1
|
Bodu M, Hitit M, Memili E. Harnessing the value of fertility biomarkers in bull sperm for buck sperm. Anim Reprod Sci 2025; 272:107643. [PMID: 39577268 DOI: 10.1016/j.anireprosci.2024.107643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Efficient and sustainable reproduction and production of cattle and goats are vitally important for ensuring global food security. There is a need for potent biomarkers to accurately evaluate semen quality and predict male fertility. Although there is a reasonable set of biomarkers identified in bull sperm, there is a significant lack of such information in buck sperm along with a lack of transfer of proven technologies in goat reproductive biotechnology. These gaps are important problems because they are preventing advances in fundamental andrology and applied science of goat production. Both cattle and goats are ruminants, and they share significant similarities in their genetics and physiology although subtle differences do exist. This review harnesses the power of utilizing the knowledge developed in bull sperm to generate information on buck sperm fertility markers. These include genomic, functional genomic, epigenomic fertility markers. Revealing molecular underpinnings of such similarity and diversity using systems biology is expected to advance both fundamental and applied andrology of livestock and endangered species.
Collapse
Affiliation(s)
- Mustafa Bodu
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States; Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye.
| | - Mustafa Hitit
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States.
| | - Erdogan Memili
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States.
| |
Collapse
|
2
|
Degueldre F, Aron S. Sperm competition increases sperm production and quality in Cataglyphis desert ants. Proc Biol Sci 2023; 290:20230216. [PMID: 36987648 PMCID: PMC10050944 DOI: 10.1098/rspb.2023.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Sperm competition is a pervasive evolutionary force that shapes sperm traits to maximize fertilization success. Indeed, it has been shown to increase sperm production in both vertebrates and invertebrates. However, sperm production is energetically costly, which may result in trade-offs among sperm traits. In eusocial hymenopterans, such as ants, mating dynamics impose unique selective pressures on ejaculate. Males are sperm limited: they enter adulthood with a fixed amount of sperm that will not be renewed. We explored whether sperm competition intensity was associated with sperm quantity and quality (i.e. sperm viability and DNA fragmentation) in nine Cataglyphis desert ants. Our results provide phylogenetically robust evidence that sperm competition is positively correlated with sperm production and sperm viability. However, it was unrelated to sperm DNA integrity, indicating the absence of a trade-off involving this trait. These findings underscore that sperm competition may strongly mould sperm traits and drive reproductive performance in eusocial Hymenoptera.
Collapse
Affiliation(s)
- Félicien Degueldre
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Brussels B-1050, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Brussels B-1050, Belgium
| |
Collapse
|
3
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
4
|
Reuland C, Simmons LW, Lüpold S, Fitzpatrick JL. Weapons Evolve Faster Than Sperm in Bovids and Cervids. Cells 2021; 10:cells10051062. [PMID: 33947050 PMCID: PMC8145498 DOI: 10.3390/cells10051062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
In polyandrous species, males face reproductive competition both before and after mating. Sexual selection thus shapes the evolution of both pre- and postcopulatory traits, creating competing demands on resource allocation to different reproductive episodes. Traits subject to strong selection exhibit accelerated rates of phenotypic divergence, and examining evolutionary rates may inform us about the relative importance and potential fitness consequences of investing in traits under either pre- or postcopulatory sexual selection. Here, we used a comparative approach to assess evolutionary rates of key competitive traits in two artiodactyl families, bovids (family Bovidae) and cervids (family Cervidae), where male–male competition can occur before and after mating. We quantified and compared evolutionary rates of male weaponry (horns and antlers), body size/mass, testes mass, and sperm morphometrics. We found that weapons evolve faster than sperm dimensions. In contrast, testes and body mass evolve at similar rates. These results suggest strong, but differential, selection on both pre- and postcopulatory traits in bovids and cervids. Furthermore, we documented distinct evolutionary rates among different sperm components, with sperm head and midpiece evolving faster than the flagellum. Finally, we demonstrate that, despite considerable differences in weapon development between bovids and cervids, the overall evolutionary patterns between these families were broadly consistent.
Collapse
Affiliation(s)
- Charel Reuland
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden;
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - John L. Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden;
- Correspondence:
| |
Collapse
|
5
|
Giehr J, Wallner J, Krüger T, Heinze J. Body size and sperm quality in queen- And worker-produced ant males. J Evol Biol 2020; 33:842-849. [PMID: 32162367 DOI: 10.1111/jeb.13616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 03/05/2020] [Indexed: 01/18/2023]
Abstract
Workers of many species of social Hymenoptera have functional ovaries and are capable of laying haploid, unfertilized eggs, at least in the absence of a queen. Except for honeybees, it remains largely unknown whether worker-produced males have the same quality as queen-produced males and whether workers benefit in direct fitness by producing their sons. Previous studies in the monogynous ant Temnothorax crassispinus revealed that a high proportion of males in natural and laboratory colonies are worker offspring. Here, we compare longevity, body size, sperm length and sperm viability between queen- and worker-produced males. We either split queenright colonies into queenright and queenless halves or removed the queen from a fraction of the queenright colonies and then examined the newly produced males. Male quality traits varied considerably among colonies but differed only slightly between queen- and worker-produced males. Worker-produced males outnumbered queen-produced males and also had a longer lifespan, but under certain rearing conditions sperm from queen-produced males had a higher viability.
