1
|
Lozano-Martín C, Bracamonte SE, Barluenga M. Evolution of MHC IIB Diversity Across Cichlid Fish Radiations. Genome Biol Evol 2023; 15:evad110. [PMID: 37314153 PMCID: PMC10306275 DOI: 10.1093/gbe/evad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in vertebrates and crucial for their adaptive immune response. These genes frequently show inconsistencies between allelic genealogies and species phylogenies. This phenomenon is thought to be the result of parasite-mediated balancing selection maintaining ancient alleles through speciation events (trans-species polymorphism [TSP]). However, allele similarities may also arise from postspeciation mechanisms, such as convergence or introgression. Here, we investigated the evolution of MHC class IIB diversity in the cichlid fish radiations across Africa and the Neotropics by a comprehensive review of available MHC IIB DNA sequence information. We explored what mechanism explains the MHC allele similarities found among cichlid radiations. Our results showed extensive allele similarity among cichlid fish across continents, likely due to TSP. Functionality at MHC was also shared among species of the different continents. The maintenance of MHC alleles for long evolutionary times and their shared functionality may imply that certain MHC variants are essential in immune adaptation, even in species that diverged millions of years ago and occupy different environments.
Collapse
|
2
|
Pikus E, Dunn PO, Minias P. High MHC diversity confers no advantage for phenotypic quality and reproductive performance in a wild bird. J Anim Ecol 2022; 91:1707-1718. [PMID: 35521665 PMCID: PMC9542035 DOI: 10.1111/1365-2656.13737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
1. Genes of the major histocompatibility complex (MHC) encode antigen binding molecules and are an integral part of the acquired immune response of vertebrates. In general, high individual MHC diversity is expected to increase fitness by broadening the spectrum of pathogens recognized by the immune system, in accordance with the heterozygote advantage mechanism. On the other hand, the optimality hypothesis assumes that individuals with optimal (intermediate), rather than maximum diversity of the MHC will achieve the highest fitness because of inherent costs associated with expressing diverse MHC alleles. 2. Here, we tested for associations between individual diversity of the MHC class I and class II genes (binding antigens of intra- and extra-cellular pathogens, respectively) and a range of fitness-related traits (condition, ornament expression and reproduction) in an urban population of the Eurasian coot Fulica atra. 3. Contrary to our expectation, we found that high within-individual allelic diversity of MHC genes (both class I and II) was associated with poorer condition (lower blood haemoglobin concentrations), weaker expression of the putative ornament (smaller frontal shield), later onset of breeding and smaller clutches. An analysis of functional MHC allele clusters (supertypes) provided further support for negative associations of MHC diversity with phenotypic quality and reproductive performance, but most of these relationships could not be explained by the presence of specific maladaptive supertypes. Finally, we found little empirical support for the optimality hypothesis in the Eurasian coot. 4. Our results suggest that the costs of high MHC diversity outweighed any benefits associated with broad MHC repertoire, which could be driven by depauperate pathogen diversity in an urban landscape. To the best of our knowledge, this is one of the first studies providing consistent evidence for negative associations of MHC diversity with a range of fitness-related traits in a natural avian population.
Collapse
Affiliation(s)
- Ewa Pikus
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-, Milwaukee
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| |
Collapse
|
3
|
Pineaux M, Merkling T, Danchin E, Hatch S, Duneau D, Blanchard P, Leclaire S. Sex and hatching order modulate the association between MHC-II diversity and fitness in early-life stages of a wild seabird. Mol Ecol 2020; 29:3316-3329. [PMID: 32654215 DOI: 10.1111/mec.15551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023]
Abstract
Genes of the major histocompatibility complex (MHC) play a pivotal role in parasite resistance, and their allelic diversity has been associated with fitness variations in several taxa. However, studies report inconsistencies in the direction of this association, with either positive, quadratic or no association being described. These discrepancies may arise because the fitness costs and benefits of MHC diversity differ among individuals depending on their exposure and immune responses to parasites. Here, we investigated in black-legged kittiwake (Rissa tridactyla) chicks whether associations between MHC class-II diversity and fitness vary with sex and hatching order. MHC-II diversity was positively associated with growth and tick clearance in female chicks, but not in male chicks. Our data also revealed a positive association between MHC-II diversity and survival in second-hatched female chicks (two eggs being the typical clutch size). These findings may result from condition-dependent parasite infections differentially impacting sexes in relation to hatching order. We thus suggest that it may be important to account for individual heterogeneities in traits that potentially exert selective pressures on MHC diversity in order to properly predict MHC-fitness associations.
