1
|
Li B, Li C, Yan Z, Yang X, Xiao W, Zhang D, Liu Z, Liao X. A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications. Int J Biol Macromol 2024; 287:138323. [PMID: 39645113 DOI: 10.1016/j.ijbiomac.2024.138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.
Collapse
Affiliation(s)
- Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chenchen Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ziyi Yan
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Yang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Dawei Zhang
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan 250031, China.
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
2
|
Cohen-Gerassi D, Messer O, Finkelstein-Zuta G, Aviv M, Favelukis B, Shacham-Diamand Y, Sokol M, Adler-Abramovich L. Conductive Peptide-Based MXene Hydrogel as a Piezoresistive Sensor. Adv Healthc Mater 2024; 13:e2303632. [PMID: 38536070 DOI: 10.1002/adhm.202303632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Wearable pressure sensors have become increasingly popular for personal healthcare and motion detection applications due to recent advances in materials science and functional nanomaterials. In this study, a novel composite hydrogel is presented as a sensitive piezoresistive sensor that can be utilized for various biomedical applications, such as wearable skin patches and integrated artificial skin that can measure pulse and blood pressure, as well as monitor sound as a self-powered microphone. The hydrogel is composed of self-assembled short peptides containing aromatic, positively- or negatively charged amino acids combined with 2D Ti3C2Tz MXene nanosheets. This material is low-cost, facile, reliable, and scalable for large areas while maintaining high sensitivity, a wide detection range, durability, oxidation stability, and biocompatibility. The bioinspired nanostructure, strong mechanical stability, and ease of functionalization make the assembled peptide-based composite MXene-hydrogel a promising and widely applicable material for use in bio-related wearable electronics.
Collapse
Affiliation(s)
- Dana Cohen-Gerassi
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Or Messer
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gal Finkelstein-Zuta
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Moran Aviv
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- School of Mechanical Engineering, Afeka Tel Aviv Academic College of Engineering, Tel Aviv, 6910717, Israel
| | - Bar Favelukis
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yosi Shacham-Diamand
- The Scojen Institute for Synthetic Biology, Director, Reichman University, 8 University St., Herzliya, 4610101, Israel
| | - Maxim Sokol
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
3
|
Guo W, Dong H, Wang X. Emerging roles of hydrogel in promoting periodontal tissue regeneration and repairing bone defect. Front Bioeng Biotechnol 2024; 12:1380528. [PMID: 38720879 PMCID: PMC11076768 DOI: 10.3389/fbioe.2024.1380528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Periodontal disease is the most common type of oral disease. Periodontal bone defect is the clinical outcome of advanced periodontal disease, which seriously affects the quality of life of patients. Promoting periodontal tissue regeneration and repairing periodontal bone defects is the ultimate treatment goal for periodontal disease, but the means and methods are very limited. Hydrogels are a class of highly hydrophilic polymer networks, and their good biocompatibility has made them a popular research material in the field of oral medicine in recent years. This paper reviews the current mainstream types and characteristics of hydrogels, and summarizes the relevant basic research on hydrogels in promoting periodontal tissue regeneration and bone defect repair in recent years. The possible mechanisms of action and efficacy evaluation are discussed in depth, and the application prospects are also discussed.
Collapse
Affiliation(s)
- Wendi Guo
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Affiliated Stomatological Hospital of Xinjiang Medical University, Urumqi, China
- Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hongbin Dong
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Affiliated Stomatological Hospital of Xinjiang Medical University, Urumqi, China
- Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xing Wang
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Affiliated Stomatological Hospital of Xinjiang Medical University, Urumqi, China
- Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
4
|
Mozipo EA, Galindo AN, Khachatourian JD, Harris CG, Dorogin J, Spaulding VR, Ford MR, Singhal M, Fogg KC, Hettiaratchi MH. Statistical optimization of hydrazone-crosslinked hyaluronic acid hydrogels for protein delivery. J Mater Chem B 2024; 12:2523-2536. [PMID: 38344905 PMCID: PMC10916537 DOI: 10.1039/d3tb01588b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
Hydrazone-crosslinked hydrogels are attractive protein delivery vehicles for regenerative medicine. However, each regenerative medicine application requires unique hydrogel properties to achieve an ideal outcome. The properties of a hydrogel can be impacted by numerous factors involved in its fabrication. We used design of experiments (DoE) statistical modeling to efficiently optimize the physicochemical properties of a hyaluronic acid (HA) hydrazone-crosslinked hydrogel for protein delivery for bone regeneration. We modified HA with either adipic acid dihydrazide (HA-ADH) or aldehyde (HA-Ox) functional groups and used DoE to evaluate the interactions of three input variables, the molecular weight of HA (40 or 100 kDa), the concentration of HA-ADH (1-3% w/v), and the concentration of HA-Ox (1-3% w/v), on three output responses, gelation time, compressive modulus, and hydrogel stability over time. We identified 100 kDa HA-ADH3.00HA-Ox2.33 as an optimal hydrogel that met all of our design criteria, including displaying a gelation time of 3.7 minutes, compressive modulus of 62.1 Pa, and minimal mass change over 28 days. For protein delivery, we conjugated affinity proteins called affibodies that were specific to the osteogenic protein bone morphogenetic protein-2 (BMP-2) to HA hydrogels and demonstrated that our platform could control the release of BMP-2 over 28 days. Ultimately, our approach demonstrates the utility of DoE for optimizing hydrazone-crosslinked HA hydrogels for protein delivery.