Collapse
Affiliation(s)
- Julia Giehr
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Jennifer Wallner
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Theresa Krüger
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Liao WB, Zhong MJ, Lüpold S. Sperm quality and quantity evolve through different selective processes in the Phasianidae. Sci Rep 2019; 9:19278. [PMID: 31848414 PMCID: PMC6917726 DOI: 10.1038/s41598-019-55822-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/03/2019] [Indexed: 11/09/2022] Open
Abstract
Sperm competition is often considered the primary selective force underlying the rapid and diversifying evolution of ejaculate traits. Yet, several recent studies have drawn attention to other forms of selection with the potential of exceeding the effects of sperm competition. Since ejaculates are complex, multivariate traits, it seems plausible that different ejaculate components vary in their responses to different selective pressures. Such information, however, is generally lacking as individual ejaculate traits tend to be studied in isolation. Here, we studied the macroevolutionary patterns of ejaculate volume, sperm number, sperm length and the proportion of viable normal sperm in response to varying levels of sperm competition, body size and the duration of female sperm storage in pheasants and allies (Phasianidae). Ejaculate volume, sperm number and sperm viability were all relatively higher in polygamous than in monogamous mating systems. However, whereas ejaculate volume additionally covaried with body size, sperm number instead increased with the female sperm-storage duration, in conjunction with a decrease in sperm length. Overall, our results revealed important details on how different forms of selection can jointly shape ejaculates as complex, composite traits.
Collapse
Affiliation(s)
- Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China. .,Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, 637009, China. .,Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China.
| | - Mao Jun Zhong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China.,Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, 637009, China.,Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, 8057, Zurich, Switzerland
| |
Collapse
|
7
|
Tourmente M, Archer CR, Hosken DJ. Complex interactions between sperm viability and female fertility. Sci Rep 2019; 9:15366. [PMID: 31653962 PMCID: PMC6814814 DOI: 10.1038/s41598-019-51672-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/03/2019] [Indexed: 12/03/2022] Open
Abstract
Sperm viability is a major male fitness component, with higher sperm viability associated with enhanced sperm competitiveness. While many studies have focussed on sperm viability from the male fitness standpoint, its impact on female fitness is less clear. Here we used a panel of 32 isogenic Drosophila simulans lines to test for genetic variation in sperm viability (percentage of viable cells). We then tested whether sperm viability affected female fitness by mating females to males from low or high sperm viability genotypes. We found significant variation in sperm viability among genotypes, and consistent with this, sperm viability was highly repeatable within genotypes. Additionally, females mated to high sperm viability males laid more eggs in the first seven hours after mating, and produced more offspring in total. However, the early increase in oviposition did not result in more offspring in the 8 hours following mating, suggesting that mating with high sperm-viability genotypes leads to egg wastage for females shortly after copulation. Although mating with high sperm-viability males resulted in higher female fitness in the long term, high quality ejaculates would result in a short-term female fitness penalty, or at least lower realised fitness, potentially generating sexual conflict over optimal sperm viability.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom.
| | - C Ruth Archer
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - David J Hosken
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
8
|
Roldan ERS. Sperm competition and the evolution of sperm form and function in mammals. Reprod Domest Anim 2019; 54 Suppl 4:14-21. [DOI: 10.1111/rda.13552] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology; Museo Nacional de Ciencias Naturales (CSIC); Madrid Spain
| |
Collapse
|
9
|
Dávila F, Aron S. Protein restriction affects sperm number but not sperm viability in male ants. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:71-76. [PMID: 28559110 DOI: 10.1016/j.jinsphys.2017.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 05/09/2023]
Abstract
Sperm cells are costly to produce; diet should therefore affect sperm number and/or viability. In non-social insects and vertebrates, there is compelling evidence that diet influences sperm production. Less is known about this relationship in eusocial hymenopterans (all ants and some bees and wasps), whose mating systems impose unique selective pressures on sperm production. Males face physiological constraints: they acquire all of the resources they will use in future reproductive efforts as larvae and emerge from the pupal stage with a fixed, non-renewable amount of sperm. Furthermore, males die shortly after copulation, but their genetic material persists for years since their spermatozoa are stored in their mates' spermathecae. We examined the effects of protein restriction during larval development on sperm number and viability in the Argentine ant Linepithema humile. We also looked at its impact on male development, adult mass, and adult fluctuating asymmetry. We found that protein restriction during larval development significantly reduced sperm production, but not sperm viability. It did not affect the number of males reared, male mass, or male asymmetry. However, males from protein-restricted nests developed much more slowly than males from protein-supplemented nests. These results suggest investing in sperm quality and in somatic growth, which enhances a male's ability to disperse and find a mate, are critical to successful male reproduction.
Collapse
Affiliation(s)
- Francisco Dávila
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/12, 1050 Brussels, Belgium.
