1
|
Shaheen N, Hossen MS, Akhter KT, Halima O, Hasan MK, Wahab A, Gamagedara S, Bhargava K, Holmes T, Najar FZ, Khandaker M, Peng Z, Yang Z, Ahsan N. Comparative Seed Proteome Profile Reveals No Alternation of Major Allergens in High-Yielding Mung Bean Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38836763 DOI: 10.1021/acs.jafc.4c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Mung bean contains up to 32.6% protein and is one of the great sources of plant-based protein. Because many allergens also function as defense-related proteins, it is important to determine their abundance levels in the high-yielding, disease-resistant cultivars. In this study, for the first time, we compared the seed proteome of high-yielding mung bean cultivars developed by a conventional breeding approach. Using a label-free quantitative proteomic platform, we successfully identified and quantified a total of 1373 proteins. Comparative analysis between the high-yielding disease-resistant cultivar (MC5) and the other three cultivars showed that a total of 69 common proteins were significantly altered in their abundances across all cultivars. Bioinformatic analysis of these altered proteins demonstrated that PDF1 (a defensin-like protein) exhibited high sequence similarity and epitope matching with the established peanut allergens, indicating a potential mung bean allergen that showed a cultivar-specific response. Conversely, known mung bean allergen proteins such as PR-2/PR-10 (Vig r 1), Vig r 2, Vig r 4, LTP1, β-conglycinin, and glycinin G4 showed no alternation in the MC5 compared to other cultivars. Taken together, our findings suggest that the known allergen profiles may not be impacted by the conventional plant breeding method to develop improved mung bean cultivars.
Collapse
Affiliation(s)
- Nazma Shaheen
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Sujan Hossen
- Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Kazi Turjaun Akhter
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Oumma Halima
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kamrul Hasan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Asfia Wahab
- Department of Biology, University of York, York YO10, U.K
| | - Sanjeewa Gamagedara
- Department of Chemistry, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Kanika Bhargava
- Department of Human Environmental Sciences, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Tawni Holmes
- Department of Human Environmental Sciences, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Fares Z Najar
- High-Performance Computing Center, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Morshed Khandaker
- Nanobiology Laboratory, School of Engineering, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
2
|
Sharma E, Vitte J. A systematic review of allergen cross-reactivity: Translating basic concepts into clinical relevance. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100230. [PMID: 38524786 PMCID: PMC10959674 DOI: 10.1016/j.jacig.2024.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 03/26/2024]
Abstract
Access to the molecular culprits of allergic reactions allows for the leveraging of molecular allergology as a new precision medicine approach-one built on interdisciplinary, basic, and clinical knowledge. Molecular allergology relies on the use of allergen molecules as in vitro tools for the diagnosis and management of allergic patients. It complements the conventional approach based on skin and in vitro allergen extract testing. Major applications of molecular allergology comprise accurate identification of the offending allergen thanks to discrimination between genuine sensitization and allergen cross-reactivity, evaluation of potential severity, patient-tailored choice of the adequate allergen immunotherapy, and prediction of its expected efficacy and safety. Allergen cross-reactivity, defined as the recognition of 2 or more allergen molecules by antibodies or T cells of the same specificity, frequently interferes with allergen extract testing. At the mechanistic level, allergen cross-reactivity depends on the allergen, the host's immune response, and the context of their interaction. The multiplicity of allergen molecules and families adds further difficulty. Understanding allergen cross-reactivity at the immunologic level and translating it into a daily tool for the management of allergic patients is further complicated by the ever-increasing number of characterized allergenic molecules, the lack of dedicated resources, and the need for a personalized, patient-centered approach. Conversely, knowledge sharing paves the way for improved clinical use, innovative diagnostic tools, and further interdisciplinary research. Here, we aimed to provide a comprehensive and unbiased state-of-the art systematic review on allergen cross-reactivity. To optimize learning, we enhanced the review with basic, translational, and clinical definitions, clinical vignettes, and an overview of online allergen databases.