Collapse
Affiliation(s)
- Maxime Pineaux
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France
| | - Thomas Merkling
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France
| | - Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France
| | - Scott Hatch
- Institute for Seabird Research and Conservation, Anchorage, AK, USA
| | - David Duneau
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France
| | - Pierrick Blanchard
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France
| | - Sarah Leclaire
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France
| |
Collapse
|
4
|
Major histocompatibility complex class I diversity limits the repertoire of T cell receptors. Proc Natl Acad Sci U S A 2019; 116:5021-5026. [PMID: 30796191 DOI: 10.1073/pnas.1807864116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Major histocompatibility complex (MHC) genes encode proteins that initiate adaptive immune responses through the presentation of foreign antigens to T cells. The high polymorphism found at these genes, thought to be promoted and maintained by pathogen-mediated selection, contrasts with the limited number of MHC loci found in most vertebrates. Although expressing many diverse MHC genes should broaden the range of detectable pathogens, it has been hypothesized to also cause deletion of larger fractions of self-reactive T cells, leading to a detrimental reduction of the T cell receptor (TCR) repertoire. However, a key prediction of this TCR depletion hypothesis, that the TCR repertoire should be inversely related to the individual MHC diversity, has never been tested. Here, using high-throughput sequencing and advanced sequencing error correction, we provide evidence of such an association in a rodent species with high interindividual variation in the number of expressed MHC molecules, the bank vole (Myodes glareolus). Higher individual diversity of MHC class I, but not class II, was associated with smaller TCR repertoires. Our results thus provide partial support for the TCR depletion model, while also highlighting the complex, potentially MHC class-specific mechanisms by which autoreactivity may trade off against evolutionary expansion of the MHC gene family.
Collapse
|
5
|
Meyer BS, Hablützel PI, Roose AK, Hofmann MJ, Salzburger W, Raeymaekers JAM. An exploration of the links between parasites, trophic ecology, morphology, and immunogenetics in the Lake Tanganyika cichlid radiation. HYDROBIOLOGIA 2018; 832:215-233. [PMID: 30880832 PMCID: PMC6394741 DOI: 10.1007/s10750-018-3798-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
Differences in habitat and diet between species are often associated with morphological differences. Habitat and trophic adaptation have therefore been proposed as important drivers of speciation and adaptive radiation. Importantly, habitat and diet shifts likely impose changes in exposure to different parasites and infection risk. As strong selective agents influencing survival and mate choice, parasites might play an important role in host diversification. We explore this possibility for the adaptive radiation of Lake Tanganyika (LT) cichlids. We first compare metazoan macroparasites infection levels between cichlid tribes. We then describe the cichlids' genetic diversity at the major histocompatibility complex (MHC), which plays a key role in vertebrate immunity. Finally, we evaluate to what extent trophic ecology and morphology explain variation in infection levels and MHC, accounting for phylogenetic relationships. We show that different cichlid tribes in LT feature partially non-overlapping parasite communities and partially non-overlapping MHC diversity. While morphology explained 15% of the variation in mean parasite abundance, trophic ecology accounted for 16% and 22% of the MHC variation at the nucleotide and at the amino acid level, respectively. Parasitism and immunogenetic adaptation may thus add additional dimensions to the LT cichlid radiation.
