1
|
Chen YK, Mohamed AH, Amer Alsaiari A, Olegovich Bokov D, Ali Patel A, Al Abdulmonem W, Shafie A, Adnan Ashour A, Azhar Kamal M, Ahmad F, Ahmad I. The role of mesenchymal stem cells in the treatment and pathogenesis of psoriasis. Cytokine 2024; 182:156699. [PMID: 39033730 DOI: 10.1016/j.cyto.2024.156699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, a prevalent inflammatory skin condition impacting millions globally, continues to pose treatment challenges, despite the availability of multiple therapies. This underscores the demand for innovative treatments. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their capacity to modulate the immune system and facilitate tissue healing. Recent research indicates that MSCs don't just work through direct cell-to-cell interactions but also release extracellular vesicles (EVs), containing various bioactive substances like proteins, lipids, and nucleic acids. This article explores our current knowledge of psoriasis's origins and the potential utilization of MSCs and their EVs, particularly exosomes, in managing the condition. Additionally, we delve into how MSCs and EVs function in therapy, including their roles in regulating immune responses and promoting tissue repair. Lastly, we discuss the obstacles and opportunities associated with translating MSC-based treatments for psoriasis into clinical practice.
Collapse
Affiliation(s)
- Yan-Kun Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518109, China; Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil 51001, Hilla, Iraq.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
2
|
Yang J, Xiao M, Ma K, Li H, Ran M, Yang S, Yang Y, Fu X, Yang S. Therapeutic effects of mesenchymal stem cells and their derivatives in common skin inflammatory diseases: Atopic dermatitis and psoriasis. Front Immunol 2023; 14:1092668. [PMID: 36891306 PMCID: PMC9986293 DOI: 10.3389/fimmu.2023.1092668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Chronic skin inflammatory diseases including atopic dermatitis (AD) and psoriasis have been considered uncontrolled inflammatory responses, which have usually troubled patients around the world. Moreover, the recent method to treat AD and psoriasis has been based on the inhibition, not regulation, of the abnormal inflammatory response, which can induce a number of side effects and drug resistance in long-term treatment. Mesenchymal stem/stromal cells (MSCs) and their derivatives have been widely used in immune diseases based on their regeneration, differentiation, and immunomodulation with few adverse effects, which makes MSCs a promising treatment for chronic skin inflammatory diseases. As a result, in this review, we aim to systematically discuss the therapeutic effects of various resources of MSCs, the application of preconditioning MSCs and engineering extracellular vesicles (EVs) in AD and psoriasis, and the clinical evaluation of the administration of MSCs and their derivatives, which can provide a comprehensive vision for the application of MSCs and their derivatives in future research and clinical treatment.
Collapse
Affiliation(s)
- Jie Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Minglu Xiao
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Kui Ma
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Hongyu Li
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China.,Tianjin Medical University, Tianjin, China
| | - Mingzi Ran
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Shuxu Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Yuguang Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Siming Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| |
Collapse
|
3
|
Mesenchymal Stem Cells and Psoriasis: Systematic Review. Int J Mol Sci 2022; 23:ijms232315080. [PMID: 36499401 PMCID: PMC9740222 DOI: 10.3390/ijms232315080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) are multipotent non-hematopoietic stromal cells found in different body tissues such as bone marrow, adipose tissue, periosteum, Wharton's jelly, umbilical cord, blood, placenta, amniotic fluid, and skin. The biological behavior of MSCs depends mainly on their interaction with the microenvironment in which they are found, whose quality deeply influences the regenerative and immunomodulatory properties of these cells. Several studies confirm the interaction between MSCs and inflammatory microenvironment in the pathogenesis of psoriasis, designating MSCs as an important factor driving psoriasis development. This review aims to describe the most recent evidence on how the inflammatory microenvironment that characterizes psoriasis influences the homeostasis of MSCs and how they can be used to treat the disease.
Collapse
|
4
|
Niu X, Han Q, Li X, Li J, Liu Y, Li Y, Wu Y, Zhang K. EDIL3 influenced the αvβ3-FAK/MEK/ERK axis of endothelial cells in psoriasis. J Cell Mol Med 2022; 26:5202-5212. [PMID: 36065978 PMCID: PMC9575107 DOI: 10.1111/jcmm.17544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
One of the earliest events in the development of psoriatic lesion is a vascular network expansion. The abnormal vascular network is associated with increased endothelial cells (ECs) survival, proliferation, adhesion, migration, angiogenesis and permeability in psoriatic lesion. Our previous study demonstrated that epidermal growth factor‐like repeats and discoidin I‐like domains 3 (EDIL3) derived from psoriatic dermal mesenchymal stem cells (DMSCs) promoted cell–cell adhesion, migration and angiogenesis of ECs, but the molecular mechanism of upstream or downstream has not been explored. So, this study aimed to explore the association between EDIL3 derived from DMSCs (DMSCs‐derived EDIL3) and psoriasis‐associated angiogenesis. We injected recombinant EDIL3 protein to mouse model of psoriasis to confirm the roles of EDIL3 in psoriasis. Besides, we employed both short‐interference RNA (si‐RNA) and lentiviral vectors to explore the molecular mechanism of EDIL3 promoting angiogenesis in psoriasis. In vivo, this research found that after injected recombination EDIL3 protein, the epidermis thickness and microvessel density were both elevated. EDIL3 accelerated the process of psoriasis in the IMQ‐induced psoriasis‐like mouse model. Additionally, we confirmed that in vitro DMSCs‐derived EDIL3 is involved in the tube formation of ECs via αvβ3‐FAK/MEK/ERK signal pathway. This suggested that DMSCs‐derived EDIL3 and αvβ3‐FAK/MEK/ERK signal pathway in ECs play an important role in the pathogenesis of psoriasis. And the modification of DMSCs, EDIL3 and αvβ3‐FAK/MEK/ERK signal pathway will provide a valuable therapeutic target to control the angiogenesis in psoriasis.