Collapse
Affiliation(s)
- Esther A Mozipo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Jenna D Khachatourian
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Conor G Harris
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Jonathan Dorogin
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | | | - Madeleine R Ford
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Malvika Singhal
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.
| | - Kaitlin C Fogg
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
5
|
Hu Y, Wang Y, Yang F, Liu D, Lu G, Li S, Wei Z, Shen X, Jiang Z, Zhao Y, Pang Q, Song B, Shi Z, Shafique S, Zhou K, Chen X, Su W, Jian J, Tang K, Liu T, Zhu Y. Flexible Organic Photovoltaic-Powered Hydrogel Bioelectronic Dressing With Biomimetic Electrical Stimulation for Healing Infected Diabetic Wounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307746. [PMID: 38145346 PMCID: PMC10933690 DOI: 10.1002/advs.202307746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/28/2023] [Indexed: 12/26/2023]
Abstract
Electrical stimulation (ES) is proposed as a therapeutic solution for managing chronic wounds. However, its widespread clinical adoption is limited by the requirement of additional extracorporeal devices to power ES-based wound dressings. In this study, a novel sandwich-structured photovoltaic microcurrent hydrogel dressing (PMH dressing) is designed for treating diabetic wounds. This innovative dressing comprises flexible organic photovoltaic (OPV) cells, a flexible micro-electro-mechanical systems (MEMS) electrode, and a multifunctional hydrogel serving as an electrode-tissue interface. The PMH dressing is engineered to administer ES, mimicking the physiological injury current occurring naturally in wounds when exposed to light; thus, facilitating wound healing. In vitro experiments are performed to validate the PMH dressing's exceptional biocompatibility and robust antibacterial properties. In vivo experiments and proteomic analysis reveal that the proposed PMH dressing significantly accelerates the healing of infected diabetic wounds by enhancing extracellular matrix regeneration, eliminating bacteria, regulating inflammatory responses, and modulating vascular functions. Therefore, the PMH dressing is a potent, versatile, and effective solution for diabetic wound care, paving the way for advancements in wireless ES wound dressings.
Collapse
Affiliation(s)
- Yi‐Wei Hu
- Health Science CenterNingbo UniversityNingbo315211P. R. China
- Orthopaedic Oncology Center of Changzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Yu‐Heng Wang
- Faculty of Electrical Engineering and Computer ScienceNingbo UniversityNingbo315211P. R. China
- State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710049P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Fang Yang
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Ding‐Xin Liu
- State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Guang‐Hao Lu
- State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Sheng‐Tao Li
- State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Zhi‐Xiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiang Shen
- The Research Institute of Advanced TechnologiesNingbo UniversityNingbo315211P. R. China
| | - Zhuang‐De Jiang
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yi‐Fan Zhao
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Qian Pang
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Bai‐Yang Song
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Ze‐Wen Shi
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Shareen Shafique
- School of Physical Science and TechnologyNingbo UniversityNingbo315211P. R. China
| | - Kun Zhou
- Shenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong Kong ShenzhenShenzhen518172P. R. China
| | - Xiao‐Lian Chen
- Printable Electronics Research Center & Nano‐Device and Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsNano Chinese Academy of SciencesSuzhou215123P. R. China
| | - Wen‐Ming Su
- Printable Electronics Research Center & Nano‐Device and Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsNano Chinese Academy of SciencesSuzhou215123P. R. China
| | - Jia‐Wen Jian
- Faculty of Electrical Engineering and Computer ScienceNingbo UniversityNingbo315211P. R. China
| | - Ke‐Qi Tang
- Institute of Mass SpectrometrySchool of Material Science and Chemical EngineeringNingbo UniversityNingbo315211P. R. China
| | - Tie‐Long Liu
- Orthopaedic Oncology Center of Changzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Ya‐Bin Zhu
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| |
Collapse
|
6
|