Collapse
Affiliation(s)
- Britta S. Meyer
- Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
- Evolutionary Ecology of Marine Fishes, Helmholtz Centre for Ocean Research Kiel, GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany
- Present Address: Max Planck Institute for Evolutionary Biology, Max Planck Research Group Behavioural Genomics, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Pascal I. Hablützel
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat 32, 3000 Louvain, Belgium
- Present Address: Flanders Marine Institute, Wandelaarkaai 7, 8400 Ostend, Belgium
| | - Anna K. Roose
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat 32, 3000 Louvain, Belgium
| | - Melinda J. Hofmann
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Present Address: Museo de Zoología, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Quito, Ecuador
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Joost A. M. Raeymaekers
- Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat 32, 3000 Louvain, Belgium
- Present Address: Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| |
Collapse
|
6
|
Acevedo-Whitehouse K, Gulland FMD, Bowen L. MHC class II DRB diversity predicts antigen recognition and is associated with disease severity in California sea lions naturally infected with Leptospira interrogans. INFECTION GENETICS AND EVOLUTION 2017; 57:158-165. [PMID: 29183820 DOI: 10.1016/j.meegid.2017.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 11/07/2017] [Accepted: 11/23/2017] [Indexed: 12/26/2022]
Abstract
We examined the associations between California sea lion MHC class II DRB (Zaca-DRB) configuration and diversity, and leptospirosis. As Zaca-DRB gene sequences are involved with antigen presentation of bacteria and other extracellular pathogens, we predicted that they would play a role in determining responses to these pathogenic spirochaetes. Specifically, we investigated whether Zaca-DRB diversity (number of genes) and configuration (presence of specific genes) explained differences in disease severity, and whether higher levels of Zaca-DRB diversity predicted the number of specific Leptospira interrogans serovars that a sea lion's serum would react against. We found that serum from diseased sea lions with more Zaca-DRB loci reacted against a wider array of serovars. Specific Zaca-DRB loci were linked to reactions with particular serovars. Interestingly, sea lions with clinical manifestation of leptospirosis that had higher numbers of Zaca-DRB loci were less likely to recover from disease than those with lower diversity, and those that harboured Zaca-DRB.C or -G were 4.5 to 5.3 times more likely to die from leptospirosis, regardless of the infective serovars. We propose that for leptospirosis, a disadvantage of having a wider range of antigen presentation might be increased disease severity due to immunopathology. Ours is the first study to examine the importance of Zaca-DRB diversity for antigen detection and disease severity following natural exposure to infective leptospires.
Collapse
Affiliation(s)
- Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Av. de las Ciencias S/N, Queretaro 76230, Mexico; The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA.
| | | | - Lizabeth Bowen
- USGS Western Ecological Research Center, 1 Shields Ave., University of California, Davis, CA 95616-5224, USA
| |
Collapse
|
7
|
Hablützel PI, Vanhove MPM, Deschepper P, Grégoir AF, Roose AK, Volckaert FAM, Raeymaekers JAM. Parasite escape through trophic specialization in a species flock. J Evol Biol 2017; 30:1437-1445. [DOI: 10.1111/jeb.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/11/2017] [Accepted: 04/26/2017] [Indexed: 02/02/2023]
Affiliation(s)
- P. I. Hablützel
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Leuven Belgium
| | - M. P. M. Vanhove
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Leuven Belgium
- Capacities for Biodiversity and Sustainable Development; Operational Directorate Natural Environment; Royal Belgian Institute of Natural Sciences; Brussels Belgium
- Department of Botany and Zoology; Faculty of Science; Masaryk University; Brno Czech Republic
- Hasselt University; Centre for Environmental Sciences; Research Group Zoology: Biodiversity & Toxicology; Diepenbeek Belgium
| | - P. Deschepper
- Laboratory of Plant Conservation and Population Biology; University of Leuven; Leuven Belgium
| | - A. F. Grégoir
- Laboratory of Aquatic Ecology and Evolution; University of Leuven; Leuven Belgium
| | - A. K. Roose
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Leuven Belgium
| | - F. A. M. Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Leuven Belgium
