1
|
Yassin A, Gidaszewski N, Debat V, David JR. Long-term evolution of quantitative traits in the Drosophila melanogaster species subgroup. Genetica 2022; 150:343-353. [PMID: 36242716 DOI: 10.1007/s10709-022-00171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022]
Abstract
Quantitative genetics aims at untangling the genetic and environmental effects on phenotypic variation. Trait heritability, which summarizes the relative importance of genetic effects, is estimated at the intraspecific level, but theory predicts that heritability could influence long-term evolution of quantitative traits. The phylogenetic signal concept bears resemblance to heritability and it has often been called species-level heritability. Under certain conditions, such as trait neutrality or contribution to phylogenesis, within-species heritability and between-species phylogenetic signal should be correlated. Here, we investigate the potential relationship between these two concepts by examining the evolution of multiple morphological traits for which heritability has been estimated in Drosophila melanogaster. Specifically, we analysed 42 morphological traits in both sexes on a phylogeny inferred from 22 nuclear genes for nine species of the melanogaster subgroup. We used Pagel's λ as a measurement of phylogenetic signal because it is the least influenced by the number of analysed taxa. Pigmentation traits showed the strongest concordance with the phylogeny, but no correlation was found between phylogenetic signal and heritability estimates mined from the literature. We obtained data for multiple climatic variables inferred from the geographical distribution of each species. Phylogenetic regression of quantitative traits on climatic variables showed a significantly positive correlation with heritability. Convergent selection, the response to which depends on the trait heritability, may have led to the null association between phylogenetic signal and heritability for morphological traits in Drosophila. We discuss the possible causes of discrepancy between both statistics and caution against their confusion in evolutionary biology.
Collapse
Affiliation(s)
- Amir Yassin
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay - Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 12 route 128, 91190, Gif- sur-Yvette, France.
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP50, 75005, Paris, France.
| | - Nelly Gidaszewski
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP50, 75005, Paris, France
| | - Vincent Debat
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP50, 75005, Paris, France
| | - Jean R David
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay - Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 12 route 128, 91190, Gif- sur-Yvette, France
| |
Collapse
|
2
|
Bubnell JE, Ulbing CKS, Fernandez Begne P, Aquadro CF. Functional Divergence of the bag-of-marbles Gene in the Drosophila melanogaster Species Group. Mol Biol Evol 2022; 39:6609986. [PMID: 35714266 PMCID: PMC9250105 DOI: 10.1093/molbev/msac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In Drosophila melanogaster, a key germline stem cell (GSC) differentiation factor, bag of marbles (bam) shows rapid bursts of amino acid fixations between sibling species D. melanogaster and Drosophila simulans, but not in the outgroup species Drosophila ananassae. Here, we test the null hypothesis that bam's differentiation function is conserved between D. melanogaster and four additional Drosophila species in the melanogaster species group spanning approximately 30 million years of divergence. Surprisingly, we demonstrate that bam is not necessary for oogenesis or spermatogenesis in Drosophila teissieri nor is bam necessary for spermatogenesis in D. ananassae. Remarkably bam function may change on a relatively short time scale. We further report tests of neutral sequence evolution at bam in additional species of Drosophila and find a positive, but not perfect, correlation between evidence for positive selection at bam and its essential role in GSC regulation and fertility for both males and females. Further characterization of bam function in more divergent lineages will be necessary to distinguish between bam's critical gametogenesis role being newly derived in D. melanogaster, D. simulans, Drosophila yakuba, and D. ananassae females or it being basal to the genus and subsequently lost in numerous lineages.