Beitlitum I, Rayyan F, Pokhojaev A, Tal H, Sarig R. A novel micro-CT analysis for evaluating the regenerative potential of bone augmentation xenografts in rabbit calvarias. Sci Rep 2024; 14:4321. [PMID: 38383533 PMCID: PMC10881464 DOI: 10.1038/s41598-024-54313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Guided Bone Regeneration is a common procedure, yet, as new grafting materials are being introduced into the market, a reliable evaluation method is required. Critical size defect in animal models provides an accurate simulation, followed by histological sections to evaluate the new bone formation. However, histology is destructive, two-dimensional and technique-sensitive. In this study we developed a novel volumetric Micro-CT analysis to quantify new bone formation characteristics. Eight adult female New Zealand white rabbits were subjected to calvarial critical-size defects. Four 8 mm in diameter circular defects were preformed in each animal, to allow random allocation of four treatment modalities. All calvarias were scanned using Micro-CT. Each defect was segmented into four equal parts: pristine bone, outer, middle, and inner. Amira software (v. 6.3, www.fei.com ) was used to calculate the new bone volume in each region and compare it to that of the pristine bone. All grafting materials demonstrated that new bone formation decreased as it moved inward. Only the inner region differed across grafting materials (p = 0.001). The new Micro-CT analysis allowed us to divide each defect into 3D regions providing better understanding of the bone formation process. Amongst the various advantages of the Micro-CT, it enables us to quantify the graft materials and the newly formed bone independently, and to describe the defect morphology in 3D (bi- vs. uni-cortical defects). Providing an insight into the inner region of the defect can better predict the regenerative potential of the bone augmentation graft material. Therefore, the suggested Micro-CT analysis is beneficial for further developing of clinical approaches.
Collapse
Affiliation(s)
- Ilan Beitlitum
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Fatma Rayyan
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ariel Pokhojaev
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Haim Tal
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Rachel Sarig
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Faculty of Medicine, Tel-Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
7
|
Zhang Z, He C, Chen X. Designing Hydrogels for Immunomodulation in Cancer Therapy and Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308894. [PMID: 37909463 DOI: 10.1002/adma.202308894] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Indexed: 11/03/2023]
Abstract
The immune system not only acts as a defense against pathogen and cancer cells, but also plays an important role in homeostasis and tissue regeneration. Targeting immune systems is a promising strategy for efficient cancer treatment and regenerative medicine. Current systemic immunomodulation therapies are usually associated with low persistence time, poor targeting to action sites, and severe side effects. Due to their extracellular matrix-mimetic nature, tunable properties and diverse bioactivities, hydrogels are intriguing platforms to locally deliver immunomodulatory agents and cells, as well as provide an immunomodulatory microenvironment to recruit, activate, and expand host immune cells. In this review, the design considerations, including polymer backbones, crosslinking mechanisms, physicochemical nature, and immunomodulation-related components, of the hydrogel platforms, are focused on. The immunomodulatory effects and therapeutic outcomes in cancer therapy and tissue regeneration of different hydrogel systems are emphasized, including hydrogel depots for delivery of immunomodulatory agents, hydrogel scaffolds for cell delivery, and immunomodulatory hydrogels depending on the intrinsic properties of materials. Finally, the remained challenges in current systems and future development of immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
8
|
Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, Gao Q, Chen K, Qu Y, Wu B, Lv X, Guo X. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res 2023; 11:65. [PMID: 38123549 PMCID: PMC10733346 DOI: 10.1038/s41413-023-00302-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lian Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwei Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
9
|
Chen YK, Simon IA, Maslov I, Oyarce-Pino IE, Kulkarni K, Hopper D, Aguilar MI, Vankadari N, Broughton BR, Del Borgo MP. A switch in N-terminal capping of β-peptides creates novel self-assembled nanoparticles. RSC Adv 2023; 13:29401-29407. [PMID: 37818265 PMCID: PMC10561372 DOI: 10.1039/d3ra04514e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
Small tripeptides composed entirely of β3-amino acids have been shown to self-assemble into fibres following acylation of the N-terminus. Given the use of Fmoc as a strategy to initiate self-assembly in α-peptides, we hypothesized that the acyl cap can be replaced by an Fmoc without perturbation to the self-assembly and enable simpler synthetic protocols. We therefore replaced the N-acyl cap for an Fmoc group and herein we show that these Fmoc-protected β3-peptides produce regular spherical particles, rather than fibrous structures, that are stable and capable of encapsulating cargo. We then demonstrated that these particles were able to deliver cargo to cells without any obvious signs of cytotoxicity. This is the first description of such regular nanoparticles derived from Fmoc-protected β3-peptides.
