1
|
Al Shuraiqi A, Barry MJ. Shoal size as a key variable in fish behavioral ecotoxicology: an example using sertraline. ECOTOXICOLOGY (LONDON, ENGLAND) 2024:10.1007/s10646-024-02826-z. [PMID: 39495381 DOI: 10.1007/s10646-024-02826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
A significant limitation of behavioral ecotoxicology is the challenge of obtaining reproducible results due to a wide range of testing conditions. In particular, shoal size affects almost all aspects of fish behavior, but is rarely considered as a factor in ecotoxicological studies. In the present study, we compared the swimming and antipredator responses of different sized shoals of Arabian killifish (Aphaniops stoliczkanus) after exposure to environmentally realistic concentrations of the antidepressant medication sertraline. Groups of fish (1, 3 or 5 individuals) were exposed to either 5 or 50 ng/L sertraline. After 37 days, swimming behavior and responses to a predator alarm were measured. We found that the effects of group size were much stronger than the effects of sertraline on swimming. Group size was also the major factor influencing responses to the predator alarm, with single fish showing the strongest responses. Sertraline directly affected acceleration, turning speed and average distance to the arena wall. For all three parameters, there were significant interactions with shoal size, demonstrating that responses differed depending on the size of the group. We also found that effects of sertraline could still be observed 14 days after cessation of exposure. The study highlights the importance of considering social context and specifically shoal size when designing behavioral studies on chemicals. Failure to consider this may result in over- or under-estimation of risks.
Collapse
|
2
|
Ling T, Dai Z, Wang H, Kien TT, Cui R, Yu T, Chen J. Serotonylation in tumor-associated fibroblasts contributes to the tumor-promoting roles of serotonin in colorectal cancer. Cancer Lett 2024; 600:217150. [PMID: 39097134 DOI: 10.1016/j.canlet.2024.217150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Accumulated studies have highlighted the diverse roles of 5-hydroxytryptamine (5-HT), or serotonin, in cancer biology, particularly in colorectal cancer (CRC). While 5-HT primarily exerts its effects through binding to various 5-HT receptors, receptor-independent mechanisms such as serotonylation remain unclear. This study revealed that depleting 5-HT, either through genetic silencing of Tph1 or using a selective TPH1 inhibitor, effectively reduced the growth of CRC tumors. Interestingly, although intrinsic 5-HT synthesis exists in CRC, it is circulating 5-HT that mediates the cancer-promoting function of 5-HT. Blocking the function of 5-HT receptors showed that the oncogenic roles of 5-HT in CRC operate through a mechanism that is separate from its receptor. Instead, serotonylation of histone H3Q5 (H3Q5ser) was found in CRC cells and cancer-associated fibroblasts (CAFs). H3Q5ser triggers a phenotypic switch of CAFs towards an inflammatory-like CAF (iCAF) subtype, which further enhances CRC cell proliferation, invasive characteristics, and macrophage polarization. Knockdown of the 5-HT transporter SLC22A3 or inhibition of TGM2 reduces H3Q5ser levels and reverses the tumor-promoting phenotypes of CAFs in CRC. Collectively, this study sheds light on the serotonylation-dependent mechanisms of 5-HT in CRC progression, offering insights into potential therapeutic strategies targeting the serotonin pathway for CRC treatment.