Collapse
Affiliation(s)
- Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qixin Han
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanmin Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Li
- No. 1 English Department, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, Key Laboratory of Immunodermatology, Ministry of Education and NHC, National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Peng A, Lu F, Xing J, Dou Y, Yao Y, Li J, Li J, Hou R, Zhang K, Yin G. Psoriatic Dermal-Derived Mesenchymal Stem Cells Induced C3 Expression in Keratinocytes. Clin Cosmet Investig Dermatol 2022; 15:1489-1497. [PMID: 35941858 PMCID: PMC9356611 DOI: 10.2147/ccid.s363737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Aihong Peng
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Funa Lu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yu Dou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yuanjun Yao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Guohua Yin, Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5, Dong San Dao Xiang, Jiefang Road, Taiyuan, People’s Republic of China, Tel +86-0351-5656080, Email
| |
Collapse
|
6
|
Wang F, Hou R, Li J, Zhao X, Wang Q, Zhang K, Li X. Psoriatic Serum Induce an Abnormal Inflammatory Phenotype and a Decreased Immunosuppressive Function of Mesenchymal Stem Cells. Int J Stem Cells 2022; 15:155-163. [PMID: 35483716 PMCID: PMC9148834 DOI: 10.15283/ijsc20210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Mesenchymal stem cells (MSCs) have immunomodulatory function and participate in the pathogenesis of many immunoregulation-related diseases, including psoriasis. Previously, we found that MSCs from psoriatic lesions overexpress the proinflammatory microRNA, miR-155 and exhibit a decreased immunosuppressive capacity. But the origin of these aberrant characteristics is still not clear. To investigate whether inflammatory cytokines in serum and peripheral blood mononuclear cells (PBMCs) from psoriatic patients can regulate the expression patterns of immunoregulation-related cytokines and the immunoregulation function of MSCs. Methods and Results Normal dermal mesenchymal stem cells (nDMSCs) were treated with serum or PBMCs derived from patients with psoriasis or healthy donors. Expression of miR-155 and immunoregulation-related genes in each MSCs were measured using real-time PCR or western-blot. Meanwhile, the immunosuppressive capacity of DMSCs was evaluated by its inhibitory ability on proliferation of activated PBMCs. Compared to control serum, psoriatic serum significantly increased the expression levels of miR-155 (27.19±2.40 vs. 3.51±1.19, p<0.001), while decreased TAB2 expression (0.28±0.04 vs. 0.72±0.20, p<0.01) in DMSCs. Expression levels of immunoregulation-related genes such as PGE2, IL-10, and TLR4 were also markedly down-regulated following the psoriatic serum treatment. Those DMSCs treated with healthy serum could inhibit PBMC proliferation, while those psoriatic serum-treated DMSCs could not inhibit PBMC proliferation effectively. Conclusions Psoriatic serum up-regulate the expression of miR-155, down-regulate the expression of immunoregulation-related genes (PGE2, IL-10, and TLR4) in DMSCs, and along with the inhibition of the immunosuppressive function of MSCs.
Collapse
Affiliation(s)
- Fangdi Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiang Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Human umbilical cord-derived mesenchymal stem cells ameliorate psoriasis-like dermatitis by suppressing IL-17-producing γδ T cells. Cell Tissue Res 2022; 388:549-563. [DOI: 10.1007/s00441-022-03616-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
|
8
|
Cao Y, Liang NN, Chang WJ, Li JQ, Jiao JJ, Hou RX, Li J, Zhang KM. Role of psoriatic keratinocytes in the metabolic reprogramming of dermal mesenchymal stem cells. Int J Dermatol 2021; 61:337-345. [PMID: 34435665 DOI: 10.1111/ijd.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/06/2021] [Accepted: 07/28/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Psoriasis is an immune-mediated inflammatory skin disease, featured by epidermal hyperproliferation. Psoriasis exhibits metabolic abnormalities, which can further aggravate the condition of psoriasis. The present study aimed to investigate the role of psoriatic keratinocytes (KCs) in the metabolic reprogramming of dermal mesenchymal stem cells (DMSCs). METHODS Dermal mesenchymal stem cells were cocultured with primary KCs either from psoriatic lesions or from normal subjects using Transwell plate. Glycolysis and mitochondrial metabolism of DMSCs were detected by Seahorse Metabolic Analyzer. Expression levels of proteins were analyzed by Western blotting. DMSCs proliferation was assessed using 5-ethynyl-2'-deoxyuridine assay and Cell Counting Kit-8. RESULTS In comparison with normal KCs, coculture of psoriatic KCs with DMSCs dramatically increased glycolytic and mitochondrial metabolism, and expression levels of stem cell factor, epidermal growth factor, glucose transporter 1, and c-Myc. Moreover, psoriatic KCs were more potent than normal KCs in the stimulation of DMSC proliferation. CONCLUSIONS In conclusion, psoriatic KCs display a higher potency in metabolic reprogramming and stimulation of DMSC proliferation, possibly contributing to the pathogenesis of psoriasis. However, whether the intervention of metabolic reprogramming of DMSCs can alleviate psoriasis remains to be determined.