Collapse
Affiliation(s)
| | - Joana Vitte
- Aix-Marseille University, MEPHI, IHU Méditerranée Infection, Marseille, France
- Desbrest Institute of Epidemiology and Public Health (IDESP), University of Montpellier, INSERM, Montpellier, France
- University of Reims Champagne-Ardenne, INSERM UMR-S 1250 P3CELL and University Hospital of Reims, Immunology Laboratory, Reims, France
| |
Collapse
|
3
|
Zeindl R, Unterhauser J, Röck M, Eidelpes R, Führer S, Tollinger M. Structural Characterization of Food Allergens by Nuclear Magnetic Resonance Spectroscopy. Methods Mol Biol 2024; 2717:159-173. [PMID: 37737983 DOI: 10.1007/978-1-0716-3453-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
As allergies, especially those triggered by food, are becoming more and more prevalent, it is of increasing importance to fully understand the structures and dynamic behaviors of allergenic proteins along with their interactions with potential natural ligands. Therefore, we have established a solid routine to achieve structural characterization of food allergens, especially for birch pollen-related cross-reactive proteins from the class 10 of pathogenesis-related proteins (PR-10), by nuclear magnetic resonance (NMR) spectroscopy. Following expression of the desired allergen in Escherichia coli in isotope-labeled minimal media, the three-dimensional solution structures of these proteins can be determined, and insight into ligand binding mechanics and structural dynamic properties are accessible through NMR spin relaxation experiments.
Collapse
Affiliation(s)
- Ricarda Zeindl
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Jana Unterhauser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Manuel Röck
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Reiner Eidelpes
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Sebastian Führer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Kaeswurm JAH, Sempio R, Manca F, Burandt MR, Buchweitz M. Analyzing Bioaccessibility of Polyphenols in Six Commercial and Six Traditional Apples (Malus domestica Borkh.) during In Vitro and Ex Vivo Oral Digestion. Mol Nutr Food Res 2023; 67:e2300055. [PMID: 37726237 DOI: 10.1002/mnfr.202300055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/30/2023] [Indexed: 09/21/2023]
Abstract
SCOPE Apples are an important polyphenol (PP) source. To compare the health benefits of traditional and commercial varieties, the phenolic contents and profiles as well as their release from the matrix (bioaccessibility) during oral digestion are determined. Furthermore, based on these data the proposed beneficial effect of PP on the variety specific allergenicity is discussed. METHODS AND RESULTS Phenolics are quantified by HPLC-DAD. Total phenolic contents (TPC) are in the range of 111-645 and 343-1950 mg 100 g-1 dry weight for flesh and peel, respectively. Matrix release during oral digestion is investigated ex vivo, with centrifuged and non-centrifuged human saliva and in vitro with simulated saliva fluid (SSF). The overall bioaccessibility is similar in all digestion media, ranging between 40-80% and 39-65% of the TPC in flesh and peel, respectively. Analyzing the correlation among Mal-d 1-allergen-content, unoxidized PP, and the allergenic potential for the samples reveals a negligible effect of phenolics. CONCLUSION Due to higher phenolic contents in combination with a similar release, increased PP concentrations in the oral phase and an improved uptake of PP from traditional varieties are assumed. However, the proposed beneficial effect of phenolics on allergenicity cannot be confirmed.
Collapse
Affiliation(s)
- Julia Anna Helene Kaeswurm
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
- Department of Chemistry, Institute of Food Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Rebecca Sempio
- Department of Food, Nutrition and Environmental Sciences, Faculty of Agricultural and Food Sciences, University of Milan, Milan, 20122, Italy
| | - Federica Manca
- Department of Food, Nutrition and Environmental Sciences, Faculty of Agricultural and Food Sciences, University of Milan, Milan, 20122, Italy
| | - Melanie Regina Burandt
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Maria Buchweitz
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
- Department of Chemistry, Institute of Food Chemistry, University of Hamburg, 20146, Hamburg, Germany
| |
Collapse
|
5
|
Kaeswurm JAH, Straub LV, Siegele A, Brockmeyer J, Buchweitz M. Characterization and Quantification of Mal d 1 Isoallergen Profiles and Contents in Traditional and Commercial Apple Varieties by Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2554-2565. [PMID: 36696630 DOI: 10.1021/acs.jafc.2c05801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The apple allergy in Northern Europe is a cross-reaction to the birch pollen allergy. No correlation between the allergenicity of an apple variety and the content of the major apple allergen Mal d 1, a homologue to the Bet v 1 allergen in birch, could be found using ELISA, so far. Therefore, an impact of polyphenols and/or differences in the isoallergen profile are discussed. To allow a more detailed analysis of the Mal d 1 content and the isoallergen profile, a mass spectrometric method was applied to investigate differences in the flesh and peel of 10 traditional varieties and 10 commercial breeds. The data revealed often, but not always, lower Mal d 1 contents in traditional varieties grown in orchard meadows, which was more obvious in the flesh. Differences among the peels were less pronounced. A closer look at the individual isoallergens 1.01, 1.02, 1.03, and 1.06 reveals an increased impact of the minor isoallergens 1.03 and 1.06 on the allergenic potential, since commercial breeds like Braeburn, Santana, and Holstein Cox, which are considered to have reduced allergenic potentials, were characterized by low levels of these isoallergens.
