1
|
Birch G, Cant MA, Nichols HJ, Meniri M, Businge R, Mwanguhya F, Blount JD. Indirect evidence of an early mating advantage in wild cooperatively breeding male banded mongooses. Sci Rep 2025; 15:1434. [PMID: 39789011 PMCID: PMC11718076 DOI: 10.1038/s41598-024-80518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Promiscuous females reduce male reproductive control. Males can attempt to monopolise access to these females, but distractions and sneaky rivals mean extra copulations cannot always be blocked. By mating first, males can obtain a headstart in sperm competition, but this may be negated by sperm storage and cryptic female choice mechanisms. We carry out an indirect rare test of an early mating advantage in a population of free-living wild animals. Using Bayesian GLMM analysis of a long-term life history database spanning 17 years, we show that banded mongoose males who interacted with females in earlier days of oestrus had a higher chance of siring their offspring compared with later rivals. An early mating advantage would intensify initial male-male competition and hence selection for male choice, as any initial mistake identifying preferred mating partners could see paternity lost to rivals.
Collapse
Affiliation(s)
- Graham Birch
- Centre for Ecology and Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK.
| | - Michael A Cant
- Centre for Ecology and Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Hazel J Nichols
- Department of Biosciences, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Magali Meniri
- Centre for Ecology and Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Robert Businge
- Banded Mongoose Research Project, Queen Elizabeth National Park, Kasese, Uganda
| | - Francis Mwanguhya
- Banded Mongoose Research Project, Queen Elizabeth National Park, Kasese, Uganda
| | - Jonathan D Blount
- Centre for Ecology and Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK.
| |
Collapse
|
2
|
Ryu H, Nam K, Lee BE, Jeong Y, Lee S, Kim J, Hyun YM, Kim JI, Park JH. The sperm hook as a functional adaptation for migration and self-organized behavior. eLife 2024; 13:RP96582. [PMID: 39576678 PMCID: PMC11584178 DOI: 10.7554/elife.96582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.
Collapse
Affiliation(s)
- Heungjin Ryu
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Department of Social Informatics, Kyoto University, Kyoto, Japan
| | - Kibum Nam
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Byeong Eun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yundon Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Seunghun Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jeongmo Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jung-Hoon Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
3
|
House CM, Duffield K, Rapkin J, Sakaluk SK, Hunt J. The transfer of male cuticular hydrocarbons provides a reliable cue of the risk and intensity of sperm competition in decorated crickets. Evolution 2024; 78:1606-1618. [PMID: 38864438 DOI: 10.1093/evolut/qpae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Theoretically, males should increase their ejaculate expenditure when the probability of sperm competition occurring (or risk) is high but decrease ejaculate expenditure as the number of competing ejaculates (or intensity) increases. Here we examine whether male decorated crickets (Gryllodes sigillatus) use cuticular hydrocarbons (CHCs) transferred to females by rival males at mating to assess the risk and intensity of sperm competition and adjust their ejaculate accordingly. Unmated females and those perfumed with CHCs extracted from one, three, or five males could be distinguished chemically, providing a reliable cue of the risk and intensity of sperm competition. In agreement with theory, males mating with these females increased sperm number with the risk of sperm competition and decreased sperm number with the intensity of sperm competition. Similarly, as the risk of sperm competition increased, males produced a larger and more attractive spermatophylax (an important non-sperm component of the ejaculate) but these traits did not vary with the intensity of sperm competition. Our results therefore demonstrate that both sperm and non-sperm components of the male ejaculate respond to the risk and intensity of sperm competition in different ways and that CHCs provide males with an important cue to strategically tailor their ejaculate.