Collapse
Affiliation(s)
- Yue Cao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Nan-Nan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Wen-Juan Chang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jun-Qin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Juan-Juan Jiao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Rui-Xia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Kai-Ming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
9
|
Liang N, Chang W, Peng A, Cao Y, Li J, Wang Y, Jiao J, Zhang K. Dermal Mesenchymal Stem Cells from Psoriatic Lesions Stimulate HaCaT Cell Proliferation, Differentiation, and Migration via Activating the PI3K/AKT Signaling Pathway. Dermatology 2021; 238:283-291. [PMID: 34175855 DOI: 10.1159/000515767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation and abnormal differentiation of keratinocytes. Dermal mesenchymal stem cells (DMSCs) are not only involved in the regeneration of skin tissue, but also can regulate skin microenvironment by secreting cytokines. However, whether and how psoriatic DMSCs regulate proliferation and differentiation of keratinocytes remains unknown. OBJECTIVE To study the effects of psoriatic DMSCs on the proliferation, differentiation, and migration of keratinocytes and the underlying mechanisms. METHODS Following co-cultures of HaCaT cells with either psoriatic DMSCs (p-DMSCs) or DMSCs from normal volunteers (n-DMSCs), HaCaT cell proliferation was assessed using CCK-8 and EDU incorporation assay, while scratch assay and transwell assay were used to assess cell migration. qRT-PCR was used to determine expression levels of mRNA for cell proliferation (Ki-67) and differentiation (keratin 5, involucrin, and filaggrin). Western blot was used to measure expression levels of proteins associated with keratinocyte proliferation and differentiation in cultured HaCaT cells treated with or without PI3K inhibitor. ELISA assay was used to measure expression profile of stem cell factor (SCF), epidermal growth factor (EGF), and interleukin-11 (IL-11) within the co-culture supernatants. RESULTS The results showed that p-DMSCs displayed a higher potency than n-DMSCs in stimulating proliferation, differentiation, and migration of HaCaT cells. Expression levels of PI3K and AKT proteins were markedly increased in HaCaT cells co-cultured with DMSCs versus HaCaT cell culture alone. Moreover, inhibition of the PI3K/AKT signaling pathway reversed the effect of p-DMSCs on proliferation, differentiation, and migration of HaCaT cells. Compared with n-DMSCs, the p-DMSCs showed increased secretion of IL-11, EGF, and SCF. CONCLUSION p-DMSCs stimulate HaCaT cell proliferation, differentiation and migration via activating the PI3K/AKT signaling pathway, providing a new insight into the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Nannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenjuan Chang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Aihong Peng
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Juanjuan Jiao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Chang W, Liang N, Cao Y, Xing J, Li J, Li J, Zhao X, Li J, Niu X, Hou R, Yin G, Zhang K. The effects of human dermal-derived mesenchymal stem cells on the keratinocyte proliferation and apoptosis in psoriasis. Exp Dermatol 2021; 30:943-950. [PMID: 33838056 DOI: 10.1111/exd.14353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022]
Abstract
Psoriasis is a common chronic inflammatory skin disease, characterized by epidermal hyperproliferation. Mesenchymal stem cells (MSCs) regulate inflammation and vascular proliferation in the psoriasis lesions. Whether dermal-derived mesenchymal stem cells (DMSCs), the main MSCs in the dermis, regulate keratinocyte proliferation and apoptosis remains unknown. In the present study, we assessed the proliferation and apoptosis of keratinocytes cocultured with DMSCs isolated from either normal or psoriatic involved skin. Cell growth and apoptotic rates were determined using Cell Count Kit-8 and annexin V-FITC staining, respectively. In addition, EDU kit was also used to measure the rate of keratinocyte proliferation. Our results showed that psoriatic DMSCs (pDMSCs) were more potent than normal DMSCs (nDMSCs) in stimulating keratinocyte proliferation. In contrast, the apoptotic rate and expression levels of caspase-3 protein were lower in pDMSC-treated than nDMSC-treated keratinocytes (p < 0.001). Moreover, significantly higher contents of IL-6, IL-8, TNF-α and IFN-γ were found in the culture medium of pDMSCs than in that of nDMSCs. In conclusion, pDMSCs were more potent than nDMSCs in stimulation of keratinocyte proliferation and secretion of proinflammatory cytokines, but weaker in promoting apoptosis.
Collapse
Affiliation(s)
- Wenjuan Chang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Nannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Zhao X, Xing J, Li J, Hou R, Niu X, Liu R, Jiao J, Yang X, Li J, Liang J, Zhou L, Wang Q, Chang W, Yin G, Li X, Zhang K. Dysregulated Dermal Mesenchymal Stem Cell Proliferation and Differentiation Interfered by Glucose Metabolism in Psoriasis. Int J Stem Cells 2021; 14:85-93. [PMID: 33632981 PMCID: PMC7904530 DOI: 10.15283/ijsc20073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Objectives Psoriasis is a chronic inflammatory skin disease, which the mechanisms behind its initiation and development are related to many factors. DMSCs (dermal mesenchymal stem cells) represent an important member of the skin microenvironment and play an important role in the surrounding environment and in neighbouring cells, but they are also affected by the microenvironment. We studied the glucose metabolism of DMSCs in psoriasis patients and a control group to reveal the relationship among glucose metabolism, cell proliferation activity,and VEC (vascular endothelial cell) differentiation in vitro, we demonstrated the biological activity and molecular mechanisms of DMSCs in psoriasis. Methods and Results We found that the OCR of DMSCs in psoriatic lesions was higher than that in the control group, and mRNA of GLUT1 and HK2 were up-regulated compared with the control group. The proliferative activity of DMSCs in psoriasis was reduced at an early stage, and mRNA involved in proliferation, JUNB and FOS were expressed at lower levels than those in the control group. The number of blood vessels in psoriatic lesions was significantly higher than that in the control group (p<0.05), which the mRNA of VEC differentiation, CXCL12, CXCR7, HEYL and RGS5 tended to be increased in psoriatic lesions compared to the control group, in addition to Notch3. Conclusions We speculated that DMSCs affected local psoriatic blood vessels through glucose metabolism, and the differentiation of VECs, which resulted in the pathophysiological process of psoriasis.
Collapse
Affiliation(s)
- Xincheng Zhao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruifeng Liu
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Juanjuan Jiao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaohong Yang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiang Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenjuan Chang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Han Q, Niu X, Hou R, Li J, Liu Y, Li X, Li J, Li Y, Zhang K, Wu Y. Dermal mesenchymal stem cells promoted adhesion and migration of endothelial cells by integrin in psoriasis. Cell Biol Int 2020; 45:358-367. [PMID: 33079476 DOI: 10.1002/cbin.11492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/09/2020] [Accepted: 10/18/2020] [Indexed: 01/12/2023]
Abstract
The unusual dilatation of dermal capillaries and angiogenesis played important roles in psoriasis. Some genes and proteins of dermal mesenchymal stem cells (DMSCs) from psoriasis are abnormal and related to the function of endothelial cells (ECs). The present study was aimed to evaluate whether psoriatic DMSCs could affect adhesion and migration of ECs through neovascularization-related integrins in psoriasis. Human DMSCs, collected from psoriasis lesions and healthy skin, respectively, were cocultured with human umbilical vein endothelial cells (HUVECs). The expression levels of three integrins, that is, αvβ3, αvβ5, and α5β1 in HUVECs were tested by quantitative real-time polymerase chain reaction and Western blot analysis. The adhesion and migration of HUVECs were detected by adhesion assay and migration assay. The results showed that in psoriasis group, the expression of αVβ3 and α5β1 of HUVECs markedly increased 2.50- and 3.71-fold in messenger RNA levels, and significantly increased 1.63- and 1.92-fold in protein levels, comparing to healthy control group (all p < .05). But β5 was not significantly different between the two groups (p > .05). In addition, compared with control, psoriatic DMSCs promoted HUVECs adhesion by 1.62-fold and migration by 2.91-fold (all p < .05). In conclusion, psoriatic DMSCs impact HUVECs adhesion and migration by upregulating the expression of integrins αVβ3 and α5β1.