Collapse
Affiliation(s)
| | - Cynthia K S Ulbing
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
3
|
Malec P, Weber J, Böhmer R, Fiebig M, Meinert D, Rein C, Reinisch R, Henrich M, Polyvas V, Pollmann M, von Berg L, König C, Steidle JLM. The emergence of ecotypes in a parasitoid wasp: a case of incipient sympatric speciation in Hymenoptera? BMC Ecol Evol 2021; 21:204. [PMID: 34781897 PMCID: PMC8591844 DOI: 10.1186/s12862-021-01938-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background To understand which reproductive barriers initiate speciation is a major question in evolutionary research. Despite their high species numbers and specific biology, there are only few studies on speciation in Hymenoptera. This study aims to identify very early reproductive barriers in a local, sympatric population of Nasonia vitripennis (Walker 1836), a hymenopterous parasitoid of fly pupae. We studied ecological barriers, sexual barriers, and the reduction in F1-female offspring as a postmating barrier, as well as the population structure using microsatellites. Results We found considerable inbreeding within female strains and a population structure with either three or five subpopulation clusters defined by microsatellites. In addition, there are two ecotypes, one parasitizing fly pupae in bird nests and the other on carrion. The nest ecotype is mainly formed from one of the microsatellite clusters, the two or four remaining microsatellite clusters form the carrion ecotype. There was slight sexual isolation and a reduction in F1-female offspring between inbreeding strains from the same microsatellite clusters and the same ecotypes. Strains from different microsatellite clusters are separated by a reduction in F1-female offspring. Ecotypes are separated only by ecological barriers. Conclusions This is the first demonstration of very early reproductive barriers within a sympatric population of Hymenoptera. It demonstrates that sexual and premating barriers can precede ecological separation. This indicates the complexity of ecotype formation and highlights the general need for more studies within homogenous populations for the identification of the earliest barriers in the speciation process. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01938-y.
Collapse
Affiliation(s)
- Pawel Malec
- Naturpark Steigerwald E.V., 91443, Scheinfeld, Germany
| | - Justus Weber
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Robin Böhmer
- Natural History Museum Bern, 3005, Bern, Switzerland
| | - Marc Fiebig
- Untere Naturschutzbehörde, Landratsamt Kitzingen, 97318, Kitzingen, Germany
| | | | - Carolin Rein
- Apicultural State Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Ronja Reinisch
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Maik Henrich
- Wildlife Ecology and Management, University of Freiburg, 79106, Freiburg, Germany
| | - Viktoria Polyvas
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Marie Pollmann
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Lea von Berg
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Christian König
- Akademie für Natur- und Umweltschutz Baden-Württemberg beim Ministerium für Umwelt, Klima und Energiewirtschaft, 70192, Stuttgart, Germany
| | - Johannes L M Steidle
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
4
|
Serrato-Capuchina A, Schwochert TD, Zhang S, Roy B, Peede D, Koppelman C, Matute DR. Pure species discriminate against hybrids in the Drosophila melanogaster species subgroup. Evolution 2021; 75:1753-1774. [PMID: 34043234 DOI: 10.1111/evo.14259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Introgression, the exchange of alleles between species, is a common event in nature. This transfer of alleles between species must happen through fertile hybrids. Characterizing the traits that cause defects in hybrids illuminates how and when gene flow is expected to occur. Inviability and sterility are extreme examples of fitness reductions but are not the only type of defects in hybrids. Some traits specific to hybrids are more subtle but are important to determine their fitness. In this report, we study whether F1 hybrids between two species pairs of Drosophila are as attractive as the parental species. We find that in both species pairs, the sexual attractiveness of the F1 hybrids is reduced and that pure species discriminate strongly against them. We also find that the cuticular hydrocarbon (CHC) profile of the female hybrids is intermediate between the parental species. Perfuming experiments show that modifying the CHC profile of the female hybrids to resemble pure species improves their chances of mating. Our results show that behavioral discrimination against hybrids might be an important component of the persistence of species that can hybridize.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Timothy D Schwochert
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Stephania Zhang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Baylee Roy
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - David Peede
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Caleigh Koppelman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Daniel R Matute
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| |
Collapse
|
5
|
Schwarz F, Wierzbicki F, Senti KA, Kofler R. Tirant Stealthily Invaded Natural Drosophila melanogaster Populations during the Last Century. Mol Biol Evol 2021; 38:1482-1497. [PMID: 33247725 PMCID: PMC8042734 DOI: 10.1093/molbev/msaa308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It was long thought that solely three different transposable elements (TEs)-the I-element, the P-element, and hobo-invaded natural Drosophila melanogaster populations within the last century. By sequencing the "living fossils" of Drosophila research, that is, D. melanogaster strains sampled from natural populations at different time points, we show that a fourth TE, Tirant, invaded D. melanogaster populations during the past century. Tirant likely spread in D. melanogaster populations around 1938, followed by the I-element, hobo, and, lastly, the P-element. In addition to the recent insertions of the canonical Tirant, D. melanogaster strains harbor degraded Tirant sequences in the heterochromatin which are likely due to an ancient invasion, likely predating the split of D. melanogaster and D. simulans. These degraded insertions produce distinct piRNAs that were unable to prevent the novel Tirant invasion. In contrast to the I-element, P-element, and hobo, we did not find that Tirant induces any hybrid dysgenesis symptoms. This absence of apparent phenotypic effects may explain the late discovery of the Tirant invasion. Recent Tirant insertions were found in all investigated natural populations. Populations from Tasmania carry distinct Tirant sequences, likely due to a founder effect. By investigating the TE composition of natural populations and strains sampled at different time points, insertion site polymorphisms, piRNAs, and phenotypic effects, we provide a comprehensive study of a natural TE invasion.