Collapse
Affiliation(s)
- Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, NSW 2753, Australia
| | - Kristin Duffield
- Crop Bioprotection Research Unit, National Centre for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, United States
- School of Biological Sciences, Illinois State University, Normal, IL 61790, United States
| | - James Rapkin
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, United Kingdom
| | - Scott K Sakaluk
- School of Biological Sciences, Illinois State University, Normal, IL 61790, United States
| | - John Hunt
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, NSW 2753, Australia
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, United Kingdom
| |
Collapse
|
4
|
Leung G, Ricart-Arbona R, Monette S, Lipman NS. Pathologic copulatory lock in a genetically engineered laboratory mouse breeding pair. Lab Anim 2023; 57:664-668. [PMID: 37070346 PMCID: PMC11578629 DOI: 10.1177/00236772231168185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
A breeding pair of genetically engineered laboratory mice (Mus musculus) presented in apparent copulatory lock (coital tie). After anesthetizing the animals, gentle traction was used to separate the pair at which point a vaginal prolapse was detected and the penis was covered with black, firm, dry crusts and noted to have a solid pale, tan, firm cylindrical mass adhering to its glans. The vaginal prolapse was reduced and the female was returned to its cage. The male mouse had a severely distended bladder which could not be expressed and was euthanized. Histopathologic examination of the distal two-thirds of the penis revealed diffuse, acute coagulative necrosis. The mass adhered to the distal penis was a homogenous granular eosinophilic material consistent with a copulatory plug. While copulatory plugs and locks have been described in some rodent species, they have not been reported in laboratory mice. While the cause of the adherence of the plug to the penis could not be determined, we hypothesize that its adherence to both the penis and the vagina led to the lock and subsequently to ischemic necrosis of the distal penis.
Collapse
Affiliation(s)
- Glory Leung
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, USA
| | - Rodolfo Ricart-Arbona
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, USA
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, USA
| | - Sebastien Monette
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, USA
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, USA
| | - Neil S Lipman
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, USA
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, USA
| |
Collapse
|
5
|
Patlar B, Fulham L, Civetta A. A predominant role of genotypic variation in both expression of sperm competition genes and paternity success in Drosophila melanogaster. Proc Biol Sci 2023; 290:20231715. [PMID: 37727083 PMCID: PMC10509582 DOI: 10.1098/rspb.2023.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Sperm competition is a crucial aspect of male reproductive success in many species, including Drosophila melanogaster, and seminal fluid proteins (Sfps) can influence sperm competitiveness. However, the combined effect of environmental and genotypic variation on sperm competition gene expression remains poorly understood. Here, we used Drosophila Genetic Reference Panel (DGRP) inbred lines and manipulated developmental population density (i.e. larval density) to test the effects of genotype, environment and genotype-by-environment interactions (GEI) on the expression of the known sperm competition genes Sex Peptide, Acp36DE and CG9997. High larval density resulted in reduced adult body size, but expression of sperm competition genes remained unaffected. Furthermore, we found no significant GEI but genotypic effects in the expression of SP and Acp36DE. Our results also revealed GEI for relative competitive paternity success (second male paternity; P2), with genes' expression positively correlated with P2. Given the effect of genotype on the expression of genes, we conducted a genome-wide association study (GWAS) and identified polymorphisms in putative cis-regulatory elements as predominant factors regulating the expression of SP and Acp36DE. The association of genotypic variation with sperm competition outcomes, and the resilience of sperm competition genes' expression against environmental challenges, demonstrates the importance of genome variation background in reproductive fitness.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| | - Lauren Fulham
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| |
Collapse
|
6
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
7
|
André GI, Firman RC, Simmons LW. The effect of genital stimulation on competitive fertilization success in house mice. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Birand A, Cassey P, Ross JV, Russell JC, Thomas P, Prowse TAA. Gene drives for vertebrate pest control: realistic spatial modelling of eradication probabilities and times for island mouse populations. Mol Ecol 2022; 31:1907-1923. [PMID: 35073448 PMCID: PMC9303646 DOI: 10.1111/mec.16361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Invasive alien species continue to threaten global biodiversity. CRISPR‐based gene drives, which can theoretically spread through populations despite imparting a fitness cost, could be used to suppress or eradicate pest populations. We develop an individual‐based, spatially explicit, stochastic model to simulate the ability of CRISPR‐based homing and X chromosome shredding drives to eradicate populations of invasive house mice (Mus muculus) from islands. Using the model, we explore the interactive effect of the efficiency of the drive constructs and the spatial ecology of the target population on the outcome of a gene‐drive release. We also consider the impact of polyandrous mating and sperm competition, which could compromise the efficacy of some gene‐drive strategies. Our results show that both drive strategies could be used to eradicate large populations of mice. Whereas parameters related to drive efficiency and demography strongly influence drive performance, we find that sperm competition following polyandrous mating is unlikely to impact the outcome of an eradication effort substantially. Assumptions regarding the spatial ecology of mice influenced the probability of and time required for eradication, with short‐range dispersal capacities and limited mate‐search areas producing ‘chase’ dynamics across the island characterized by cycles of local extinction and recolonization by mice. We also show that highly efficient drives are not always optimal, when dispersal and mate‐search capabilities are low. Rapid local population suppression around the introduction sites can cause loss of the gene drive before it can spread to the entire island. We conclude that, although the design of efficient gene drives is undoubtedly critical, accurate data on the spatial ecology of target species are critical for predicting the result of a gene‐drive release.