Collapse
Affiliation(s)
- Qixin Han
- Dermatology Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yamin Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaofang Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Li
- English Department, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Wu
- Dermatology Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Niu X, Han Q, Liu Y, Li J, Hou R, Li J, Zhang K. Psoriasis-associated angiogenesis is mediated by EDIL3. Microvasc Res 2020; 132:104056. [PMID: 32795468 DOI: 10.1016/j.mvr.2020.104056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/14/2020] [Accepted: 08/08/2020] [Indexed: 12/26/2022]
Abstract
The dermal mesenchymal stem cells (DMSCs) from psoriasis display higher expression level of epidermal growth factor-like repeats and discoidin I-like domains 3 (EDIL3), while EDIL3 can bind integrins, including αvβ3 and αvβ5, to regulate angiogenesis. To assess the role of EDIL3 derived from DMSCs of psoriasis (P-DMSCs) in angiogenesis, in vitro, EDIL3 of DMSCs from psoriasis was silenced by interfering EDIL3. Then the efficacy of silencing EDIL3 was tested by fluorescent flag, qRT-PCR and western blotting. And, in vitro, the relationship of EDIL3 in DMSCs with the angiogenesis of HUVECs were investigated through co-culture system. In vivo, EDIL3 recombinant protein was injected into IMQ cream-induced psoriasis-like skin lesions of mouse and EDIL3-associated tube formation were determined using Image J software. Our results showed the capacity of the adhesion, migration and tube formation of HUVECs in all psoriatic DMSCs groups were significantly higher compared with the control and si-EDIL3 groups (all P<0.05) in vitro. Moreover, under stimulated by EDIL3 recombinant protein, EDIL3-associated tube formation was dramatically elevated in vivo (P<0.01). In this study, EDIL3 could promote the adhesion, migration and tube formation of ECs and participant in the angiogenesis pathogenesis of psoriasis through affecting biological function on ECs both in vitro and in vivo. The results suggest a potential role of the critical pro-angiogenic factor EDIL3 in psoriasis therapy.
Collapse
Affiliation(s)
- Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qixin Han
- Department of Dermatology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanmin Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
14
|
Li X, Li J, Lu F, Cao Y, Xing J, Li J, Hou R, Yin G, Zhang K. Role of SPRED1 in keratinocyte proliferation in psoriasis. J Dermatol 2020; 47:735-742. [PMID: 32396270 DOI: 10.1111/1346-8138.15369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
Abstract
Psoriasis is a recurrent inflammatory skin disease, affecting approximately 2% of the population. Previous studies have demonstrated that psoriatic dermal mesenchymal stem cells (DMSC) stimulated keratinocyte (KC) proliferation and that psoriasis exhibited missense SPRED1 mutations. To further investigate the molecular mechanism by which psoriatic DMSC stimulate KC proliferation, and the role of missense SPRED1 mutations in psoriasis, we assessed expression levels of miRNA, and both mRNA and protein of SPRED1 in normal human epidermal keratinocyte cells (NHEK) cocultured with either psoriatic or control DMSC. Expression levels of miRNA and mRNA were determined by RNA sequencing. Expression levels of spred1 protein were assessed using western blot analysis. Moreover, the variation in SPRED1 was also examined by whole-genome sequencing in 665 psoriatic patients, and verified by Sanger sequencing. Our results showed that coculture of NHEK with psoriatic DMSC induced 32 differentially expressed miRNA, in which expression levels of miR-1 increased approximately 16-fold over control DMSC-treated NHEK (P < 0.05). Likewise, expression levels of miR-21-3p increased over twofold (P < 0.05). Moreover, coculture of NHEK with psoriatic DMSC induced marked increase in expression levels of mRNA for MAPK3, CDC25B and CDC25C, while decreasing expression levels of SPRED1 mRNA and protein in comparison with control DMSC treatment (P < 0.05 for all between cocultured with control and psoriatic DMSC). Furthermore, psoriasis displayed non-synonymous mutation of SPRED1 enriched in exon 7: c.A881T:p.Y294F (chr15:38351210). These results suggest that dysregulation and mutations of SPRED1 may participate in the pathogenesis of psoriasis, including epidermal hyperproliferation.
Collapse
Affiliation(s)
- Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Funa Lu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Review-Current Concepts in Inflammatory Skin Diseases Evolved by Transcriptome Analysis: In-Depth Analysis of Atopic Dermatitis and Psoriasis. Int J Mol Sci 2020; 21:ijms21030699. [PMID: 31973112 PMCID: PMC7037913 DOI: 10.3390/ijms21030699] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
During the last decades, high-throughput assessment of gene expression in patient tissues using microarray technology or RNA-Seq took center stage in clinical research. Insights into the diversity and frequency of transcripts in healthy and diseased conditions provide valuable information on the cellular status in the respective tissues. Growing with the technique, the bioinformatic analysis toolkit reveals biologically relevant pathways which assist in understanding basic pathophysiological mechanisms. Conventional classification systems of inflammatory skin diseases rely on descriptive assessments by pathologists. In contrast to this, molecular profiling may uncover previously unknown disease classifying features. Thereby, treatments and prognostics of patients may be improved. Furthermore, disease models in basic research in comparison to the human disease can be directly validated. The aim of this article is not only to provide the reader with information on the opportunities of these techniques, but to outline potential pitfalls and technical limitations as well. Major published findings are briefly discussed to provide a broad overview on the current findings in transcriptomics in inflammatory skin diseases.
Collapse
|
16
|
Mesenchymal Stem Cells in Homeostasis and Systemic Diseases: Hypothesis, Evidences, and Therapeutic Opportunities. Int J Mol Sci 2019; 20:ijms20153738. [PMID: 31370159 PMCID: PMC6696100 DOI: 10.3390/ijms20153738] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are present in all organs and tissues, playing a well-known function in tissue regeneration. However, there is also evidence indicating a broader role of MSCs in tissue homeostasis. In vivo studies have shown MSC paracrine mechanisms displaying proliferative, immunoregulatory, anti-oxidative, or angiogenic activity. In addition, recent studies also demonstrate that depletion and/or dysfunction of MSCs are associated with several systemic diseases, such as lupus, diabetes, psoriasis, and rheumatoid arthritis, as well as with aging and frailty syndrome. In this review, we hypothesize about the role of MSCs as keepers of tissue homeostasis as well as modulators in a variety of inflammatory and degenerative systemic diseases. This scenario opens the possibility for the use of secretome-derived products from MSCs as new therapeutic agents in order to restore tissue homeostasis, instead of the classical paradigm "one disease, one drug".