Collapse
Affiliation(s)
- Florian Schwarz
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | | | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
6
|
Matute DR, Cooper BS. Comparative studies on speciation: 30 years since Coyne and Orr. Evolution 2021; 75:764-778. [PMID: 33491225 PMCID: PMC8247902 DOI: 10.1111/evo.14181] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Understanding the processes of population divergence and speciation remains a core question in evolutionary biology. For nearly a hundred years evolutionary geneticists have characterized reproductive isolation (RI) mechanisms and specific barriers to gene flow required for species formation. The seminal work of Coyne and Orr provided the first comprehensive comparative analysis of speciation. By combining phylogenetic hypotheses and species range data with estimates of genetic divergence and multiple mechanisms of RI across Drosophila, Coyne and Orr's influential meta-analyses answered fundamental questions and motivated new analyses that continue to push the field forward today. Now 30 years later, we revisit the five questions addressed by Coyne and Orr, identifying results that remain well supported and others that seem less robust with new data. We then consider the future of speciation research, with emphasis on areas where novel methods and data motivate potential progress. While the literature remains biased towards Drosophila and other model systems, we are enthusiastic about the future of the field.
Collapse
Affiliation(s)
- Daniel R. Matute
- Biology DepartmentUniversity of North CarolinaChapel HillNorth Carolina27510
| | - Brandon S. Cooper
- Division of Biological SciencesUniversity of MontanaMissoulaMontana59812
| |
Collapse
|
7
|
Matute DR, Comeault AA, Earley E, Serrato-Capuchina A, Peede D, Monroy-Eklund A, Huang W, Jones CD, Mackay TFC, Coyne JA. Rapid and Predictable Evolution of Admixed Populations Between Two Drosophila Species Pairs. Genetics 2020; 214:211-230. [PMID: 31767631 PMCID: PMC6944414 DOI: 10.1534/genetics.119.302685] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
The consequences of hybridization are varied, ranging from the origin of new lineages, introgression of some genes between species, to the extinction of one of the hybridizing species. We generated replicate admixed populations between two pairs of sister species of Drosophila: D. simulans and D. mauritiana; and D. yakuba and D. santomea Each pair consisted of a continental species and an island endemic. The admixed populations were maintained by random mating in discrete generations for over 20 generations. We assessed morphological, behavioral, and fitness-related traits from each replicate population periodically, and sequenced genomic DNA from the populations at generation 20. For both pairs of species, species-specific traits and their genomes regressed to those of the continental species. A few alleles from the island species persisted, but they tended to be proportionally rare among all sites in the genome and were rarely fixed within the populations. This paucity of alleles from the island species was particularly pronounced on the X-chromosome. These results indicate that nearly all foreign genes were quickly eliminated after hybridization and that selection against the minor species genome might be similar across experimental replicates.
Collapse
Affiliation(s)
- Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Aaron A Comeault
- School of Natural Sciences, Bangor University, Wales, UK LL57 2EN
| | - Eric Earley
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | | | - David Peede
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Anaïs Monroy-Eklund
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Wen Huang
- Program in Genetics and Department of Biological Science, North Carolina State University, Raleigh, North Carolina 27695
| | - Corbin D Jones
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Trudy F C Mackay
- Program in Genetics and Department of Biological Science, North Carolina State University, Raleigh, North Carolina 27695
| | - Jerry A Coyne
- Ecology and Evolution, University of Chicago, Illinois 60637
| |
Collapse
|
8
|
Janicke T, Marie-Orleach L, Aubier TG, Perrier C, Morrow EH. Assortative Mating in Animals and Its Role for Speciation. Am Nat 2019; 194:865-875. [PMID: 31738105 DOI: 10.1086/705825] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Evolutionary theory predicts that positive assortative mating-the tendency of similar individuals to mate with each other-plays a key role for speciation by generating reproductive isolation between diverging populations. However, comprehensive tests for an effect of assortative mating on species richness at the macroevolutionary scale are lacking. We used a meta-analytic approach to test the hypothesis that the strength of assortative mating within populations is positively related to species richness across a broad range of animal taxa. Specifically, we ran a phylogenetically independent meta-analysis using an extensive database of 1,447 effect sizes for the strength of assortative mating, encompassing 307 species from 130 families and 14 classes. Our results suggest that there is no relationship between the strength of assortative mating and species richness across and within major taxonomic groups and trait categories. Moreover, our analysis confirms an earlier finding that animals typically mate assortatively (global Pearson correlation coefficient: r=0.36; 95% confidence interval: 0.19-0.52) when accounting for phylogenetic nonindependence. We argue that future advances will rely on a better understanding of the evolutionary causes and consequences of the observed intra- and interspecific variation in the strength of assortative mating.