Collapse
Affiliation(s)
- Aysegul Birand
- Invasion Science and Wildlife Ecology Lab, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Phillip Cassey
- Invasion Science and Wildlife Ecology Lab, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Joshua V Ross
- School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia
| | - James C Russell
- School of Biological Sciences, Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Paul Thomas
- School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Thomas A A Prowse
- Invasion Science and Wildlife Ecology Lab, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
9
|
Winkler L, Lindholm AK, Ramm SA, Sutter A. The baculum affects paternity success of first but not second males in house mouse sperm competition. BMC Ecol Evol 2021; 21:159. [PMID: 34384348 PMCID: PMC8359600 DOI: 10.1186/s12862-021-01887-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/16/2021] [Indexed: 01/20/2023] Open
Abstract
The vast variation observed in genital morphology is a longstanding puzzle in evolutionary biology. Studies showing that the morphology of the mammalian baculum (penis bone) can covary with a male’s paternity success indicate a potential impact of baculum morphology on male fitness, likely through influencing sperm competition outcomes. We therefore measured the size (measurements of length and width) and shape (geometric morphometric measurements) of the bacula of male house mice used in previously published sperm competition experiments, in which two males mated successively with the same female in staged matings. This enabled us to correlate baculum morphology with sperm competition success, incorporating potential explanatory variables related to copulatory plugs, male mating behavior and a selfish genetic element that influences sperm motility. We found that a wider baculum shaft increased a male’s paternity share when mating first, but not when mating second with a multiply-mating female. Geometric morphometric shape measurements were not clearly associated with fertilization success for either male. We found limited evidence that the effect of baculum morphology on male fertilization success was altered by experimental removal of the copulatory plug. Furthermore, neither genetic differences in sperm motility, nor covariation with male mating behavior mediated the effect of baculum morphology on male fertilization success. Taken together with previous findings, the mating-order effects we found here suggest that baculum-mediated stimulation by the first male might be particularly important for fertilization.
Collapse
Affiliation(s)
- Lennart Winkler
- Department of Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany. .,Applied Zoology, Technical University Dresden, Zellescher Weg 20b, 01062, Dresden, Germany.
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Steven A Ramm
- Department of Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| | - Andreas Sutter
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
10
|
Du Q, Huang YH, Bajpai A, Frosig-Jorgensen M, Zhao G, Craik DJ. Evaluation of the in Vivo Aphrodisiac Activity of a Cyclotide Extract from Hybanthus enneaspermus. JOURNAL OF NATURAL PRODUCTS 2020; 83:3736-3743. [PMID: 33296204 DOI: 10.1021/acs.jnatprod.0c01045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybanthus enneaspermus is an Indian folk medicinal herb that has been widely used as a libido enhancer. This plant belongs to the Violaceae plant family, which ubiquitously contains disulfide-rich cyclic peptides named cyclotides. Cyclotides are an expanding plant-derived peptide family with numerous interesting bioactivities, and their unusual stability against proteolysis has attracted much attention in drug design applications. Recently, H. enneaspermus has been reported to be a rich source of cyclotides, and hence, it was of interest to investigate whether cyclotides contribute to its aphrodisiac activity. In this study, we evaluated the in vivo aphrodisiac activity of the herbal powder, extract, and the most abundant cyclotide, hyen D, extracted from H. enneaspermus on rats in a single dose regimen. After dosing, the sexual behaviors of male rats were observed, recorded, analyzed, and compared with those of the vehicle group. The results show that the extract and hyen D significantly decreased the intromission latency of sexually naïve male rats and the extract improved a range of other measured sexual parameters. The results suggest that the extract could enhance libido as well as facilitate erectile function in male rats and that the cyclotide hyen D could contribute to the libido-enhancing activity of this ethnomedicinal herb.