Collapse
|
17
|
Peng T, Deng X, Tian F, Li Z, Jiang P, Zhao X, Chen G, Chen Y, Zheng P, Li D, Wang S. The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma. Int J Oncol 2019; 55:657-670. [PMID: 31322171 PMCID: PMC6685595 DOI: 10.3892/ijo.2019.4837] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common hepatobiliary cancer after hepatocellular carcinoma. Antiangiogenic therapy has been administered to patients with CCA, but the benefits of this therapy remain unsatisfactory. Improved understanding of the molecular mechanisms underlying angiogenesis in CCA is required. In the present study, the expression of GATA-binding protein 6 (GATA6), lysyl oxidase-like 2 (LOXL2) and vascular endothelial growth factor A (VEGFA), in addition to the microvessel density (MVD), were evaluated by performing immunohistochemical staining of human CCA microarrays. The expression of GATA6/LOXL2 was associated with poor overall survival (P=0.01) and disease-free survival (P=0.02), and was positively associated with VEGFA expression (P=0.02) and MVD (P=0.04). In vitro, western blotting, reverse transcription-quantitative PCR analysis and ELISAs revealed that altered GATA6 and LOXL2 expression regulated the expression levels of secreted VEGFA. Co-immunoprecipitation demonstrated a physical interaction between GATA6 and LOXL2 in CCA cell lines, and the scavenger receptor cysteine-rich domain of LOXL2 interacted with GATA6, which regulated VEGFA mRNA expression and protein secretion, and promoted tube formation. In vivo analyses further revealed that GATA6/LOXL2 promoted VEGFA expression, angiogenesis and tumor growth. The GATA6/LOXL2 complex represents a novel candidate prognostic marker for stratifying patients with CCA. Drugs targeting this complex may possess great therapeutic value in the treatment of CCA.
Collapse
Affiliation(s)
- Tao Peng
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xiang Deng
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Feng Tian
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Zhonghu Li
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Peng Jiang
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xin Zhao
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Guangyu Chen
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yan Chen
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Ping Zheng
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Dajiang Li
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Shuguang Wang
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
18
|
Niu X, Li J, Zhao X, Wang Q, Wang G, Hou R, Li X, An P, Yin G, Zhang K. Dermal mesenchymal stem cells: a resource of migration-associated function in psoriasis? Stem Cell Res Ther 2019; 10:54. [PMID: 30760317 PMCID: PMC6375130 DOI: 10.1186/s13287-019-1159-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic and systemic, immune-mediated, inflammatory disease. Mesenchymal stem cells have effects on the inflammatory microenvironment, including regulating the proliferation, differentiation, recruitment, and migration of immunocytes. METHODS To investigate whether dermal mesenchymal stem cells (DMSCs) may act on migration of immunocytes in psoriasis patients, 22 patients with psoriasis and 22 matching healthy controls (age and sex in this study) were recruited. Seven migration-associated genes including chemokine like receptor-1 (CMKLR-1), collagen type VIII alpha1 (COL8A-1), neuropilin and tolloid-like 2 (NETO-2), nik-related kinase (NRK), secreted frizzled-related protein (SFRP), sulfate 6-O-endosulfatase 2 (SULF-2), and synaptotagmin-like protein 2 (SYTL-2) were analyzed by quantitative real-time reverse transcription PCR and western blot. Peripheral blood-derived mononuclear cells (PBMCs) migration to MSCs was measured using a Thanswell chamber system. RESULTS We observed the upregulation of CMKLR-1, COL8A-1, NETO-2, NRK, SYTL-2, and SULF-2 in dermal mesenchymal stem cells derived from patients with psoriasis at both mRNA and protein level, however, a significant downregulation of SFRP-2 between two groups. By contrast, there were no significant between-group differences at the mRNA and protein expression level of NETO-2 and SULF-2. The migration assay showed that in vitro the normal PBMC migration to psoriatic DMSC group was a 6.3 ± 0.7-fold increase compared with the control group. CONCLUSIONS The results may suggest a potential pathogenetic involvement of DMSCs on migration of monocytes in psoriasis. Immune responses are regulated at the level of DMSCs, which probably represent the cells primarily involved in the "psoriatic march."
Collapse
Affiliation(s)
- Xuping Niu
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Junqing Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Qiang Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 15 Changle Road West, Xi'an, 710032, Shanxi Province, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Peng An
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China.