Collapse
Affiliation(s)
- Yi-Kai Chen
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Isabella A Simon
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Ivan Maslov
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Ivan E Oyarce-Pino
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Ketav Kulkarni
- Department of Biochemistry & Molecular Biology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Denham Hopper
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne VIC 3000 Australia
| | - Brad Rs Broughton
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
10
|
Pourtalebi Jahromi L, Rothammer M, Fuhrmann G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv Drug Deliv Rev 2023; 200:115028. [PMID: 37517778 DOI: 10.1016/j.addr.2023.115028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Rothammer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
11
|
Sharma P, Roy S. Designing ECM-inspired supramolecular scaffolds by utilizing the interactions between a minimalistic neuroactive peptide and heparin. NANOSCALE 2023; 15:7537-7558. [PMID: 37022122 DOI: 10.1039/d2nr06221f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Short bioactive peptide-based supramolecular hydrogels are emerging as interesting candidates for developing scaffolds for tissue engineering applications. However, proteins and peptides represent only a single class of molecules present in the native ECM, thus, recapitulating the complete ECM microenvironment via only peptide-based biomaterials is extremely challenging. In this direction, complex multicomponent-based biomaterials have started gaining importance for achieving the biofunctional complexity and structural hierarchy of the native ECM. Sugar-peptide complexes can be explored in this direction as they provide essential biological signaling required for cellular growth and survival in vivo. In this direction, we explored the fabrication of an advanced scaffold by employing heparin and short bioactive peptide interactions at the molecular level. Interestingly, the addition of heparin into the peptide has significantly modulated the supramolecular organization, nanofibrous morphology and the mechanical properties of the scaffold. Additionally, the combined hydrogels demonstrated superior biocompatibility as compared to the peptide counterpart at certain ratios. These newly developed scaffolds were also observed to be stable under 3-D cell culture conditions and supported cellular adhesion and proliferation. Most importantly, the inflammatory response was also minimized in the case of combined hydrogels as compared to heparin. We expect that this approach of using simple non-covalent interactions between the ECM-inspired small molecules to fabricate biomaterials with improved mechanical and biological properties could advance the current knowledge on designing ECM mimetic biomaterials. Such an attempt would create a novel, adaptable and simplistic bottom-up strategy for the invention of new and more complex biomaterials of ECM origin with advanced functions.
Collapse
Affiliation(s)
- Pooja Sharma
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| |
Collapse
|
12
|
Erezuma I, Lukin I, Desimone M, Zhang YS, Dolatshahi-Pirouz A, Orive G. Progress in self-healing hydrogels and their applications in bone tissue engineering. BIOMATERIALS ADVANCES 2023; 146:213274. [PMID: 36640523 DOI: 10.1016/j.bioadv.2022.213274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Bone tissue engineering (BTE) is constantly seeking novel treatments to address bone injuries in all their varieties. It is necessary to find new ways to create structures that perfectly emulate the native tissue. Self-healing hydrogels have been a breakthrough in this regard, as they are able to reconstitute their links after they have been partially broken. Among the most outstanding biomaterials when it comes to developing these hydrogels for BTE, those polymers of natural origin (e.g., gelatin, alginate) stand out, although synthetics such as PEG or nanomaterials like laponite are also key for this purpose. Self-healing hydrogels have proven to be efficient in healing bone, but have also played a key role as delivery-platforms for drugs or other biological agents. Moreover, some researchers have identified novel uses for these gels as bone fixators or implant coatings. Here, we review the progress of self-healing hydrogels, which hold great promise in the field of tissue engineering.