Collapse
Affiliation(s)
- Qingdan Du
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abhishek Bajpai
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Majbrit Frosig-Jorgensen
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Guangzu Zhao
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Manser A, König B, Lindholm AK. Polyandry blocks gene drive in a wild house mouse population. Nat Commun 2020; 11:5590. [PMID: 33149121 PMCID: PMC7643059 DOI: 10.1038/s41467-020-18967-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Gene drives are genetic elements that manipulate Mendelian inheritance ratios in their favour. Understanding the forces that explain drive frequency in natural populations is a long-standing focus of evolutionary research. Recently, the possibility to create artificial drive constructs to modify pest populations has exacerbated our need to understand how drive spreads in natural populations. Here, we study the impact of polyandry on a well-known gene drive, called t haplotype, in an intensively monitored population of wild house mice. First, we show that house mice are highly polyandrous: 47% of 682 litters were sired by more than one male. Second, we find that drive-carrying males are particularly compromised in sperm competition, resulting in reduced reproductive success. As a result, drive frequency decreased during the 4.5 year observation period. Overall, we provide the first direct evidence that the spread of a gene drive is hampered by reproductive behaviour in a natural population. This study resolves a long-standing mystery of why t haplotypes, an example of selfish genes, have persisted at unexpectedly low frequencies in wild mouse populations. It shows that multiple mating by females, which is more common at higher mouse population densities, decreases the frequency of driving t haplotypes.
Collapse
Affiliation(s)
- Andri Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland. .,Department of Evolution, Ecology and Behaviour, University of Liverpool, Biosciences Building, Crown Street, Liverpool, UK.
| | - Barbara König
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| |
Collapse
|
12
|
Ramm SA. Seminal fluid and accessory male investment in sperm competition. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200068. [PMID: 33070740 DOI: 10.1098/rstb.2020.0068] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sperm production and allocation strategies have been a central concern of sperm competition research for the past 50 years. But during the 'sexual cascade' there may be strong selection for alternative routes to maximizing male fitness. Especially with the evolution of internal fertilization, a common and by now well-studied example is the accessory ejaculate investment represented by seminal fluid, the complex mixture of proteins, peptides and other components transferred to females together with sperm. How seminal fluid investment should covary with sperm investment probably depends on the mechanism of seminal fluid action. If seminal fluid components boost male paternity success by directly enhancing sperm function or use, we might often expect a positive correlation between the two forms of male investment, whereas trade-offs seem more likely if seminal fluid acts independently of sperm. This is largely borne out by a broad taxonomic survey to establish the prevailing patterns of seminal fluid production and allocation during animal evolution, in light of which I discuss the gaps that remain in our understanding of this key ejaculate component and its relationship to sperm investment, before outlining promising approaches for examining seminal fluid-mediated sperm competitiveness in the post-genomic era. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Steven A Ramm
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
13
|
Abstract
Promiscuous mating by females leads to competition between males for fertilization success. When fertilization is internal, this means that rival males’ sperm must compete within the female reproductive tract to reach the eggs. Males of diverse species deposit a mating plug during copulation, which is hypothesized to assist in the race for fertilization following multiple mating. Here, we tested this by using stable isotope labeling to discriminate the ejaculates of competing male voles in direct competition. This revealed that the mating plug simultaneously inhibits the sperm of rival males while promoting transport of a male’s own sperm, both of which are beneficial in the competition for fertilizations. Mating plugs are produced by many sexually reproducing animals and are hypothesized to promote male fertilization success under promiscuous mating. However, tests of this hypothesis have been constrained by an inability to discriminate ejaculates of different males in direct competition. Here, we use stable isotope labeling in vivo and proteomics to achieve this in a promiscuous rodent, Myodes glareolus. We show that, although the first male’s plug is usually dislodged, it can be retained throughout the second male’s copulation. Retained plugs did not completely block rival sperm but did significantly limit their numbers. Differences in the number of each male’s sperm progressing through the female reproductive tract were also explained by natural variation in the size of mating plugs and reproductive accessory glands from which major plug proteins originate. Relative sperm numbers in turn predicted the relative fertilization success of rival males. Our application of stable isotopes to label ejaculates resolves a longstanding debate by revealing how rodent mating plugs promote fertilization success under competitive conditions. This approach opens new opportunities to reveal cryptic mechanisms of postcopulatory sexual selection among diverse animal taxa.