Collapse
Affiliation(s)
- Tianlong Ling
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhanghan Dai
- Department of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Houming Wang
- Department of General Surgery, Jiading Hospital of Traditional Chinese Medicine, Jiading District, Shanghai, China
| | - Tran Trung Kien
- Oncology Department, University Medical Shing Mark Hospital, 1054 Highway 51, Long Binh Tan Ward, Bien Hoa City, Dong Nai, Viet Nam
| | - Rong Cui
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Tachung Yu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianjun Chen
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
3
|
Fergusson KN, Tanner JL, Brand JA, Hannington SL, Pettersen AK, Sundin J, Saaristo M, Bertram MG, Martin JM, Wong BBM. Effects of long-term fluoxetine exposure on morphology, but not behaviour or metabolic rate, in male guppies (Poecilia reticulata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107082. [PMID: 39270523 DOI: 10.1016/j.aquatox.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Contamination of aquatic ecosystems by pharmaceuticals is a growing threat worldwide. The antidepressant fluoxetine is one such pharmaceutical that is frequently detected in aquatic ecosystems, and has been found to alter the behaviour and physiology of exposed wildlife. Few studies, however, have investigated potential combined effects on behaviour and metabolic rate. In addition, exposures are often short in duration and rarely conducted under ecologically relevant conditions. Here, we examined the impacts of long-term fluoxetine exposure on boldness (exploration, activity, and antipredator behaviour), metabolic rate, and morphology in male guppies (Poecilia reticulata). Specifically, fish were exposed for 8 months (corresponding to approximately two overlapping generations) in semi-natural mesocosms to one of three treatments: an unexposed control (0 ng L-1), or low or high fluoxetine (mean measured concentrations: 30 ng L-1 and 292 ng L-1, respectively). Following exposure, we quantified male exploratory behaviour and activity in a novel environment (maze arena) and antipredator behaviour in the presence or absence of a live predator (spangled perch, Leiopotherapon unicolor), as well as metabolic rate and morphology (mass, standard length, and scaled mass index). Fluoxetine exposure did not significantly alter boldness, metabolic rate, mass, or standard length. However, fluoxetine exposure did alter body condition, whereby fish in the high treatment had a higher scaled mass index than control fish. Our results, considered alongside previous work, underscore the importance of exposure duration in mediating the effects of fluoxetine on fitness-related traits. Continued research under extended exposure periods (i.e., spanning multiple generations) is essential if we are to accurately predict the ecological impacts of fluoxetine on exposed wildlife, and their underlying mechanism(s).
Collapse
Affiliation(s)
- Kate N Fergusson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | - James L Tanner
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | - Jack A Brand
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | | | - Amanda K Pettersen
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Josefin Sundin
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden.
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Environment Protection Authority Victoria, EPA Science, Macleod, Victoria, Australia.
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Jake M Martin
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden; School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, Australia.
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Csikós V, Dóra F, Láng T, Darai L, Szendi V, Tóth A, Cservenák M, Dobolyi A. Social Isolation Induces Changes in the Monoaminergic Signalling in the Rat Medial Prefrontal Cortex. Cells 2024; 13:1043. [PMID: 38920671 PMCID: PMC11201939 DOI: 10.3390/cells13121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Background: The effects of short-term social isolation during adulthood have not yet been fully established in rats behaviourally, and not at all transcriptomically in the medial prefrontal cortex (mPFC). (2) Methods: We measured the behavioural effects of housing adult male rats in pairs or alone for 10 days. We also used RNA sequencing to measure the accompanying gene expression alterations in the mPFC of male rats. (3) Results: The isolated animals exhibited reduced sociability and social novelty preference, but increased social interaction. There was no change in their aggression, anxiety, or depression-like activity. Transcriptomic analysis revealed a differential expression of 46 genes between the groups. The KEGG pathway analysis showed that differentially expressed genes are involved in neuroactive ligand-receptor interactions, particularly in the dopaminergic and peptidergic systems, and addiction. Subsequent validation confirmed the decreased level of three altered genes: regulator of G protein signalling 9 (Rgs9), serotonin receptor 2c (Htr2c), and Prodynorphin (Pdyn), which are involved in dopaminergic, serotonergic, and peptidergic function, respectively. Antagonizing Htr2c confirmed its role in social novelty discrimination. (4) Conclusions: Social homeostatic regulations include monoaminergic and peptidergic systems of the mPFC.
Collapse
Affiliation(s)
- Vivien Csikós
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Fanni Dóra
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Láng
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Luca Darai
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Vivien Szendi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Attila Tóth
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Melinda Cservenák
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
5
|
Yang D, Yu W, Qu J, Shen Y, Yu J, Meng R, Tao Z, Chen J, Du W, Sun HZ, Zhang Y, Chen Y, Zhao M. Environmentally relevant exposure to cotinine induces neurobehavioral toxicity in zebrafish (Danio rerio): A study using neurobehavioral and metabolomic approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123826. [PMID: 38513941 DOI: 10.1016/j.envpol.2024.123826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
As an important psychoactive substance, cotinine is ubiquitous in aquatic environment and poses a threat to aquatic organisms. However, the mechanism of its adverse health impacts remains unclear. We evaluated the effects of cotinine exposure at environmentally relevant concentrations on the development and locomotor behavior of zebrafish (Danio rerio) larvae using neurotransmitters and whole endogenous metabolism. Mild developmental toxicity and significant neurobehavior disorder, such as spontaneous movement (1-1000 μg/L), 48 hpf tactile response (50, 100, and 1000 μg/L), and 144 hpf swimming speed (1, 10, 100, 500, and 1000 μg/L), were observed in zebrafish. Exposure to cotinine led to significant alterations in 11 neurotransmitters, including homogentisic acid, serotonin, glutamic acid and aspartic acid, etc. 298 metabolites were identified and two pathways - linoleic acid metabolism and taurine and hypotaurine metabolism - were delineated. In addition, amino acid neurotransmitters were significantly correlated with metabolites such as arachidonic acid as well as its derivatives, steroidal compounds, and amino acids. Serotonin demonstrates a noteworthy correlation with 31 out of 40 differentially expressed neurotransmitters, encompassing lipids, amino acids, and other compounds. These novel findings contribute to a comprehensive understanding of the ecological risks associated with cotinine contamination in surface waters.