| |
Collapse
|
19
|
Wang Q, Chang W, Yang X, Cheng Y, Zhao X, Zhou L, Li J, Li J, Zhang K. Levels of miR-31 and its target genes in dermal mesenchymal cells of patients with psoriasis. Int J Dermatol 2018; 58:198-204. [PMID: 30198149 DOI: 10.1111/ijd.14197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/27/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Psoriasis is characterized by chronic inflammatory dermatosis, and the pathogenesis of psoriasis is associated with mesenchymal stem cells (MSCs) and deregulation of the expression of miR-31. This study aimed to clarify the function of miR-31 in dermal MSCs (DMSCs) in the pathogenesis of psoriasis. METHODS The expression of miR-31 was assayed by a microarray and that of target genes of miR-31 was tested by quantitative PCR. RESULTS The expression of miR-31 in the psoriasis group was 0.2677 folds that of the control group. The expression of EMP1 and EIG121L genes, whose products are located on the cell membrane, in the psoriasis group was 4.095579 and 5.367017 folds that in the control group, respectively. The expression of GRB10, PTPN14, QKI, RNF144B, and TACC2 genes, whose products are located in the cytoplasm, in the psoriasis group was 1.440428, 1.198335, 1.737285, 7.379546, and 1.531947 folds that of the control. The expression of PRELP, whose products are secreted in the extracellular space, in the psoriasis group was 1.351684 folds that of the control. The expression of RBMS1, KHDRBS3, and SATB2, whose products play a role in the nucleus, in the psoriasis group was 2.237199, 1.277159, and 1.005742 folds that of the control, respectively. CONCLUSIONS Our results suggest that the low expression of miR-31 in DMSCs in patients with psoriasis causes an increase in the expression of some of its target genes, which in turn facilitates T lymphocyte activation by inhibiting the proliferation of DMSCs and therefore participates in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Qiang Wang
- Shanxi Key Laboratory of stem cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, Taiyuan, Shanxi Province, China
| | - Wenjuan Chang
- Shanxi Key Laboratory of stem cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, Taiyuan, Shanxi Province, China
| | - Xiaohong Yang
- Shanxi Key Laboratory of stem cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, Taiyuan, Shanxi Province, China
| | - Yueai Cheng
- Shanxi Key Laboratory of stem cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, Taiyuan, Shanxi Province, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of stem cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, Taiyuan, Shanxi Province, China
| | - Ling Zhou
- Shanxi Key Laboratory of stem cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, Taiyuan, Shanxi Province, China
| | - Juan Li
- Shanxi Key Laboratory of stem cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, Taiyuan, Shanxi Province, China
| | - Junqin Li
- Shanxi Key Laboratory of stem cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, Taiyuan, Shanxi Province, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of stem cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, Taiyuan, Shanxi Province, China
| |
Collapse
|
20
|
Tao W, Ayala-Haedo JA, Field MG, Pelaez D, Wester ST. RNA-Sequencing Gene Expression Profiling of Orbital Adipose-Derived Stem Cell Population Implicate HOX Genes and WNT Signaling Dysregulation in the Pathogenesis of Thyroid-Associated Orbitopathy. Invest Ophthalmol Vis Sci 2017; 58:6146-6158. [PMID: 29214313 PMCID: PMC5718600 DOI: 10.1167/iovs.17-22237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022] Open
Abstract
Purpose The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Methods Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell-specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Results Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Conclusion Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways.
Collapse
Affiliation(s)
- Wensi Tao
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Juan A. Ayala-Haedo
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Matthew G. Field
- The Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Daniel Pelaez
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Department of Biomedical Engineering, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sara T. Wester
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
21
|
Campanati A, Consales V, Orciani M, Giuliodori K, Ganzetti G, Bobyr I, Sorgentoni G, di Primio R, Offidani A. Role of mesenchymal stem cells in the pathogenesis of psoriasis: current perspectives. PSORIASIS-TARGETS AND THERAPY 2017; 7:73-85. [PMID: 29387610 PMCID: PMC5774609 DOI: 10.2147/ptt.s108311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent nonhematopoietic stromal cells studied for their properties and importance in management of several skin diseases. This review collects and analyzes the emerging published data, which describe the function of MSCs in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Veronica Consales
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Monia Orciani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Katia Giuliodori
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Giulia Ganzetti
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Ivan Bobyr
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Giulia Sorgentoni
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Roberto di Primio
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| |
Collapse
|
22
|
Li X, Li J, Zhao X, Wang Q, Yang X, Cheng Y, Zhou M, Wang G, Dang E, Yang X, Hou R, An P, Yin G, Zhang K. Comparative analysis of molecular activity in dermal mesenchymal stem cells from different passages. Cell Tissue Bank 2017; 19:277-285. [PMID: 29159500 DOI: 10.1007/s10561-017-9672-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/15/2017] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem cells (MSCs) are used for tissue regeneration in several pathological conditions, including autoimmune diseases. However, the optimal sources and culture requirements for these cells are still under investigation. Here, we compared mRNA expression in dermal MSCs (DMSCs) at passage (P) 3 and P5 to provide a reference for future studies related to DMSCs expansion. In normal DMSCs, the expression of three of eight genes associated with basic cellular activity were different at P5 compared to that at P3: PLCB4 and SYTL2 were upregulated by 4.30- and 6.42-fold, respectively (P < 0.05), whereas SATB2 was downregulated by 39.25-fold (P < 0.05). At the same time, genes associated with proliferation, differentiation, inflammation, and apoptosis were expressed at similar levels at P3 and P5 (P > 0.05). In contrast, in DMSCs isolated from psoriatic patients we observed differential expression of three inflammation-associated genes at P5 compared to P3; thus IL6, IL8, and CXCL6 mRNA levels were upregulated by 16.02-, 31.15-, and 15.04-fold, respectively. Our results indicate that normal and psoriatic DMSCs showed different expression patterns for genes related to inflammation and basic cell activity at P3 and P5, whereas those for genes linked to proliferation, differentiation, and apoptosis were mostly similar.
Collapse
Affiliation(s)
- Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Qiang Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Xiaohong Yang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Yueai Cheng
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Min Zhou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Gang Wang
- Hospital of Xijing Dermatology, Xijing Hospital, No. 15 Changle Road West, Xi'an, 710032, Shanxi Province, China
| | - Erle Dang
- Hospital of Xijing Dermatology, Xijing Hospital, No. 15 Changle Road West, Xi'an, 710032, Shanxi Province, China
| | - Xiaoli Yang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Peng An
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China.
| |
Collapse
|
23
|
Stem Cells as Potential Candidates for Psoriasis Cell-Replacement Therapy. Int J Mol Sci 2017; 18:ijms18102182. [PMID: 29053579 PMCID: PMC5666863 DOI: 10.3390/ijms18102182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023] Open
Abstract
Recent years have seen considerable progress in explaining the mechanisms of the pathogenesis of psoriasis, with a significant role played in it by the hyper-reactivity of Th1 and Th17 cells, Treg function disorder, as well as complex relationships between immune cells, keratinocytes, and vascular endothelium. The effect of stem cells in the epidermis and stem cells on T cells has been identified and the dysfunction of various types of stem cells may be a prime cause of dysregulation of the inflammatory response in psoriasis. However, exploring these mechanisms in detail could provide a chance to develop new therapeutic strategies. In this paper, the authors reviewed data on the role played by stem cells in the pathogenesis of psoriasis and initial attempts at using them in treatment.
Collapse
|
24
|
Abstract
Psoriasis is a complex chronic relapsing inflammatory disease. Although the exact mechanism remains unknown, it is commonly accepted that the development of psoriasis is a result of multi-system interactions among the epidermis, dermis, blood vessels, immune system, neuroendocrine system, metabolic system, and hematopoietic system. Many cell types have been confirmed to participate in the pathogenesis of psoriasis. Here, we review the stem cell abnormalities related to psoriasis that have been investigated recently.