Collapse
|
14
|
André GI, Firman RC, Simmons LW. Baculum shape and paternity success in house mice: evidence for genital coevolution. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200150. [PMID: 33070728 DOI: 10.1098/rstb.2020.0150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sexual selection is believed to be responsible for the rapid divergence of male genitalia, which is a widely observed phenomenon across different taxa. Among mammals, the stimulatory role of male genitalia and female 'sensory perception' has been suggested to explain these evolutionary patterns. Recent research on house mice has shown that baculum (penis bone) shape can respond to experimentally imposed sexual selection. Here, we explore the adaptive value of baculum shape by performing two experiments that examine the effects of male and female genitalia on male reproductive success. Thus, we selected house mice (Mus musculus domesticus) from families characterized by extremes in baculum shape (relative width) and examined paternity success in both non-competitive (monogamous) and competitive (polyandrous) contexts. Our analyses revealed that the relative baculum shape of competing males influenced competitive paternity success, but that this effect was dependent on the breeding value for baculum shape of the family from which females were derived. Our data provide novel insight into the potential mechanisms underlying the evolution of the house mouse baculum and lend support to the stimulatory hypothesis for the coevolution of male and female genitalia. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Goncalo I André
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009 Western Australia, Australia
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009 Western Australia, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009 Western Australia, Australia
| |
Collapse
|
15
|
Lenschow C, Lima SQ. In the mood for sex: neural circuits for reproduction. Curr Opin Neurobiol 2020; 60:155-168. [DOI: 10.1016/j.conb.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
|
16
|
Patlar B, Ramm SA. Genotype‐by‐environment interactions for seminal fluid expression and sperm competitive ability. J Evol Biol 2019; 33:225-236. [DOI: 10.1111/jeb.13568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Bahar Patlar
- Evolutionary Biology Bielefeld University Bielefeld Germany
| | - Steven A. Ramm
- Evolutionary Biology Bielefeld University Bielefeld Germany
| |
Collapse
|
17
|
Balu R, Ramachandran SS, Paramasivam SG. Evidence for mouse sulfhydryl oxidase-assisted cross-linking of major seminal vesicle proteins. Mol Reprod Dev 2019; 86:1682-1693. [PMID: 31448842 DOI: 10.1002/mrd.23258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 01/21/2023]
Abstract
Copulatory plug formation in animals is a general phenomenon by which competition is reduced among rival males. In mouse, the copulatory plug formation results from the coagulation of highly viscous seminal vesicle secretion (SVS) that is rich in proteins, such as dimers of SVS I, SVS I + II + III, and SVS II. These high-molecular-weight complexes (HMWCs) are also reported to be the bulk of proteins in the copulatory plug of the female mouse following copulation. In addition, mouse SVS contributes to the existence of sulfhydryl oxidase (Sox), which mediates the disulfide bond formation between cysteine residues. In this study, flavin adenine dinucleotide (FAD)-dependent Sox was purified from mouse SVS using ion exchange and high-performance liquid chromatography. The purified enzyme was identified to be Sox, based on western blot analysis with Sox antiserum and its capability of oxidizing dithiothreitol as substrate. The pH optima and thermal stability of the enzyme were determined. Among the metal ions tested, zinc showed an inhibitory effect on Sox activity. A prosthetic group of the enzyme was identified as FAD. The Km and Vmax of the enzyme was also determined. In addition to purification and biochemical characterization of seminal vesicle Sox, the major breakthrough of this study was proving its cross-linking activity among SVS I-III monomers to form HMWCs in SVS.
Collapse
Affiliation(s)
- Rubhadevi Balu
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | | | | |
Collapse
|
18
|
Sexual experience has no effect on male mating or reproductive success in house mice. Sci Rep 2019; 9:12145. [PMID: 31434936 PMCID: PMC6704153 DOI: 10.1038/s41598-019-48392-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
The ability to learn from experience can improve Darwinian fitness, but few studies have tested whether sexual experience enhances reproductive success. We conducted a study with wild-derived house mice (Mus musculus musculus) in which we manipulated male sexual experience and allowed females to choose between (1) a sexually experienced versus a virgin male, (2) two sexually experienced males, or (3) two virgin males (n = 60 females and 120 males). This design allowed us to test whether females are more likely to mate multiply when they encounter more virgin males, which are known to be infanticidal. We recorded females’ preference and mating behaviours, and conducted genetic paternity analyses to determine male reproductive success. We found no evidence that sexual experience influenced male mating or reproductive success, and no evidence that the number of virgin males influenced female multiple mating. Females always copulated with both males and 58% of the litters were multiple-sired. Females’ initial attraction to a male correlated with their social preferences, but neither of these preference behaviours predicted male reproductive success – raising caveats for using mating preferences as surrogates for mate choice. Male reproductive success was predicted by mating order, but unexpectedly, males that copulated first sired fewer offspring.