Collapse
Affiliation(s)
- Julia A H Kaeswurm
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
| | - Leonie V Straub
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
| | - Andreas Siegele
- Obstbauberatung Stuttgart, Liegenschaftsamt, Hospitalstraße 8, 70174 Stuttgart, Germany
| | - Jens Brockmeyer
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
| | - Maria Buchweitz
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Ahammer L, Unterhauser J, Eidelpes R, Meisenbichler C, Nothegger B, Covaciu CE, Cova V, Kamenik AS, Liedl KR, Breuker K, Eisendle K, Reider N, Letschka T, Tollinger M. Ascorbylation of a Reactive Cysteine in the Major Apple Allergen Mal d 1. Foods 2022; 11:2953. [PMID: 36230029 PMCID: PMC9562000 DOI: 10.3390/foods11192953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
The protein Mal d 1 is responsible for most allergic reactions to apples (Malus domestica) in the northern hemisphere. Mal d 1 contains a cysteine residue on its surface, with its reactive side chain thiol exposed to the surrounding food matrix. We show that, in vitro, this cysteine residue is prone to spontaneous chemical modification by ascorbic acid (vitamin C). Using NMR spectroscopy and mass spectrometry, we characterize the chemical structure of the cysteine adduct and provide a three-dimensional structural model of the modified apple allergen. The S-ascorbylated cysteine partially masks a major IgE antibody binding site on the surface of Mal d 1, which attenuates IgE binding in sera of apple-allergic patients. Our results illustrate, from a structural perspective, the role that chemical modifications of allergens with components of the natural food matrix can play.
Collapse
Affiliation(s)
- Linda Ahammer
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Jana Unterhauser
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Reiner Eidelpes
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Christina Meisenbichler
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Bettina Nothegger
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Claudia E. Covaciu
- Department of Dermatology, Venerology and Allergology, Central Teaching Hospital, 39100 Bolzano, Italy
| | - Valentina Cova
- Department of Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer, Italy
| | - Anna S. Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus Eisendle
- Department of Dermatology, Venerology and Allergology, Central Teaching Hospital, 39100 Bolzano, Italy
| | - Norbert Reider
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Letschka
- Department of Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer, Italy
| | - Martin Tollinger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Skypala IJ, Hunter H, Krishna MT, Rey-Garcia H, Till SJ, du Toit G, Angier E, Baker S, Stoenchev KV, Luyt DK. BSACI guideline for the diagnosis and management of pollen food syndrome in the UK. Clin Exp Allergy 2022; 52:1018-1034. [PMID: 35975576 DOI: 10.1111/cea.14208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023]
Abstract
Pollen food syndrome (PFS) is a highly prevalent food allergy affecting pollen-sensitized children and adults. Sufferers experience allergic symptoms when consuming raw plant foods, due to the homology between the pollen allergens and unstable proteins in these foods. The triggers involved can vary depending on the pollen sensitization, which in turn is affected by geographical location. The British Society of Allergy and Clinical Immunology (BSACI) Standards of Care Committee (SOCC) identified a need to develop a guideline for the diagnosis and management of PFS in the United Kingdom (UK). Guidelines produced by the BSACI use either the GRADE or SIGN methodology; due to a lack of high-quality evidence these recommendations were formulated using the SIGN guidelines, which is acknowledged to be less robust than the GRADE approach. The correct diagnosis of PFS ensures the avoidance of a misdiagnosis of a primary peanut or tree nut allergy or confusion with another plant food allergy to non-specific lipid transfer proteins. The characteristic foods involved, and rapid-onset oropharyngeal symptoms, mean PFS can often be diagnosed from the clinical history alone. However, reactions involving tree nuts, peanuts and soya milk or severe/atypical reactions to fruits and vegetables may require additional diagnostic tests. Management is through the exclusion of known trigger foods, which may appear to be simple, but is highly problematic if coupled with a pre-existing food allergy or for individuals following a vegetarian/vegan diet. Immunotherapy to pollens is not an effective treatment for PFS, and although oral or sublingual immunotherapy to foods seems more promising, large, controlled studies are needed. The typically mild symptoms of PFS can lead to an erroneous perception that this condition is always easily managed, but severe reactions can occur, and anxiety about the onset of symptoms to new foods can have a profound effect on quality of life.