Collapse
|
25
|
De Jesus MM, Santiago JS, Trinidad CV, See ME, Semon KR, Fernandez MO, Chung FS. Autologous Adipose-Derived Mesenchymal Stromal Cells for the Treatment of Psoriasis Vulgaris and Psoriatic Arthritis: A Case Report. Cell Transplant 2016; 25:2063-2069. [DOI: 10.3727/096368916x691998] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Psoriasis is a dermatologic disease of immune origins with no definitive cure. We report the Makati Medical Center experience of utilizing autologous mesenchymal stromal cells (MSCs) for one patient with psoriasis vulgaris (PV) and another with psoriatic arthritis (PA). Patients were educated and gave informed consent, according to the principles of the Declaration of Helsinki. The protocol was approved by the Cellular Transplantation Ethics Committee of the Makati Medical Center. Autologous MSCs were cultured from lipoaspirate and expanded in a clean room class 100 facility (Cellular Therapeutics Center, Makati Medical Center). MSCs were infused intravenously at a dose of 0.5–3.1 million cells/kg after complying with quality control parameters. Psoriasis area and severity index (PASI) evaluations were conducted by third-party dermatologists. The PA patient, who was previously unresponsive to standard treatment modalities, demonstrated a decrease in PASI (from 21.6 to 9.0, mild state after two infusions). No improvements were noted in joint pain until further treatment with etanercept and infliximab. The PV patient, who was previously dependent on methotrexate, showed a decrease in PASI from 24.0 to 8.3 after three infusions; this clinical improvement was sustained for 292 days (9.7 months) without methotrexate. The PV patient illustrated a marginal reduction in serum tumor necrosis factor-α (TNF-α), while significant (3.5- to 5-fold) decreases in reactive oxygen species (ROS) activity were noted. The ROS levels correlated with the clinical improvement of the PV patient. No serious adverse events were noted for either patient as a result of MSC infusions. This report demonstrates safe and tolerable transplantation of autologous MSCs for the treatment of psoriasis and warrants large clinical studies to investigate the long-term safety and efficacy of this approach.
Collapse
Affiliation(s)
- Miguel M. De Jesus
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| | - Jayson S. Santiago
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| | - Camille V. Trinidad
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| | - Melvin E. See
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| | - Kimberly R. Semon
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| | - Manuel O. Fernandez
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| | - Francisco S. Chung
- Cellular Therapeutics Center, Makati Medical Center, Makati City, Metro Manila, Philippines
| |
Collapse
|
26
|
Campanati A, Orciani M, Lazzarini R, Ganzetti G, Consales V, Sorgentoni G, Di Primio R, Offidani A. TNF-α inhibitors reduce the pathological Th1-Th17/Th2imbalance in cutaneous mesenchymal stem cells of psoriasis patients. Exp Dermatol 2016; 26:319-324. [DOI: 10.1111/exd.13139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Anna Campanati
- Dermatological Clinic; Department of Molecular and Clinical Sciences; Marche Polytechnic University; Ancona Italy
| | - Monia Orciani
- Department of Molecular and Clinical Sciences - Histology; Marche Polytechnic University; Ancona Italy
| | - Raffaella Lazzarini
- Department of Molecular and Clinical Sciences - Histology; Marche Polytechnic University; Ancona Italy
| | - Giulia Ganzetti
- Dermatological Clinic; Department of Molecular and Clinical Sciences; Marche Polytechnic University; Ancona Italy
| | - Veronica Consales
- Dermatological Clinic; Department of Molecular and Clinical Sciences; Marche Polytechnic University; Ancona Italy
| | - Giulia Sorgentoni
- Department of Molecular and Clinical Sciences - Histology; Marche Polytechnic University; Ancona Italy
| | - Roberto Di Primio
- Department of Molecular and Clinical Sciences - Histology; Marche Polytechnic University; Ancona Italy
| | - Annamaria Offidani
- Dermatological Clinic; Department of Molecular and Clinical Sciences; Marche Polytechnic University; Ancona Italy
| |
Collapse
|
27
|
de Lima KA, de Oliveira GLV, Yaochite JNU, Pinheiro DG, de Azevedo JTC, Silva WA, Covas DT, Couri CEB, Simões BP, Voltarelli JC, Oliveira MC, Malmegrim KCR. Transcriptional profiling reveals intrinsic mRNA alterations in multipotent mesenchymal stromal cells isolated from bone marrow of newly-diagnosed type 1 diabetes patients. Stem Cell Res Ther 2016; 7:92. [PMID: 27406064 PMCID: PMC4942931 DOI: 10.1186/s13287-016-0351-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/12/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background Bone marrow multipotent mesenchymal stromal cells (MSCs) are a diverse subset of precursors that contribute to the homeostasis of the hematopoietic niche. MSCs can be isolated and expanded in vitro and have unique immunomodulatory and regenerative properties that make them attractive for the treatment of autoimmune diseases, including type 1 diabetes (T1D). Whether autologous or allogeneic MSCs are more suitable for therapeutic purposes has not yet been established. While autologous MSCs may present abnormal function, allogeneic cells may be recognized and rejected by the host immune system. Thus, studies that investigate biological characteristics of MSCs isolated from T1D patients are essential to guide future clinical applications. Methods Bone marrow-derived MSCs from recently diagnosed type 1 diabetes patients (T1D-MSCs) were compared with those from healthy individuals (C-MSCs) for morphological and immunophenotypic characteristics and for differentiation potential. Bioinformatics approaches allowed us to match absolute and differential gene expression of several adhesion molecules, immune mediators, growth factors, and their receptors involved with hematopoietic support and immunomodulatory properties of MSCs. Finally, the differentially expressed genes were collated for functional pathway enrichment analysis. Results T1D-MSCs and C-MSCs were similar for morphology, immunophenotype, and differentiation potential. Our absolute gene expression results supported previous literature reports, while also detecting new potential molecules related to bone marrow-derived MSC functions. T1D-MSCs showed intrinsic abnormalities in mRNA expression, including the immunomodulatory molecules VCAM-1, CXCL12, HGF, and CCL2. Pathway analyses revealed activation of sympathetic nervous system and JAK STAT signaling in T1D-MSCs. Conclusions Collectively, our results indicate that MSCs isolated from T1D patients present intrinsic transcriptional alterations that may affect their therapeutic potential. However, the implications of these abnormalities in T1D development as well as in the therapeutic efficacy of autologous MSCs require further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0351-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kalil A de Lima
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil. .,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil. .,, Tenente Catao Roxo, 2501, Monte Alegre, 14051-140, Ribeirao Preto, Sao Paulo, Brazil.