Collapse
Affiliation(s)
- Dan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jiajia Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yuexing Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jingtong Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Ruirui Meng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Zhen Tao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jiangfei Chen
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, 650500, PR China
| | - Haitong Zhe Sun
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK; Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang, 324400, PR China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| |
Collapse
|
6
|
Reddy AP, Rawat P, Rohr N, Alvir R, Bisht J, Bushra MA, Luong J, Reddy AP. Role of Serotonylation and SERT Posttranslational Modifications in Alzheimer's Disease Pathogenesis. Aging Dis 2024:AD.2024.0328. [PMID: 39254383 DOI: 10.14336/ad.2024.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is implicated mainly in Alzheimer's disease (AD) and reported to be responsible for several processes and roles in the human body, such as regulating sleep, food intake, sexual behavior, anxiety, and drug abuse. It is synthesized from the amino acid tryptophan. Serotonin also functions as a signal between neurons to mature, survive, and differentiate. It plays a crucial role in neuronal plasticity, including cell migration and cell contact formation. Various psychiatric disorders, such as depression, schizophrenia, autism, and Alzheimer's disease, have been linked to an increase in serotonin-dependent signaling during the development of the nervous system. Recent studies have found 5-HT and other monoamines embedded in the nuclei of various cells, including immune cells, the peritoneal mast, and the adrenal medulla. Evidence suggests these monoamines to be involved in widespread intracellular regulation by posttranslational modifications (PTMs) of proteins. Serotonylation is the calcium-dependent process in which 5-HT forms a long-lasting covalent bond to small cytoplasmic G-proteins by endogenous transglutaminase 2 (TGM2). Serotonylation plays a role in various biological processes. The purpose of our article is to summarize historical developments and recent advances in serotonin research and serotonylation in depression, aging, AD, and other age-related neurological diseases. We also discussed several of the latest developments with Serotonin, including biological functions, pathophysiological implications and therapeutic strategies to treat patients with depression, dementia, and other age-related conditions.
Collapse
Affiliation(s)
- Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Rawat
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas Rohr
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Razelle Alvir
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jasbir Bisht
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mst Anika Bushra
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jennifer Luong
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Aananya P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
7
|
Akram N, Faisal Z, Irfan R, Shah YA, Batool SA, Zahid T, Zulfiqar A, Fatima A, Jahan Q, Tariq H, Saeed F, Ahmed A, Asghar A, Ateeq H, Afzaal M, Khan MR. Exploring the serotonin-probiotics-gut health axis: A review of current evidence and potential mechanisms. Food Sci Nutr 2024; 12:694-706. [PMID: 38370053 PMCID: PMC10867509 DOI: 10.1002/fsn3.3826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Modulatory effects of serotonin (5-Hydroxytryptamine [5-HT]) have been seen in hepatic, neurological/psychiatric, and gastrointestinal (GI) disorders. Probiotics are live microorganisms that confer health benefits to their host. Recent research has suggested that probiotics can promote serotonin signaling, a crucial pathway in the regulation of mood, cognition, and other physiological processes. Reviewing the literature, we find that peripheral serotonin increases nutrient uptake and storage, regulates the composition of the gut microbiota, and is involved in mediating neuronal disorders. This review explores the mechanisms underlying the probiotic-mediated increase in serotonin signaling, highlighting the role of gut microbiota in the regulation of serotonin production and the modulation of neurotransmitter receptors. Additionally, this review discusses the potential clinical implications of probiotics as a therapeutic strategy for disorders associated with altered serotonin signaling, such as GI and neurological disorders. Overall, this review demonstrates the potential of probiotics as a promising avenue for the treatment of serotonin-related disorders and signaling of serotonin.