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/12, 1050 Brussels, Belgium
| |
Collapse
|
10
|
Maroto-Morales A, García-Álvarez O, Ramón M, Martínez-Pastor F, Fernández-Santos MR, Soler AJ, Garde JJ. Current status and potential of morphometric sperm analysis. Asian J Androl 2017; 18:863-870. [PMID: 27678465 PMCID: PMC5109877 DOI: 10.4103/1008-682x.187581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The spermatozoon is the most diverse cell type known and this diversity is considered to reflect differences in sperm function. How the diversity in sperm morphology arose during speciation and what role the different specializations play in sperm function, however, remain incompletely characterized. This work reviews the hypotheses proposed to explain sperm morphological evolution, with a focus on some aspects of sperm morphometric evaluation; the ability of morphometrics to predict sperm cryoresistance and male fertility is also discussed. For this, the evaluation of patterns of change of sperm head morphometry throughout a process, instead of the study of the morphometric characteristics of the sperm head at different stages, allows a better identification of the males with different sperm cryoconservation ability. These new approaches, together with more studies employing a greater number of individuals, are needed to obtain novel results concerning the role of sperm morphometry on sperm function. Future studies should aim at understanding the causes of sperm design diversity and the mechanisms that generate them, giving increased attention to other sperm structures besides the sperm head. The implementation of scientific and technological advances could benefit the simultaneous examination of sperm phenotype and sperm function, demonstrating that sperm morphometry could be a useful tool for sperm assessment.
Collapse
Affiliation(s)
| | - Olga García-Álvarez
- SaBio IREC (CSIC - UCLM - JCCM), Albacete, Spain.,Biomedical Center, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Manuel Ramón
- Regional Center of Animal Selection and Reproduction (CERSYRA) JCCM, Valdepeñas, Spain
| | - Felipe Martínez-Pastor
- Institute for Animal Health and Cattle Development, University of León, León, Spain.,Department of Molecular Biology, University of León, León, Spain
| | | | | | | |
Collapse
|
11
|
Lüpold S, Fitzpatrick JL. Sperm number trumps sperm size in mammalian ejaculate evolution. Proc Biol Sci 2016; 282:rspb.2015.2122. [PMID: 26582027 DOI: 10.1098/rspb.2015.2122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Postcopulatory sexual selection is widely accepted to underlie the extraordinary diversification of sperm morphology. However, why does it favour longer sperm in some taxa but shorter in others? Two recent hypotheses addressing this discrepancy offered contradictory explanations. Under the sperm dilution hypothesis, selection via sperm density in the female reproductive tract favours more but smaller sperm in large, but the reverse in small, species. Conversely, the metabolic constraint hypothesis maintains that ejaculates respond positively to selection in small endothermic animals with high metabolic rates, whereas low metabolic rates constrain their evolution in large species. Here, we resolve this debate by capitalizing on the substantial variation in mammalian body size and reproductive physiology. Evolutionary responses shifted from sperm length to number with increasing mammalian body size, thus supporting the sperm dilution hypothesis. Our findings demonstrate that body-size-mediated trade-offs between sperm size and number can explain the extreme diversification in sperm phenotypes.
Collapse
Affiliation(s)
- Stefan Lüpold
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - John L Fitzpatrick
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
12
|
|
13
|
Lüpold S, Simmons LW, Tomkins JL, Fitzpatrick JL. No evidence for a trade-off between sperm length and male premating weaponry. J Evol Biol 2015; 28:2187-95. [PMID: 26332435 DOI: 10.1111/jeb.12742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 01/15/2023]
Abstract
Male ornaments and armaments that mediate success in mate acquisition and ejaculate traits influencing competitive fertilization success are under intense sexual selection. However, relative investment in these pre- and post-copulatory traits depends on the relative importance of either selection episode and on the energetic costs and fitness gains of investing in these traits. Theoretical and empirical work has improved our understanding of how precopulatory sexual traits and investments in sperm production covary in this context. It has recently also been suggested that male weapon size may trade off with sperm length as another post-copulatory sexual trait, but the theoretical framework for this suggestion remains unclear. We evaluated the relationship between precopulatory armaments and sperm length, previously reported in ungulates, in five taxa as well as meta-analytically. Within and between taxa, we found no evidence for a negative or positive relationship between sperm length and male traits that are important in male-male contest competition. It is important to consider pre- and post-copulatory sexual selection together to understand fitness, and to study investments in different reproductive traits jointly rather than separately. A trade-off between pre- and post-copulatory sexual traits may not manifest itself in sperm length but rather in sperm number or function. Particularly in large-bodied taxa such as ungulates, sperm number is more variable interspecifically and likely to be under more intense selection than sperm length. We discuss our and the previous results in this context.
Collapse
Affiliation(s)
- S Lüpold
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK.,Department of Biology, Life Sciences Complex, Syracuse University, Syracuse, NY, USA
| | - L W Simmons
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Crawley, WA, Australia
| | - J L Tomkins
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Crawley, WA, Australia
| | - J L Fitzpatrick
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|