Collapse
|
19
|
Garrels W, Wedekind D, Wittur I, Freischmidt U, Korthaus D, Rülicke T, Dorsch M. Direct comparison of vasectomized males and genetically sterile Gapdhs knockout males for the induction of pseudopregnancy in mice. Lab Anim 2017; 52:365-372. [PMID: 29277131 DOI: 10.1177/0023677217748282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The laboratory mouse is the most used animal model in biomedical research. Several artificial reproductive techniques, such as revitalization of cryopreserved strains, rederivation after hygienic contaminations and the production of transgenic mouse models, require the transfer of preimplantation embryos to surrogate mothers. Pseudopregnancy is essential in recipient females and is induced by mating with sterile males. Commonly, surgically vasectomized males are used for this purpose. As an alternative, genetically modified mouse strains have been identified, in which homozygous infertile males are sexually active. Here, we investigated the suitability of genetically infertile Gapdhstm1Dao males under routine laboratory conditions with respect to plug rates, pregnancy rates and frequency of born offspring after embryo transfer. Our results showed no significant differences for these aspects between Gapdhstm1Dao and vasectomized CD2F1 males. In addition, we evaluated the efforts to obtain a defined number of sterile males either by breeding of sterile mutants or surgical vasectomy, and addressed the impact of both options on animal welfare. In conclusion, infertile males of the Gapdhstm1Dao line are a reliable alternative to vasectomized males for the induction of pseudopregnancy, and can contribute to the refinement of the procedure by avoiding surgical interventions.
Collapse
Affiliation(s)
- Wiebke Garrels
- 1 Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Dirk Wedekind
- 1 Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Isabell Wittur
- 1 Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Ulrike Freischmidt
- 1 Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Dirk Korthaus
- 2 Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Austria
| | - Thomas Rülicke
- 2 Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Austria
| | - Martina Dorsch
- 1 Institute for Laboratory Animal Science, Hannover Medical School, Germany
| |
Collapse
|
20
|
Schneider MR, Mangels R, Dean MD. The molecular basis and reproductive function(s) of copulatory plugs. Mol Reprod Dev 2016; 83:755-767. [PMID: 27518218 DOI: 10.1002/mrd.22689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
In many animals, male ejaculates coagulate to form what has been termed a copulatory plug, a structure that varies in size and shape but often fills and seals the female's reproductive tract. The first published observation of a copulatory plug in a mammal was made more than 160 years ago, and questions about its formation and role in reproduction continue to endear evolutionary and population geneticists, behavioral ecologists, and molecular, reproductive, and developmental biologists alike. Here, we review the current knowledge of copulatory plugs, focusing on rodents and asking two main questions: how is it formed and what does it do? An evolutionary biology perspective helps us understand the latter, potentially leading to insights into the selective regimes that have shaped the diversity of this structure. Mol. Reprod. Dev. 83: 755-767, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Rachel Mangels
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Matthew D Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, California.
| |
Collapse
|
21
|
Mangels R, Tsung K, Kwan K, Dean MD. Copulatory plugs inhibit the reproductive success of rival males. J Evol Biol 2016; 29:2289-2296. [PMID: 27488082 DOI: 10.1111/jeb.12956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/19/2016] [Accepted: 07/31/2016] [Indexed: 11/29/2022]
Abstract
Ejaculated proteins play important roles in reproductive fitness. In many species, seminal fluid coagulates and forms what has been referred to as a copulatory plug in the female's reproductive tract. In mice, previous work demonstrated that knockout males missing a key seminal fluid protein were unable to form a plug and less successful at siring litters in noncompetitive matings (one female, one male), probably the result of reduced sperm transport or insufficient stimulation of the female. Here, we extend these previous studies to competitive matings (one female, two males) and make two key insights. First, when first males were unable to form a plug, they lost almost all paternity to second males to mate. Thus, the copulatory plugs of second males could not rescue the reduced fertility of first males. Second, we showed that the copulatory plug of first males effectively blocked fertilization by second males, even if first males were vasectomized. Taken together, our experiments demonstrated that first males lost almost all paternity if they never formed a plug. We discuss our results in the context of natural populations, where in spite of the strong effects seen here, pregnant female mice regularly carry litters fertilized by more than one male.