Collapse
|
9
|
Ginsberg PS, Humphreys DP, Dyer KA. Ongoing hybridization obscures phylogenetic relationships in the Drosophila subquinaria species complex. J Evol Biol 2019; 32:1093-1105. [PMID: 31385638 DOI: 10.1111/jeb.13512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022]
Abstract
Inferring evolutionary relationships among recently diverged lineages is necessary to understand how isolating barriers produce independent lineages. Here, we investigate the phylogenetic relationships between three incompletely isolated and closely related mushroom-feeding Drosophila species. These species form the Drosophila subquinaria species complex and consist of one Eurasian species (D. transversa) and two widespread North American species (D. subquinaria and D. recens) that are sympatric in central Canada. Although patterns of pre- and post-mating isolation among these species are well characterized, previous work on their phylogenetic relationships is limited and conflicting. In this study, we generated a multi-locus data set of 29 loci from across the genome sequenced in a population sample from each species, and then, we inferred species relationships and patterns of introgression. We find strong statistical support that D. subquinaria is paraphyletic, showing that samples from the geographic region sympatric with D. recens are most closely related to D. recens, whereas samples from the geographic region allopatric with D. recens are most closely related to D. transversa. We present several lines of evidence that both incomplete lineage sorting and gene flow are causing phylogenetic discordance. We suggest that ongoing gene flow primarily from D. recens into D. subquinaria in the sympatric part of their ranges causes phylogenetic uncertainty in the evolutionary history of these species. Our results highlight how population genetic data can be used to disentangle the sources of phylogenetic discordance among closely related species.
Collapse
Affiliation(s)
- Paul S Ginsberg
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Langdon QK, Peris D, Kyle B, Hittinger CT. sppIDer: A Species Identification Tool to Investigate Hybrid Genomes with High-Throughput Sequencing. Mol Biol Evol 2019; 35:2835-2849. [PMID: 30184140 PMCID: PMC6231485 DOI: 10.1093/molbev/msy166] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The genomics era has expanded our knowledge about the diversity of the living world, yet harnessing high-throughput sequencing data to investigate alternative evolutionary trajectories, such as hybridization, is still challenging. Here we present sppIDer, a pipeline for the characterization of interspecies hybrids and pure species, that illuminates the complete composition of genomes. sppIDer maps short-read sequencing data to a combination genome built from reference genomes of several species of interest and assesses the genomic contribution and relative ploidy of each parental species, producing a series of colorful graphical outputs ready for publication. As a proof-of-concept, we use the genus Saccharomyces to detect and visualize both interspecies hybrids and pure strains, even with missing parental reference genomes. Through simulation, we show that sppIDer is robust to variable reference genome qualities and performs well with low-coverage data. We further demonstrate the power of this approach in plants, animals, and other fungi. sppIDer is robust to many different inputs and provides visually intuitive insight into genome composition that enables the rapid identification of species and their interspecies hybrids. sppIDer exists as a Docker image, which is a reusable, reproducible, transparent, and simple-to-run package that automates the pipeline and installation of the required dependencies (https://github.com/GLBRC/sppIDer; last accessed September 6, 2018).