Collapse
Affiliation(s)
- Noor Akram
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Zargham Faisal
- Department of Human NutritionBahauddin Zakariya University MultanMultanPakistan
| | - Rushba Irfan
- Faculty of Food Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Yasir Abbas Shah
- Natural & Medical Science Research CenterUniversity of NizwaNizwaOman
| | - Syeda Ayesha Batool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Toobaa Zahid
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Aqsa Zulfiqar
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Areeja Fatima
- National Institute of Food Science & TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Qudsia Jahan
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Hira Tariq
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aasma Asghar
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
8
|
Kesić M, Baković P, Farkaš V, Bagarić R, Kolarić D, Štefulj J, Čičin-Šain L. Constitutive Serotonin Tone as a Modulator of Brown Adipose Tissue Thermogenesis: A Rat Study. Life (Basel) 2023; 13:1436. [PMID: 37511811 PMCID: PMC10381595 DOI: 10.3390/life13071436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Brown adipose tissue (BAT), an important regulator of thermogenic and metabolic processes, is considered a promising target to combat metabolic disorders. The neurotransmitter and hormone serotonin (5HT) is a major modulator of energy homeostasis, with its central and peripheral pools acting in opposing ways. To better understand how individual variations in 5HT homeostasis influence the thermogenic functionality of BAT, we used a rat model consisting of two sublines with constitutively increased (high-5HT) or decreased (low-5HT) whole-body 5HT tone, developed by selective breeding for platelet 5HT parameters. We have shown that animals with constitutively low 5HT activity maintained at a standard housing temperature (22 °C) have greater interscapular BAT (iBAT) mass and higher iBAT metabolic activity (as evidenced by measurements of iBAT temperature and glucose uptake), accompanied by increased iBAT mRNA expression of key thermogenic genes, compared to animals with high 5HT tone. In response to further thermogenic challenges-intermittent cold exposure or treatment with a β3-adrenergic agonist-5HT sublines show several functional and molecular differences linking constitutively low endogenous 5HT tone to higher BAT activity/capacity. Overall, the results support a role of 5-HT in the control of BAT thermogenesis They also suggest that individuals with lower 5HT activity may be more sensitive to β3-adrenergic drugs.
Collapse
Affiliation(s)
- Maja Kesić
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Petra Baković
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Vladimir Farkaš
- Department of Experimental Physics, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Robert Bagarić
- Department of Experimental Physics, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Darko Kolarić
- Centre for Informatics and Computing, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Lipa Čičin-Šain
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| |
Collapse
|
9
|
Yang L, Cheng Y, Zhu Y, Cui L, Li X. The Serotonergic System and Amyotrophic Lateral Sclerosis: A Review of Current Evidence. Cell Mol Neurobiol 2023:10.1007/s10571-023-01320-0. [PMID: 36729314 DOI: 10.1007/s10571-023-01320-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the premature death of motor neurons. Serotonin (5-HT) is a crucial neurotransmitter, and its dysfunction, whether as a contributor or by-product, has been implicated in ALS pathogenesis. Here, we summarize current evidence linking serotonergic alterations to ALS, including results from post-mortem and neuroimaging studies, biofluid testing, and studies of ALS animal models. We also discuss the possible role of 5-HT in modulating some important mechanisms of ALS (i.e. glutamate excitotoxity and neuroinflammation) and in regulating ALS phenotypes (i.e. breathing dysfunction and metabolic defects). Finally, we discuss the promise and limitations of the serotonergic system as a target for the development of ALS biomarkers and therapeutic approaches. However, due to a relative paucity of data and standardized methodologies in previous studies, proper interpretation of existing results remains a challenge. Future research is needed to unravel the mechanisms linking serotonergic pathways and ALS and to provide valid, reproducible, and translatable findings.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yanfei Cheng
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yicheng Zhu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China.,Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China.,Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaoguang Li
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China. .,Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
10
|
Baković P, Kesić M, Kolarić D, Štefulj J, Čičin-Šain L. Metabolic and Molecular Response to High-Fat Diet Differs between Rats with Constitutionally High and Low Serotonin Tone. Int J Mol Sci 2023; 24:ijms24032169. [PMID: 36768493 PMCID: PMC9916796 DOI: 10.3390/ijms24032169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Maintaining energy balance is a complex physiological function whose dysregulation can lead to obesity and associated metabolic disorders. The bioamine serotonin (5HT) is an important regulator of energy homeostasis, with its central and peripheral pools influencing energy status in opposing ways. Using sublines of rats with constitutionally increased (high-5HT) or decreased (low-5HT) whole-body 5HT tone, we have previously shown that under standard diet constitutionally higher 5HT activity is associated with increased body weight, adiposity, and impaired glucose homeostasis. Here, we investigated the response of 5HT sublines to an obesogenic diet. Consistent with previous findings, high-5HT animals fed a standard diet had poorer metabolic health. However, in response to a high-fat diet, only low-5HT animals increased body weight and insulin resistance. They also showed more pronounced changes in blood metabolic parameters and the expression of various metabolic genes in hypothalamus and adipose tissue. On the other hand, high-5HT animals appeared to be protected from major metabolic disturbances of the obesogenic diet. The results suggest that constitutionally low 5HT activity is associated with higher susceptibility to harmful effects of a high-energy diet. High-5HT subline, which developed less adverse metabolic outcomes on hypercaloric diets, may prove useful in understanding metabolically healthy obesity in humans.