| | - Gislane L V de Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Juliana N U Yaochite
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceara, Brazil
| | - Daniel G Pinheiro
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Júlia T C de Azevedo
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Wilson Araujo Silva
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Dimas T Covas
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos E B Couri
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Belinda P Simões
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Julio C Voltarelli
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Maria C Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
28
|
Niu X, Zhang K. Dysregulated expression of inflammation-related genes in psoriatic dermis mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:587-8. [PMID: 27151294 DOI: 10.1093/abbs/gmw036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xuping Niu
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan 030009, China
| | - Kaiming Zhang
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan 030009, China
| |
Collapse
|
29
|
Niu X, Chang W, Liu R, Hou R, Li J, Wang C, Li X, Zhang K. Expression of pro-angiogenic genes in mesenchymal stem cells derived from dermis of patients with psoriasis. Int J Dermatol 2016; 55:e280-8. [PMID: 26748901 DOI: 10.1111/ijd.13197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 07/02/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recent experimental studies revealed that angiogenesis and lymphangiogenesis are closely related to psoriasis. Our microarray analysis suggested that the pro-angiogenic genes platelet endothelial cell adhesion molecule-1 (PECAM1), facio-genital dysplasia-5 (FGD5), prostaglandin-endoperoxide synthase-1 (PTGS1), melanoma cell adhesion molecule (MCAM), vasohibin-2 (VASH2), and stabilin-1 (STAB1) are differentially expressed in dermal mesenchymal stem cells in psoriasis. OBJECTIVES The aim of this study was to investigate the mRNA and protein expression of PECAM1, FGD5, PTGS1, MCAM, VASH2, and STAB1 for angiogenesis and the possible mechanisms in psoriasis. METHODS We studied 12 patients with plaque psoriasis and 14 healthy controls matched for age and sex. Dermal mesenchymal stem cells were expanded, passaged, and identified by cellular morphology, immunophenotyping, and multipotential differentiation. The mRNA and protein expression of the above-mentioned six genes were confirmed by quantitative real-time reverse transcription-polymerase chain reaction and Western blotting. RESULTS The significantly decreased expression of PECAM1, PTGS1, FGD5, and MCAM at both mRNA and protein level (except VASH2 and STAB1) were demonstrated in mesenchymal stem cells from psoriatic skin lesions compared with non-lesional from healthy controls. CONCLUSIONS We provide the first report that pro-angiogenic genes PECAM1, PTGS1, FGD5, and MCAM rather than VASH2 and STAB1 may be play a vital role in pathological dermal angiogenesis disorders of psoriasis. Therefore, anti-angiogenesis is attractive and offers future potential for application in patients with psoriasis.
Collapse
Affiliation(s)
- Xuping Niu
- Institute of Dermatology, Taiyuan City Central Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - WenJuan Chang
- Institute of Dermatology, Taiyuan City Central Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ruifeng Liu
- Institute of Dermatology, Taiyuan City Central Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ruixia Hou
- Institute of Dermatology, Taiyuan City Central Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Junqin Li
- Institute of Dermatology, Taiyuan City Central Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Chunfang Wang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xinhua Li
- Institute of Dermatology, Taiyuan City Central Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Kaiming Zhang
- Institute of Dermatology, Taiyuan City Central Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
30
|
Niu X, Chang W, Liu R, Hou R, Li J, Wang C, Li X, Zhang K. mRNA and protein expression of the angiogenesis-related genes EDIL3, AMOT and ECM1 in mesenchymal stem cells in psoriatic dermis. Clin Exp Dermatol 2015; 41:533-40. [PMID: 26644074 DOI: 10.1111/ced.12783] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dermal microvasculature expansion and angiogenesis are prominent in psoriasis. Our previous microarray study showed that the angiogenesis-related genes EDIL3 (epidermal growth factor-like repeats and discoidin I-like domains 3), AMOT (angiomotin) and ECM1 (extracellular matrix protein 1), had high expression levels in dermal mesenchymal stem cells (DMSCs) from psoriatic skin lesions. AIM To investigate the mRNA and protein expressions of EDIL3, AMOT and ECM1 in DMSCs derived from psoriatic skin in order to better determine the molecular mechanisms of angiogenesis in the skin. METHODS DMSCs from 12 patients with psoriasis and 14 healthy controls (HCs) were cultured to passage 3, and identified by morphology, immunophenotype and multipotential differentiation. The mRNA and protein expressions of EDIL3, AMOT, and ECM1 in the DMSCs were determined using real-time reverse transcription PCR and western blotting. RESULTS DMSCs displayed spindle-like morphology and surface protein expression, and were able to differentiate into osteoblasts, chondrocytes and adipocytes. mRNA expression analysis showed that EDIL3, AMOT and ECM1 were expressed at 2.54-fold, 2.11-fold, and 1.90-fold higher levels, respectively, in psoriatic DMSCs compared with HC DMSCs (all P < 0.05). Protein analysis showed significantly (all P < 0.01) higher concentrations of EDIL3, AMOT and ECM1in the psoriasis group than in the HC group. CONCLUSIONS Our data demonstrate for the first time that expression of EDIL3, AMOT and ECM1 is altered in DMSCs in psoriasis, suggesting that EDIL3, AMOT and ECM1 are involved in the excessive angiogenesis and vasodilation observed in psoriasis.
Collapse
Affiliation(s)
- X Niu
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| | - W Chang
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| | - R Liu
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| | - R Hou
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| | - J Li
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| | - C Wang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - X Li
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| | - K Zhang
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
31
|
Li J, Hou R, Niu X, Liu R, Wang Q, Wang C, Li X, Hao Z, Yin G, Zhang K. Comparison of microarray and RNA-Seq analysis of mRNA expression in dermal mesenchymal stem cells. Biotechnol Lett 2015; 38:33-41. [DOI: 10.1007/s10529-015-1963-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/22/2015] [Indexed: 12/28/2022]
|