Collapse
Affiliation(s)
- Isabel J Skypala
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, UK.,Inflammation, Repair & Development Section, National Heart & Lung Institute, Imperial College, London, UK
| | - Hannah Hunter
- Department of Allergy, Guys & St Thomas NHS Foundation Trust, London, UK.,Kings College, London, UK
| | - Mamidipudi Thirumala Krishna
- Department of Allergy and Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Helena Rey-Garcia
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, UK
| | - Stephen J Till
- Department of Allergy, Guys & St Thomas NHS Foundation Trust, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - George du Toit
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,Children's Allergy Service, Evelina Children's Hospital, Guy's and St. Thomas's NHS Foundation Trust, London, UK.,Department Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK
| | - Elizabeth Angier
- Primary Care, Population Science and Medical Education, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Kostadin V Stoenchev
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, UK
| | | |
Collapse
|
8
|
Strobl MR, Vollmann U, Eckl‐Dorna J, Radakovics A, Ibl V, Schnurer M, Brenner M, Dermendjiev G, Weckwerth W, Neumüller M, Frommlet F, Demir H, Bublin M, Müller C, Bohle B. Identification of apple cultivars hypoallergenic for birch pollen-allergic individuals by a multidisciplinary in vitro and in vivo approach. Clin Transl Allergy 2022; 12:e12186. [PMID: 36036236 PMCID: PMC9412969 DOI: 10.1002/clt2.12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Birch pollen-related apple allergy is the most frequent IgE-mediated food allergy in Central-Northern Europe with Mal d 1 as major allergen. Its concentration in apples varies with the cultivar and storage time. Year-round appealing, hypoallergenic cultivars still are needed to satisfy the nutritional needs of affected individuals. We characterized three promising cultivars by multidisciplinary in vitro assays including long-term storage and by clinical challenges of allergic individuals before and after the birch pollen season. METHODS Proteins were extracted from fruits of 'Santana', 'Golden Delicious' (GD), and three genuine cultivars in November 2018 and April 2019. Mal d 1-levels were analysed by mass spectrometry, SDS-PAGE, immunoblotting, competitive ELISA, and basophil activation tests. Twenty-eight allergic individuals underwent single-blinded open food challenges and skin testing with the cultivars and birch pollen in November 2018 and May 2019. Allergen-specific IgE-levels were determined. RESULTS After storage all cultivars except 'Santana' were of appealing appearance and taste. Their Mal d 1 content had increased, also reflected by significantly amplified basophil activation and stronger reactions in clinical challenges. Besides, individuals showed boosted reactivity after pollen exposure indicated by enhanced allergen-specific IgE-levels and skin reactions to birch pollen. Still, all cultivars remained significantly less allergenic than GD and comparable to Santana in November 2018 in all assessments except for skin testing. CONCLUSIONS Combined expertise in pomology and allergology identified promising new cultivars for allergic consumers. The evaluation of hypoallergenic apples should incorporate long-term storage and birch pollen exposure. Basophil activation tests may be suitable in the selection of promising cultivars for oral challenges.