Collapse
Affiliation(s)
- Rachel Mangels
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089
| | - Kathleen Tsung
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089
| | - Kelly Kwan
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089
| | - Matthew D Dean
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089
| |
Collapse
|
22
|
Sutter A, Lindholm AK. No evidence for female discrimination against male house mice carrying a selfish genetic element. Curr Zool 2016; 62:675-685. [PMID: 29491955 PMCID: PMC5804255 DOI: 10.1093/cz/zow063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022] Open
Abstract
Meiotic drivers distort transmission to the next generation in their favor, with detrimental effects on the fitness of their homologues and the rest of the genome. Male carriers of meiotic drivers commonly inflict costs on their mates through genetic incompatibility, reduced fecundity, or biased brood sex ratios. Given these costs, evidence for female discrimination against male carriers is surprisingly rare. One of few examples is the t haplotype in house mice, a meiotic driver that shows strong transmission distortion in males and is typically homozygote lethal. As a consequence, mating between 2 t heterozygous (+/t) mice leads to high embryo mortality. Previous experiments showing that +/t females avoid this incompatibility cost by preferring +/+ versus +/t males have inferred preference based on olfactory cues or brief social interactions. Evidence from mating contexts in laboratory settings and semi-natural populations has been inconclusive. Here, we investigated female choice from a large number of no-choice mating trials. We found no evidence for discrimination against +/t males based on mating, remating, and copulatory behavior. Further, we found no evidence for avoidance of incompatibility through selective interactions between gametes. The likelihood of mating showed significant effects of female weight and genotype, suggesting that our test paradigm enabled females to exhibit mate choice. We discuss the strengths and limitations of our approach. By explicitly considering selection at both the individual and gene level, we argue why precopulatory female discrimination by +/t females may be less evolutionarily stable than discrimination by all females based on postcopulatory mechanisms.
Collapse
Affiliation(s)
- Andreas Sutter
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Anna K Lindholm
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
23
|
Sutter A, Lindholm AK. Meiotic drive changes sperm precedence patterns in house mice: potential for male alternative mating tactics? BMC Evol Biol 2016; 16:133. [PMID: 27328665 PMCID: PMC4915163 DOI: 10.1186/s12862-016-0710-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/13/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND With female multiple mating (polyandry), male-male competition extends to after copulation (sperm competition). Males respond to this selective pressure through physiological, morphological and behavioural adaptations. Sperm competitiveness is commonly decreased in heterozygote carriers of male meiotic drivers, selfish genetic elements that manipulate the production of gametes in males. This might give carriers an evolutionary incentive to reduce the risk of sperm competition. Here, we explore this possibility in house mice. Natural populations frequently harbour a well-characterised male driver (t haplotype), which is transmitted to 90 % of heterozygous (+/t) males' offspring. Previous research demonstrated strong detrimental effects on sperm competitiveness, and suggested that +/t males are particularly disadvantaged against wild type males when first-to-mate. Low paternity success in the first-to-mate role is expected to favour male adaptations that decrease the risk of sperm competition by preventing female remating. Genotype-specific paternity patterns (sperm precedence) could lead to genetically determined alternative reproductive tactics that can spread through gene level selection. Here, we seek confirmation that +/t males are generally disadvantaged when first-to-mate and address whether males of different genotypes differ in reproductive tactics (copulatory and morphological) to maximise individual or driver fitness. Finally, we attempt to explain the mechanistic basis for alternative sperm precedence patterns in this species. RESULTS We confirmed that +/t males are weak sperm competitors when first to mate. When two +/t males competed, the second-to-mate was more successful, which contrasts with first male sperm precedence when wild type males competed. However, we found no differences between male genotypes in reproductive behaviour or morphology that were consistent with alternative reproductive tactics. Sperm of +/+ and +/t males differed with respect to in vitro sperm features. Premature hypermotility in +/t males' sperm can potentially explain why +/t males are very weak sperm competitors when first-to-mate. CONCLUSIONS Our results demonstrate that meiotic drivers can have strong effects on sperm precedence patterns, and may provide a heritable basis for alternative reproductive tactics motivated by reduced sperm competitiveness. We discuss how experimental and evolutionary constraints may help explain why male genotypes did not show the predicted differences.
Collapse
Affiliation(s)
- Andreas Sutter
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|