression, inflammation appeared to attenuate these AA-induced positive effects. Current results reveal that for AA to exert its beneficial effects on G-MSCs' cellular attributes, it requires to act in an inflammation-free microenvironment.
Collapse
|
9
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|