Collapse
Affiliation(s)
- Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI
| | - David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| | - Brian Kyle
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
11
|
Genetic divergence and the number of hybridizing species affect the path to homoploid hybrid speciation. Proc Natl Acad Sci U S A 2018; 115:9761-9766. [PMID: 30209213 PMCID: PMC6166845 DOI: 10.1073/pnas.1809685115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hybridization can promote speciation, and examples of putative hybrid species have now been identified across the tree of life. However, we still know little about the conditions that are most conducive to hybrid speciation. We have used experimental evolution in fruit flies (Drosophila) to show that both the genetic difference between hybridizing species and the number of hybridizing species affect the probability that hybrids evolve reproductive isolation from their parental species. Our results provide a systematic test of factors that affect homoploid hybrid speciation. Biologists will now be able to test the predictions that our experiments outline in naturally hybridizing species. These types of data hold the potential to greatly increase our understanding of hybridization’s role in generating biodiversity. Hybridization is often maladaptive and in some instances has led to the loss of biodiversity. However, hybridization can also promote speciation, such as during homoploid hybrid speciation, thereby generating biodiversity. Despite examples of homoploid hybrid species, the importance of hybridization as a speciation mechanism is still widely debated, and we lack a general understanding of the conditions most likely to generate homoploid hybrid species. Here we show that the level of genetic divergence between hybridizing species has a large effect on the probability that their hybrids evolve reproductive isolation. We find that populations of hybrids formed by parental species with intermediate levels of divergence were more likely to mate assortatively, and discriminate against their parental species, than those generated from weakly or strongly diverged parental species. Reproductive isolation was also found between hybrid populations, suggesting differential sorting of parental traits across populations. Finally, hybrid populations derived from three species were more likely to evolve reproductive isolation than those derived from two species, supporting arguments that hybridization-supplied genetic diversity can lead to the evolution of novel “adaptive systems” and promote speciation. Our results illustrate when we expect hybridization and admixture to promote hybrid speciation. Whether homoploid hybrid speciation is a common speciation mechanism in general remains an outstanding empirical question.
Collapse
|
12
|
Cooper BS, Sedghifar A, Nash WT, Comeault AA, Matute DR. A Maladaptive Combination of Traits Contributes to the Maintenance of a Drosophila Hybrid Zone. Curr Biol 2018; 28:2940-2947.e6. [PMID: 30174184 DOI: 10.1016/j.cub.2018.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/24/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Drosophila teissieri and D. yakuba diverged approximately 3 mya and are thought to share a large, ancestral, African range [1-3]. These species now co-occur in parts of continental Africa and in west Africa on the island of Bioko [1, 4]. While D. yakuba is a human commensal, D. teissieri seems to be associated with Parinari fruits, restricting its range to forests [4-6]. Genome data indicate introgression, despite no evidence of contemporary hybridization. Here we report the discovery of D. yakuba-D. teissieri hybrids at the interface of secondary forests and disturbed, open habitats on Bioko. We demonstrate that hybrids are the F1 progeny of D. yakuba females and D. teissieri males. At high temperatures like those found on Bioko, D. teissieri females are generally less receptive to mating, and in combination with temperature effects on egg lay and egg-to-adult viability, this decreases the potential for gene flow between female D. teissieri and male D. yakuba relative to the reciprocal cross. Field and laboratory experiments demonstrate that F1 hybrids have a maladaptive combination of D. yakuba behavior and D. teissieri physiology, generating additional barriers to gene flow. Nevertheless, analysis of introgressed and non-introgressed regions of the genome indicate that, while rare, gene flow is relatively recent. Our observations identify precise intrinsic and extrinsic factors that, along with hybrid male sterility, limit gene flow and maintain these species. These data contribute to a growing body of literature that suggests the Gulf of Guinea may be a hotspot for hybridization.
Collapse
Affiliation(s)
- Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Alisa Sedghifar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - W Thurston Nash
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Aaron A Comeault
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Turissini DA, McGirr JA, Patel SS, David JR, Matute DR. The Rate of Evolution of Postmating-Prezygotic Reproductive Isolation in Drosophila. Mol Biol Evol 2018; 35:312-334. [PMID: 29048573 PMCID: PMC5850467 DOI: 10.1093/molbev/msx271] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reproductive isolation is an intrinsic aspect of species formation. For that reason, the identification of the precise isolating traits, and the rates at which they evolve, is crucial to understanding how species originate and persist. Previous work has measured the rates of evolution of prezygotic and postzygotic barriers to gene flow, yet no systematic analysis has studied the rates of evolution of postmating-prezygotic (PMPZ) barriers. We measured the magnitude of two barriers to gene flow that act after mating occurs but before fertilization. We also measured the magnitude of a premating barrier (female mating rate in nonchoice experiments) and two postzygotic barriers (hybrid inviability and hybrid sterility) for all pairwise crosses of all nine known extant species within the melanogaster subgroup. Our results indicate that PMPZ isolation evolves faster than hybrid inviability but slower than premating isolation. Next, we partition postzygotic isolation into different components and find that, as expected, hybrid sterility evolves faster than hybrid inviability. These results lend support for the hypothesis that, in Drosophila, reproductive isolation mechanisms (RIMs) that act early in reproduction (or in development) tend to evolve faster than those that act later in the reproductive cycle. Finally, we tested whether there was evidence for reinforcing selection at any RIM. We found no evidence for generalized evolution of reproductive isolation via reinforcement which indicates that there is no pervasive evidence of this evolutionary process. Our results indicate that PMPZ RIMs might have important evolutionary consequences in initiating speciation and in the persistence of new species.