| | - J. A. M. Raeymaekers
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Leuven Belgium
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Faculty of Biosciences and Aquaculture; Nord University; Bodø Norway
| |
Collapse
|
8
|
Crispo E, Tunna HR, Hussain N, Rodriguez SS, Pavey SA, Jackson LJ, Rogers SM. The evolution of the major histocompatibility complex in upstream versus downstream river populations of the longnose dace. Ecol Evol 2017; 7:3297-3311. [PMID: 28515867 PMCID: PMC5433983 DOI: 10.1002/ece3.2839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/28/2017] [Indexed: 11/10/2022] Open
Abstract
Populations in upstream versus downstream river locations can be exposed to vastly different environmental and ecological conditions and can thus harbor different genetic resources due to selection and neutral processes. An interesting question is how upstream–downstream directionality in rivers affects the evolution of immune response genes. We used next‐generation amplicon sequencing to identify eight alleles of the major histocompatibility complex (MHC) class II β exon 2 in the cyprinid longnose dace (Rhinichthys cataractae) from three rivers in Alberta, upstream and downstream of municipal and agricultural areas along contaminant gradients. We used these data to test for directional and balancing selection on the MHC. We also genotyped microsatellite loci to examine neutral population processes in this system. We found evidence for balancing selection on the MHC in the form of increased nonsynonymous variation relative to neutral expectations, and selection occurred at more amino acid residues upstream than downstream in two rivers. We found this pattern despite no population structure or isolation by distance, based on microsatellite data, at these sites. Overall, our results suggest that MHC evolution is driven by upstream–downstream directionality in fish inhabiting this system.
Collapse
Affiliation(s)
- Erika Crispo
- Department of Biological Sciences University of Calgary Calgary AB Canada
| | - Haley R Tunna
- Department of Biological Sciences University of Calgary Calgary AB Canada
| | - Noreen Hussain
- Department of Biology Pace University New York NY USA.,Present address: Touro College of Pharmacy New York NY USA
| | - Silvia S Rodriguez
- Department of Biology Pace University New York NY USA.,Present address: Developmental Biology Sloan-Kettering Institute New York NY USA
| | - Scott A Pavey
- University of New Brunswick Saint John & Canadian Rivers Institute Saint John NB Canada
| | - Leland J Jackson
- Department of Biological Sciences University of Calgary Calgary AB Canada
| | - Sean M Rogers
- Department of Biological Sciences University of Calgary Calgary AB Canada
| |
Collapse
|
9
|
Hablützel PI, Grégoir AF, Vanhove MPM, Volckaert FAM, Raeymaekers JAM. Weak link between dispersal and parasite community differentiation or immunogenetic divergence in two sympatric cichlid fishes. Mol Ecol 2016; 25:5451-5466. [PMID: 27596520 DOI: 10.1111/mec.13833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 02/03/2023]
Abstract
Geographical isolation, habitat variation and trophic specialization have contributed to a large extent to the astonishing diversity of cichlid fishes in the Great East African lakes. Because parasite communities often vary across space and environments, parasites can accompany and potentially enhance cichlid species diversification. However, host dispersal may reduce opportunities for parasite-driven evolution by homogenizing parasite communities and allele frequencies of immunity genes. To test for the relationships between parasite community variation, host dispersal and parasite-induced host evolution, we studied two sympatric cichlid species with contrasting dispersal capacities along the shores of southern Lake Tanganyika. Whereas the philopatric Tropheus moorii evolved into several genetically differentiated colour morphs, Simochromis diagramma is phenotypically rather uniform across its distribution range and shows only weak population structure. Populations of both species were infected with divergent parasite communities and harbour differentiated variant pools of an important set of immune genes, the major histocompatibility complex (MHC). The overall extent of geographical variation of parasites and MHC genes was similar between host species. This indicates that immunogenetic divergence among populations of Lake Tanganyika cichlids can occur even in species that are strongly dispersing. However, because this also includes species that are phenotypically uniform, parasite-induced evolution may not represent a key factor underlying species diversification in this system.