Collapse
Affiliation(s)
- Petra Baković
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Maja Kesić
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Darko Kolarić
- Centre for Informatics and Computing, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Lipa Čičin-Šain
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
11
|
The ‘Whey’ to good health: Whey protein and its beneficial effect on metabolism, gut microbiota and mental health. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Liu Y, Gu R, Gao M, Wei Y, Shi Y, Wang X, Gu Y, Gu X, Zhang H. Emerging role of substance and energy metabolism associated with neuroendocrine regulation in tumor cells. Front Endocrinol (Lausanne) 2023; 14:1126271. [PMID: 37051193 PMCID: PMC10084767 DOI: 10.3389/fendo.2023.1126271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is the second most common cause of mortality in the world. One of the unresolved difficult pathological mechanism issues in malignant tumors is the imbalance of substance and energy metabolism of tumor cells. Cells maintain life through energy metabolism, and normal cells provide energy through mitochondrial oxidative phosphorylation to generate ATP, while tumor cells demonstrate different energy metabolism. Neuroendocrine control is crucial for tumor cells' consumption of nutrients and energy. As a result, better combinatorial therapeutic approaches will be made possible by knowing the neuroendocrine regulating mechanism of how the neuroendocrine system can fuel cellular metabolism. Here, the basics of metabolic remodeling in tumor cells for nutrients and metabolites are presented, showing how the neuroendocrine system regulates substance and energy metabolic pathways to satisfy tumor cell proliferation and survival requirements. In this context, targeting neuroendocrine regulatory pathways in tumor cell metabolism can beneficially enhance or temper tumor cell metabolism and serve as promising alternatives to available treatments.
Collapse
Affiliation(s)
- Yingying Liu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjun Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Murong Gao
- Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yangwa Wei
- Department of Hepatobiliary Surgery, Hainan Provincial People’s Hospital, Haikou, China
| | - Yu Shi
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Wang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yihuang Gu
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- The Second Hospital of Nanjing, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| | - Xin Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| | - Hongru Zhang
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| |
Collapse
|
13
|
Song JY, Lee KE, Byeon EJ, Choi J, Kim SJ, Shin JE. Maternal Gestational Diabetes Influences DNA Methylation in the Serotonin System in the Human Placenta. Life (Basel) 2022; 12:life12111869. [PMID: 36431006 PMCID: PMC9695704 DOI: 10.3390/life12111869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The offspring of mothers with gestational diabetes mellitus (GDM) are at a higher risk for metabolic dysregulation and neurodevelopmental impairment. Evidence suggests that serotonin, which is present in both the placenta and the brain, programs the development and growth of the fetal brain. In the current study, we tested the hypothesis that GDM affects the methylation of the serotonin transporter gene (SLC6A4) and serotonin receptor gene (HTR2A) in the placenta. Ninety pregnant women were included in this study. Thirty mothers were diagnosed with GDM, and sixty mothers served as controls in a 1:2 ratio. Ten CpG sites within the promoter regions of SLC6A4 and HTR2A were analyzed using pyrosequencing. The relative expression of genes involved in DNA methylation was evaluated using real-time PCR. The average DNA methylation of placental SLC6A4 was higher in the GDM group than in the control group (2.29 vs. 1.16%, p < 0.001). However, the average DNA methylation level of HTR2A did not differ between the two groups. SLC6A4 methylation showed a positive correlation with maternal plasma glucose level and neonatal birth weight percentile and a negative correlation with the neonatal head circumference percentile. This finding suggests that epigenetic modification of the placental serotonin system may affect placental adaptation to a harmful maternal environment, thereby influencing the long-term outcome in the offspring.
Collapse
Affiliation(s)
| | | | | | | | | | - Jae Eun Shin
- Correspondence: ; Tel.: +82-32-340-2262; Fax: +82-32-340-2663
| |
Collapse
|