Collapse
Affiliation(s)
- David A Turissini
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | - Joseph A McGirr
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | - Sonali S Patel
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | - Jean R David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE) CNRS, IRD, Univ. Paris-sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Systématique, Evolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, rue Buffon, 75005, Paris, France
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
14
|
Abstract
The emergence of new species is driven by the establishment of mechanisms that limit gene flow between populations. A major challenge is reconciling the theoretical and empirical importance of assortative mating in speciation with the ease with which it can fail. Swordtail fish have an evolutionary history of hybridization and fragile prezygotic isolating mechanisms. Hybridization between two swordtail species likely arose via pollution-mediated breakdown of assortative mating in the 1990s. Here we track unusual genetic patterns in one hybrid population over the past decade using whole-genome sequencing. Hybrids in this population formed separate genetic clusters by 2003, and maintained near-perfect isolation over 25 generations through strong ancestry-assortative mating. However, we also find that assortative mating was plastic, varying in strength over time and disappearing under manipulated conditions. In addition, a nearby population did not show evidence of assortative mating. Thus, our findings suggest that assortative mating may constitute an intermittent and unpredictable barrier to gene flow, but that variation in its strength can have a major effect on how hybrid populations evolve. Understanding how reproductive isolation varies across populations and through time is critical to understanding speciation and hybridization, as well as their dependence on disturbance.
Collapse
|
15
|
Turissini DA, Matute DR. Fine scale mapping of genomic introgressions within the Drosophila yakuba clade. PLoS Genet 2017; 13:e1006971. [PMID: 28873409 PMCID: PMC5600410 DOI: 10.1371/journal.pgen.1006971] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/15/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022] Open
Abstract
The process of speciation involves populations diverging over time until they are genetically and reproductively isolated. Hybridization between nascent species was long thought to directly oppose speciation. However, the amount of interspecific genetic exchange (introgression) mediated by hybridization remains largely unknown, although recent progress in genome sequencing has made measuring introgression more tractable. A natural place to look for individuals with admixed ancestry (indicative of introgression) is in regions where species co-occur. In west Africa, D. santomea and D. yakuba hybridize on the island of São Tomé, while D. yakuba and D. teissieri hybridize on the nearby island of Bioko. In this report, we quantify the genomic extent of introgression between the three species of the Drosophila yakuba clade (D. yakuba, D. santomea), D. teissieri). We sequenced the genomes of 86 individuals from all three species. We also developed and applied a new statistical framework, using a hidden Markov approach, to identify introgression. We found that introgression has occurred between both species pairs but most introgressed segments are small (on the order of a few kilobases). After ruling out the retention of ancestral polymorphism as an explanation for these similar regions, we find that the sizes of introgressed haplotypes indicate that genetic exchange is not recent (>1,000 generations ago). We additionally show that in both cases, introgression was rarer on X chromosomes than on autosomes which is consistent with sex chromosomes playing a large role in reproductive isolation. Even though the two species pairs have stable contemporary hybrid zones, providing the opportunity for ongoing gene flow, our results indicate that genetic exchange between these species is currently rare.
Collapse
Affiliation(s)
- David A. Turissini
- Biology Department, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel R. Matute
- Biology Department, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
16
|
Turissini DA, Comeault AA, Liu G, Lee YCG, Matute DR. The ability of Drosophila hybrids to locate food declines with parental divergence. Evolution 2017; 71:960-973. [PMID: 28085186 DOI: 10.1111/evo.13180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/15/2016] [Accepted: 12/30/2016] [Indexed: 12/29/2022]
Abstract
Hybrids are generally less fit than their parental species, and the mechanisms underlying their fitness reductions can manifest through different traits. For example, hybrids can have physiological, behavioral, or ecological defects, and these defects can generate reproductive isolation between their parental species. However, the rate that mechanisms of postzygotic isolation other than hybrid sterility and inviability evolve has remained largely uninvestigated, despite isolated studies showing that behavioral defects in hybrids are not only possible but might be widespread. Here, we study a fundamental animal behavior-the ability of individuals to find food-and test the rate at which it breaks down in hybrids. We measured the ability of hybrids from 94 pairs of Drosophila species to find food and show that this ability decreases with increasing genetic divergence between the parental species and that male hybrids are more strongly (and negatively) affected than females. Our findings quantify the rate that hybrid dysfunction evolves across the diverse radiation of Drosophila and highlights the need for future investigations of the genetic and neurological mechanisms that affect a hybrid's ability to find a suitable substrate on which to feed and breed.