Collapse
Affiliation(s)
- Maria R. Strobl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaWienAustria
| | - Ute Vollmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaWienAustria
| | - Julia Eckl‐Dorna
- Department of OtorhinolaryngologyMedical University of ViennaViennaAustria
| | - Astrid Radakovics
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaWienAustria
| | - Verena Ibl
- Department of Functional and Evolutionary EcologyDivision of Molecular Systems BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Madeleine Schnurer
- Department of Functional and Evolutionary EcologyDivision of Molecular Systems BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Martin Brenner
- Department of Functional and Evolutionary EcologyDivision of Molecular Systems BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Georgi Dermendjiev
- Department of Functional and Evolutionary EcologyDivision of Molecular Systems BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary EcologyDivision of Molecular Systems BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | | | - Florian Frommlet
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of ViennaViennaAustria
| | - Hilal Demir
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaWienAustria
| | - Merima Bublin
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaWienAustria
| | - Christian Müller
- Department of OtorhinolaryngologyMedical University of ViennaViennaAustria
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaWienAustria
| |
Collapse
|
9
|
Yuste S, Ludwig IA, Romero MP, Motilva MJ, Rubió L. New red-fleshed apple cultivars: a comprehensive review of processing effects, (poly)phenol bioavailability and biological effects. Food Funct 2022; 13:4861-4874. [PMID: 35419577 DOI: 10.1039/d2fo00130f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Red-fleshed apple cultivars with an enhanced content of anthocyanins have recently attracted the interest of apple producers and consumers due to their attractive color and promising added health benefits. In this paper, we provide the first comprehensive overview of new hybrid red-fleshed apples, mainly focusing on their (poly)phenolic composition, the effect of processing, the (poly)phenolic bioavailability and the biological effects. Evidence so far from in vitro and in vivo studies supports their added beneficial effects compared to common apples on health outcomes such as cancer, cardiovascular disease, inflammation and immune function, which are mainly related to their specific (poly)phenol composition.
Collapse
Affiliation(s)
- Silvia Yuste
- Antioxidants Research Group, Food Technology Department, Agrotecnio-RECERCA Center, University of Lleida, Av/Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | - Iziar A Ludwig
- Departamento de Ciencias de la Alimentación y Fisiología, Facultad de Farmacia y Nutrición, Universidad de Navarra, 31008 Pamplona, Spain.
| | - María-Paz Romero
- Antioxidants Research Group, Food Technology Department, Agrotecnio-RECERCA Center, University of Lleida, Av/Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | - María-José Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Gobierno de La Rioja, Universidad de La Rioja), Finca "La Grajera", Carretera de Burgos km 6, 26007 Logroño, La Rioja, Spain
| | - Laura Rubió
- Antioxidants Research Group, Food Technology Department, Agrotecnio-RECERCA Center, University of Lleida, Av/Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| |
Collapse
|
10
|
Siekierzynska A, Piasecka‐Kwiatkowska D, Myszka A, Burzynska M, Sozanska B, Sozanski T. Apple allergy: Causes and factors influencing fruits allergenic properties-Review. Clin Transl Allergy 2021; 11:e12032. [PMID: 34123364 PMCID: PMC8171779 DOI: 10.1002/clt2.12032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/11/2021] [Accepted: 04/14/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Apple tree fruits (Malus × domestica Borkh.) are a rich source of nutrients and nutraceuticals and are recommended as a part of the healthy, staple diet. However, apples could be also the cause of allergies including severe reactions. Allergies to fruits like apples are predominantly associated with pollinosis. In North and Central Europe, sensitisation to apples is caused mainly by cross-reactive birch pollen aeroallergen, whereas in the Mediterranean area of Europe, apple allergy is mostly associated with allergies to peach. The allergenicity of apples differ across cultivars but only a few varieties were studied. Some factors changing apples allergenicity were identified, including unmodifiable and potentially modifiable factors for example cultivation method, ripening stage and storage conditions. AIM This review presents current knowledge about the molecular basis of apple allergenicity and factors influencing its level. CONCLUSIONS Selecting cultivars with low potential of allergenicity, removing apple peel and heat treatment could reduce the risk of severe allergy reaction incidence and presumably can be used in birch pollen immunotherapy.