Collapse
Affiliation(s)
- Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Martin Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
13
|
Hao L, Li J, Wang P, Wang Z, Wang Y, Zhu Y, Guo M, Zhang P. Magnetic nanocomposites for magneto-promoted osteogenesis: from simulation auxiliary design to experimental validation. NANOSCALE 2023; 15:4123-4136. [PMID: 36744952 DOI: 10.1039/d2nr06233j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetically actuated mechanical stimulation, as a novel form of intelligent responsive force stimulation, has a great potential for remote spatiotemporal regulation of a variety of life processes. Hence, the optimal design of magnetic nanomaterials for generating magneto-mechanical stimuli becomes an important driving force in the development of magneto-controlled biotherapy. This study aims to clarify the general rule that the surface modification amount of magnetic nanoparticles (NPs) affects the biological behavior (e.g., cell adhesion, proliferation and differentiation) of pre-osteoblast cells. First of all, course-grained molecular dynamics simulations predict that 23.3% graft modification of the NPs can maximize the heterogeneity of the dynamics of the polymer matrix, which may generate enhanced mechanical stimuli. Then, experimentally, iron oxide (IO) NPs grafted with different amounts of poly(γ-benzyl-L-glutamate) (PBLG) were prepared to obtain homogeneous magnetic nanocomposites with improved mechanical properties. Further in vitro cell experiments demonstrate that the grafting amounts of 21.46% and 32.34% of PBLG on IO NPs are the most beneficial for the adhesion and osteogenic differentiation of cells. Simultaneously, the maximized upregulation of the Piezo1 gene indicates that the cells receive the strongest magneto-mechanical stimuli. The consistent conclusion of the experiments and simulations indicates that 20-30% PBLG grafted on the IO surface could maximize the ability of magnetic stimuli to regulate the biological behavior of the cells, which validates the feasibility of simulation auxiliary material design and is of great importance for promoting the application of magneto-controlled biotherapy in bioengineering and biomedicine.
Collapse
Affiliation(s)
- Lili Hao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiaxiang Li
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Peng Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yongzhan Zhu
- 8th Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China.
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
14
|
Advances in Peptide-Based Hydrogel for Tissue Engineering. Polymers (Basel) 2023; 15:polym15051068. [PMID: 36904309 PMCID: PMC10005633 DOI: 10.3390/polym15051068] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The development of peptide-based materials has emerged as one of the most challenging aspects of biomaterials in recent years. It has been widely acknowledged that peptide-based materials can be used in a broad range of biomedical applications, particularly in tissue engineering. Among them, hydrogels have been attracting considerable interest in tissue engineering because they mimic tissue formation conditions by providing a three-dimensional environment and a high water content. It has been found that peptide-based hydrogels have received more attention due to mimicking proteins, particularly extracellular matrix proteins, as well as the wide variety of applications they are capable of serving. It is without a doubt that peptide-based hydrogels have become the leading biomaterials of today owing to their tunable mechanical stability, high water content, and high biocompatibility. Here, we discuss in detail various types of peptide-based materials, emphasizing peptide-based hydrogels, and then we examine in detail how hydrogels are formed, paying particular attention to the peptide structures that are incorporated into the final structure. Following that, we discuss the self-assembly and formation of hydrogels under various conditions, as well as the parameters to be considered as critical factors, which include pH, amino acid composi- tion within the sequence, and cross-linking techniques. Further, recent studies on the development of peptide-based hydrogels and their applications in tissue engineering are reviewed.
Collapse
|
15
|
Petropoulou K, Platania V, Chatzinikolaidou M, Mitraki A. A Doubly Fmoc-Protected Aspartic Acid Self-Assembles into Hydrogels Suitable for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8928. [PMID: 36556733 PMCID: PMC9784766 DOI: 10.3390/ma15248928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Hydrogels have been used as scaffolds for biomineralization in tissue engineering and regenerative medicine for the repair and treatment of many tissue types. In the present work, we studied an amino acid-based material that is attached to protecting groups and self-assembles into biocompatible and stable nanostructures that are suitable for tissue engineering applications. Specifically, the doubly protected aspartic residue (Asp) with fluorenyl methoxycarbonyl (Fmoc) protecting groups have been shown to lead to the formation of well-ordered fibrous structures. Many amino acids and small peptides which are modified with protecting groups display relatively fast self-assembly and exhibit remarkable physicochemical properties leading to three-dimensional (3D) networks, the trapping of solvent molecules, and forming hydrogels. In this study, the self-assembling fibrous structures are targeted toward calcium binding and act as nucleation points for the binding of the available phosphate groups. The cell viability, proliferation, and osteogenic differentiation of pre-osteoblastic cells cultured on the formed hydrogel under various conditions demonstrate that hydrogel formation in CaCl2 and CaCl2-Na2HPO4 solutions lead to calcium ion binding onto the hydrogels and enrichment with phosphate groups, respectively, rendering these mechanically stable hydrogels osteoinductive scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
| | - Varvara Platania
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FO.R.T.H), 70013 Heraklion, Greece
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FO.R.T.H), 70013 Heraklion, Greece
| |
Collapse
|