Collapse
Affiliation(s)
- David A Turissini
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Aaron A Comeault
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Geoffrey Liu
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Yuh Chwen G Lee
- Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Miller CJJ, Matute DR. The Effect of Temperature on Drosophila Hybrid Fitness. G3 (BETHESDA, MD.) 2017; 7:377-385. [PMID: 27913636 PMCID: PMC5295587 DOI: 10.1534/g3.116.034926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/09/2016] [Indexed: 01/05/2023]
Abstract
Mechanisms of reproductive isolation inhibit gene flow between species and can be broadly sorted into two categories: prezygotic and postzygotic. While comparative studies suggest that prezygotic barriers tend to evolve first, postzygotic barriers are crucial for maintaining species boundaries and impeding gene flow that might otherwise cause incipient species to merge. Most, but not all, postzygotic barriers result from genetic incompatibilities between two or more loci from different species, and occur due to divergent evolution in allopatry. Hybrid defects result from improper allelic interactions between these loci. While some postzygotic barriers are environmentally-independent, the magnitude of others has been shown to vary in penetrance depending on environmental factors. We crossed Drosophila melanogaster mutants to two other species, D. simulans and D. santomea, and collected fitness data of the hybrids at two different temperatures. Our goal was to examine the effect of temperature on recessive incompatibility alleles in their genomes. We found that temperature has a stronger effect on the penetrance of recessive incompatibility alleles in the D. simulans genome than on those in the D. santomea genome. These results suggest that the penetrance of hybrid incompatibilities can be strongly affected by environmental context, and that the magnitude of such gene-by-environment interactions can be contingent on the genotype of the hybrid.
Collapse
Affiliation(s)
- Charles J J Miller
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27510
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27510
| |
Collapse
|
18
|
Yassin A. Drosophila yakuba mayottensis, a new model for the study of incipient ecological speciation. Fly (Austin) 2017; 11:37-45. [PMID: 27560369 DOI: 10.1080/19336934.2016.1221550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A full understanding of how ecological factors drive the fixation of genetic changes during speciation is obscured by the lack of appropriate models with clear natural history and powerful genetic toolkits. In a recent study, we described an early stage of ecological speciation in a population of the generalist species Drosophila yakuba (melanogaster subgroup) on the island of Mayotte (Indian Ocean). On this island, flies are strongly associated with the toxic fruits of noni (Morinda citrifolia) and show a partial degree of pre-zygotic reproductive isolation. Here, I mine the nuclear and mitochondrial genomes and provide a full morphological description of this population. Only 29 nuclear sites (< 4 × 10-7 of the genome) are fixed in this population and absent from 3 mainland populations and the closest relative D. santomea, but no mitochondrial or morphological character distinguish Mayotte flies from the mainland. This result indicates that physiological and behavioral traits may evolve faster than morphology at the early stages of speciation. Based on these differences, the Mayotte population is designated as a new subspecies, Drosophila yakuba mayottensis subsp. nov., and its strong potential in understanding the genetics of speciation and plant-insect interactions is discussed.