Collapse
Affiliation(s)
- Aleksandra Siekierzynska
- Department of Physiology and Plant BiotechnologyInstitute of Agricultural Sciences, Land Management and Environmental ProtectionUniversity of RzeszowRzeszowPoland
| | | | | | - Marta Burzynska
- Department of Food Biochemistry and AnalysisPoznan University of Life SciencesPoznanPoland
| | - Barbara Sozanska
- 1st Department of Pediatric Allergology and CardiologyWroclaw Medical UniversityWroclawPoland
| | - Tomasz Sozanski
- Department of PharmacologyWroclaw Medical UniversityWroclawPoland
| |
Collapse
|
11
|
Groth S, Budke C, Weber T, Neugart S, Brockmann S, Holz M, Sawadski BC, Daum D, Rohn S. Relationship between Phenolic Compounds, Antioxidant Properties, and the Allergenic Protein Mal d 1 in Different Selenium-Biofortified Apple Cultivars ( Malus domestica). Molecules 2021; 26:2647. [PMID: 33946582 PMCID: PMC8124677 DOI: 10.3390/molecules26092647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Notable parts of the population in Europe suffer from allergies towards apples. To address this health problem, the analysis of the interactions of relevant allergens with other substances such as phenolic compounds is of particular importance. The aim of this study was to evaluate the correlations between the total phenolic content (TPC), polyphenol oxidase (PPO) activity, antioxidant activity (AOA), and the phenolic compound profile and the content of the allergenic protein Mal d 1 in six apple cultivars. It was found that the PPO activity and the content of individual phenolic compounds had an influence on the Mal d 1 content. With regard to the important constituents, flavan-3-ols and phenolic acids, it was found that apples with a higher content of chlorogenic acid and a low content of procyanidin trimers and/or epicatechin had a lower allergenic potential. This is probably based on the reaction of phenolic compounds (when oxidized by the endogenous PPO) with proteins, thus being able to change the conformation of the (allergenic) proteins, which further corresponds to a loss of antibody recognition. When apples were additionally biofortified with selenium, the composition of the apples, with regard to TPC, phenolic profile, AOA, and PPO, was significantly affected. Consequently, this innovative agronomic practice seems to be promising for reducing the allergenic potential of apples.
Collapse
Affiliation(s)
- Sabrina Groth
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.G.); (S.B.); (M.H.); (B.C.S.)
| | - Christoph Budke
- Department of Plant Nutrition, Osnabrück University of Applied Sciences, 49090 Osnabrück, Germany; (C.B.); (T.W.); (D.D.)
| | - Timo Weber
- Department of Plant Nutrition, Osnabrück University of Applied Sciences, 49090 Osnabrück, Germany; (C.B.); (T.W.); (D.D.)
| | - Susanne Neugart
- Department of Crop Sciences, Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, 37075 Göttingen, Germany;
| | - Sven Brockmann
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.G.); (S.B.); (M.H.); (B.C.S.)
| | - Martina Holz
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.G.); (S.B.); (M.H.); (B.C.S.)
| | - Bao Chau Sawadski
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.G.); (S.B.); (M.H.); (B.C.S.)
| | - Diemo Daum
- Department of Plant Nutrition, Osnabrück University of Applied Sciences, 49090 Osnabrück, Germany; (C.B.); (T.W.); (D.D.)
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.G.); (S.B.); (M.H.); (B.C.S.)