Collapse
Affiliation(s)
- P I Hablützel
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. de Bériotstraat 32, B-3000, Leuven, Belgium.
| | - A F Grégoir
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Ch. de Bériotstraat 32, B-3000, Leuven, Belgium
| | - M P M Vanhove
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. de Bériotstraat 32, B-3000, Leuven, Belgium.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - F A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. de Bériotstraat 32, B-3000, Leuven, Belgium
| | - J A M Raeymaekers
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. de Bériotstraat 32, B-3000, Leuven, Belgium.,Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| |
Collapse
|
10
|
Vanhove MPM, Hablützel PI, Pariselle A, Šimková A, Huyse T, Raeymaekers JAM. Cichlids: A Host of Opportunities for Evolutionary Parasitology. Trends Parasitol 2016; 32:820-832. [PMID: 27595383 DOI: 10.1016/j.pt.2016.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/31/2016] [Accepted: 07/14/2016] [Indexed: 01/07/2023]
Abstract
Thanks to high species diversity and a broad range of speciation mechanisms, cichlid fishes represent a textbook model in evolutionary biology. They are also of substantial economic value. Despite this importance, cichlid parasites remain understudied, although some are more diverse than their hosts. They may offer important insights into cichlid evolution and the evolution of host-parasite interactions. We review five major lines of research conducted on cichlid parasites so far: the study of parasite diversity and speciation; the role of parasites in cichlid diversification; the evolutionary ecology of host specificity; historical biogeography; and biological invasions. We call for more research in these areas and suggest approaches to valorise the potential that cichlid parasites hold for the study of evolutionary parasitology.
Collapse
Affiliation(s)
- Maarten P M Vanhove
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic.
| | - Pascal I Hablützel
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Antoine Pariselle
- Institut des Sciences de l'Évolution, IRD-CNRS-Université de Montpellier, CC 063, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
| | - Tine Huyse
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - Joost A M Raeymaekers
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
11
|
Vanhove MPM, Pariselle A, Van Steenberge M, Raeymaekers JAM, Hablützel PI, Gillardin C, Hellemans B, Breman FC, Koblmüller S, Sturmbauer C, Snoeks J, Volckaert FAM, Huyse T. Hidden biodiversity in an ancient lake: phylogenetic congruence between Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites. Sci Rep 2015; 5:13669. [PMID: 26335652 PMCID: PMC4558575 DOI: 10.1038/srep13669] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/23/2015] [Indexed: 11/09/2022] Open
Abstract
The stunning diversity of cichlid fishes has greatly enhanced our understanding of speciation and radiation. Little is known about the evolution of cichlid parasites. Parasites are abundant components of biodiversity, whose diversity typically exceeds that of their hosts. In the first comprehensive phylogenetic parasitological analysis of a vertebrate radiation, we study monogenean parasites infecting tropheine cichlids from Lake Tanganyika. Monogeneans are flatworms usually infecting the body surface and gills of fishes. In contrast to many other parasites, they depend only on a single host species to complete their lifecycle. Our spatially comprehensive combined nuclear-mitochondrial DNA dataset of the parasites covering almost all tropheine host species (N = 18), reveals species-rich parasite assemblages and shows consistent host-specificity. Statistical comparisons of host and parasite phylogenies based on distance and topology-based tests demonstrate significant congruence and suggest that host-switching is rare. Molecular rate evaluation indicates that species of Cichlidogyrus probably diverged synchronically with the initial radiation of the tropheines. They further diversified through within-host speciation into an overlooked species radiation. The unique life history and specialisation of certain parasite groups has profound evolutionary consequences. Hence, evolutionary parasitology adds a new dimension to the study of biodiversity hotspots like Lake Tanganyika.
Collapse
Affiliation(s)
- Maarten P M Vanhove
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium.,Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic.,Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Avenue, PO Box 712, Anavyssos GR-190 13, Greece
| | - Antoine Pariselle
- Institut des Sciences de l'Évolution, IRD-CNRS-Université Montpellier 2, CC 063, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France
| | - Maarten Van Steenberge
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium.,Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium.,Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Joost A M Raeymaekers
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Pascal I Hablützel
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Céline Gillardin
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Bart Hellemans
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Floris C Breman
- Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - Stephan Koblmüller
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Christian Sturmbauer
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Jos Snoeks
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium.,Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Tine Huyse
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium.,Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| |
Collapse
|