Collapse
Affiliation(s)
- Amir Yassin
- a Laboratory of Genetics , University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
19
|
Cooper BS, Ginsberg PS, Turelli M, Matute DR. Wolbachia in the Drosophila yakuba Complex: Pervasive Frequency Variation and Weak Cytoplasmic Incompatibility, but No Apparent Effect on Reproductive Isolation. Genetics 2017; 205:333-351. [PMID: 27821433 PMCID: PMC5223512 DOI: 10.1534/genetics.116.196238] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
Three hybridizing species-the clade [(Drosophila yakuba, D. santomea), D. teissieri]-comprise the yakuba complex in the D. melanogaster subgroup. Their ranges overlap on Bioko and São Tomé, islands off west Africa. All three species are infected with Wolbachia-maternally inherited, endosymbiotic bacteria, best known for manipulating host reproduction to favor infected females. Previous analyses reported no cytoplasmic incompatibility (CI) in these species. However, we discovered that Wolbachia from each species cause intraspecific and interspecific CI. In D teissieri, analyses of F1 and backcross genotypes show that both host genotype and Wolbachia variation modulate CI intensity. Wolbachia-infected females seem largely protected from intraspecific and interspecific CI, irrespective of Wolbachia and host genotypes. Wolbachia do not affect host mating behavior or female fecundity, within or between species. The latter suggests little apparent effect of Wolbachia on premating or gametic reproductive isolation (RI) between host species. In nature, Wolbachia frequencies varied spatially for D. yakuba in 2009, with 76% (N = 155) infected on São Tomé, and only 3% (N = 36) infected on Bioko; frequencies also varied temporally in D. yakuba and D. santomea on São Tomé between 2009 and 2015. These temporal frequency fluctuations could generate asymmetries in interspecific mating success, and contribute to postzygotic RI. However, the fluctuations in Wolbachia frequencies that we observe also suggest that asymmetries are unlikely to persist. Finally, we address theoretical questions that our empirical findings raise about Wolbachia persistence when conditions fluctuate, and about the stable coexistence of Wolbachia and host variants that modulate Wolbachia effects.
Collapse
Affiliation(s)
- Brandon S Cooper
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California 95616
| | - Paul S Ginsberg
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California 95616
| | - Michael Turelli
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California 95616
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27510
| |
Collapse
|
20
|
Recurrent specialization on a toxic fruit in an island Drosophila population. Proc Natl Acad Sci U S A 2016; 113:4771-6. [PMID: 27044093 DOI: 10.1073/pnas.1522559113] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recurrent specialization on similar host plants offers a unique opportunity to unravel the evolutionary and genetic mechanisms underlying dietary shifts. Recent studies have focused on ecological races belonging to the same species, but it is hard in many cases to untangle the role of adaptive introgression versus distinct mutations in facilitating recurrent evolution. We discovered on the island of Mayotte a population of the generalist fly Drosophila yakuba that is strictly associated with noni (Morinda citrifolia). This case strongly resembles Drosophila sechellia, a genetically isolated insular relative of D. yakuba whose intensely studied specialization on toxic noni fruits has always been considered a unique event in insect evolution. Experiments revealed that unlike mainland D. yakuba strains, Mayotte flies showed strong olfactory attraction and significant toxin tolerance to noni. Island females strongly discriminated against mainland males, suggesting that dietary adaptation has been accompanied by partial reproductive isolation. Population genomic analysis indicated a recent colonization (∼29 kya), at a time when year-round noni fruits may have presented a predictable resource on the small island, with ongoing migration after colonization. This relatively recent time scale allowed us to search for putatively adaptive loci based on genetic variation. Strong signals of genetic differentiation were found for several detoxification genes, including a major toxin tolerance locus in D. sechellia Our results suggest that recurrent evolution on a toxic resource can involve similar historical events and common genetic bases, and they establish an important genetic system for the study of early stages of ecological specialization and speciation.
Collapse
|
21
|
Yassin A, David JR. Within-species reproductive costs affect the asymmetry of satyrization in Drosophila. J Evol Biol 2015; 29:455-60. [PMID: 26538290 DOI: 10.1111/jeb.12784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 02/01/2023]
Abstract
Understanding how species interactions influence their distribution and evolution is a fundamental question in evolutionary biology. Theory suggests that asymmetric reproductive interference, in which one species induces higher reproductive costs on another species, may be more important in delimiting species boundaries than interspecific competition over resources. However, the underlying mechanisms of such asymmetry remain unclear. Here, we test whether differences in within-species reproductive costs determine the between-species asymmetry of costs using three allopatric Drosophila species belonging to the melanogaster subgroup. Our results support this hypothesis, especially in a pair of insular species. Males of one species that induce costs to their conspecific females led to a 5-fold increase of heterospecific females mortality with dead flies bearing spectacular large melanized wounds on their genitalia. Males of the other species were harmful neither to their conspecific nor heterospecific females. Comparative studies of within-species reproductive costs may therefore be a valuable tool for predicting between-species interactions and community structures.
Collapse
Affiliation(s)
- A Yassin
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - J R David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), CNRS, IRD, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France.,CNRS UMR7205, Institut de Systématique, Evolution et Biodiversité (ISyEB), Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|