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
12
|
Nothegger B, Reider N, Covaciu CE, Cova V, Ahammer L, Eidelpes R, Unterhauser J, Platzgummer S, Raffeiner E, Tollinger M, Letschka T, Eisendle K. Oral birch pollen immunotherapy with apples: Results of a phase II clinical pilot study. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:503-511. [PMID: 33621436 PMCID: PMC8127540 DOI: 10.1002/iid3.410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/08/2021] [Accepted: 01/21/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Seventy percent of patients suffering from birch pollen allergy (BPA) develop a pollen-related food allergy (prFA), especially to apples, due to a clinically relevant cross-reactivity between the major allergen in birch Bet v 1 and Mal d 1 in apples. Therefore allergen-specific immunotherapy with fresh apples (AITA) could be a promising natural treatment of both BPA and prFA. OBJECTIVE To assess the clinical efficacy of immunotherapy by daily apple consumption for patients with BPA and prFA. METHODS A daily defined increasing amount of selected cultivars (Red Moon®, Pink Lady®, Topaz, Golden Delicious) was continuously consumed by 16 patients (12 female; median age; 50; range, 23-68 years), leading to increased intake of allergen over a period of at least 8 months. Specific IgE and IgG4 to Bet v 1 and Mal d 1, conjunctival and oral provocation tests, skin reactivity, and the average daily rhinoconjunctivitis combined symptom and medication score (CSMS) were measured during the peak birch pollen season. RESULTS After 8 months of therapy, patients showed increased tolerance to apples (p < .001) and a decreased skin reactivity to apples. Oral allergy syndrome to other birch prFA than apple also decreased (p < .05). Moreover, daily rhinoconjunctivitis CSMS declined by 34% (p < .001), as did conjunctival reactivity to birch pollen extract by 27% (p < .01), while specific IgG4 to Mal d 1 and Bet v 1 increased (p < .01).
Collapse
Affiliation(s)
- Bettina Nothegger
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Norbert Reider
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia E Covaciu
- Department of Dermatology Venereology and Allergology, Central Teaching Hospital, Bolzano/Bozen, Italy
| | - Valentina Cova
- Department of Applied Genomics and Molecular Biology, Laimburg Research Centre, Ora, Italy
| | - Linda Ahammer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Reiner Eidelpes
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jana Unterhauser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Stefan Platzgummer
- Clinical Chemistry and Microbiology Laboratory, Tappeiner Hospital, Meran, Italy
| | - Elisabeth Raffeiner
- Clinical Chemistry and Microbiology Laboratory, Tappeiner Hospital, Meran, Italy
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Thomas Letschka
- Department of Applied Genomics and Molecular Biology, Laimburg Research Centre, Ora, Italy
| | - Klaus Eisendle
- Department of Dermatology Venereology and Allergology, Central Teaching Hospital, Bolzano/Bozen, Italy
- IMREST Interdisciplinary Medical Research Center South Tyrol, Claudiana College of Health-Care Professions, Bolzano/Bozen, Italy
| |
Collapse
|
13
|
Führer S, Kamenik AS, Zeindl R, Nothegger B, Hofer F, Reider N, Liedl KR, Tollinger M. Inverse relation between structural flexibility and IgE reactivity of Cor a 1 hazelnut allergens. Sci Rep 2021; 11:4173. [PMID: 33603065 PMCID: PMC7892832 DOI: 10.1038/s41598-021-83705-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
A major proportion of allergic reactions to hazelnuts (Corylus avellana) are caused by immunologic cross-reactivity of IgE antibodies to pathogenesis-related class 10 (PR-10) proteins. Intriguingly, the four known isoforms of the hazelnut PR-10 allergen Cor a 1, denoted as Cor a 1.0401-Cor a 1.0404, share sequence identities exceeding 97% but possess different immunologic properties. In this work we describe the NMR solution structures of these proteins and provide an in-depth study of their biophysical properties. Despite sharing highly similar three-dimensional structures, the four isoforms exhibit remarkable differences regarding structural flexibility, hydrogen bonding and thermal stability. Our experimental data reveal an inverse relation between structural flexibility and IgE-binding in ELISA experiments, with the most flexible isoform having the lowest IgE-binding potential, while the isoform with the most rigid backbone scaffold displays the highest immunologic reactivity. These results point towards a significant entropic contribution to the process of antibody binding.
Collapse
Affiliation(s)
- Sebastian Führer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Anna S Kamenik
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Ricarda Zeindl
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Bettina Nothegger
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Florian Hofer
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Norbert Reider
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
14
|
Bergmann KC. Allergen immunotherapy for allergic rhinitis due to birch pollen? A tasty proposal! J Eur Acad Dermatol Venereol 2020; 34:1130. [PMID: 32557947 DOI: 10.1111/jdv.16556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- K-C Bergmann
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|