1
|
Lisi PJ, Hogan JD, Holt G, Moody KN, Wren JLK, Kobayashi DR, Blum MJ, McIntyre PB. Stream and ocean hydrodynamics mediate partial migration strategies in an amphidromous Hawaiian goby. Ecology 2022; 103:e3800. [PMID: 35726198 PMCID: PMC9788201 DOI: 10.1002/ecy.3800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022]
Abstract
Partial migration strategies, in which some individuals migrate but others do not, are widely observed in populations of migratory animals. Such patterns could arise via variation in migratory behaviors made by individual animals, via genetic variation in migratory predisposition, or simply by variation in migration opportunities mediated by environmental conditions. Here we use spatiotemporal variation in partial migration across populations of an amphidromous Hawaiian goby to test whether stream or ocean conditions favor completing its life cycle entirely within freshwater streams rather than undergoing an oceanic larval migration. Across 35 watersheds, microchemical analysis of otoliths revealed that most adult Awaous stamineus were freshwater residents (62% of n = 316 in 2009, 83% of n = 274 in 2011), but we found considerable variation among watersheds. We then tested the hypothesis that the prevalence of freshwater residency increases with the stability of stream flows and decreases with the availability of dispersal pathways arising from ocean hydrodynamics. We found that streams with low variation of daily discharge were home to a higher incidence of freshwater residents in each survey year. The magnitude of the shift in freshwater residency between survey years was positively associated with predicted interannual variability in the success of larval settlement in streams on each island based on passive drift in ocean currents. We built on these findings by developing a theoretical model of goby life history to further evaluate whether mediation of migration outcomes by stream and ocean hydrodynamics could be sufficient to explain the range of partial migration frequency observed across populations. The model illustrates that the proportion of larvae entering the ocean and differential survival of freshwater-resident versus ocean-going larvae are plausible mechanisms for range-wide shifts in migration strategies. Thus, we propose that hydrologic variation in both ocean and stream environments contributes to spatiotemporal variation in the prevalence of migration phenotypes in A. stamineus. Our empirical and theoretical results suggest that the capacity for partial migration could enhance the persistence of metapopulations of diadromous fish when confronted with variable ocean and stream conditions.
Collapse
Affiliation(s)
- Peter J. Lisi
- Center for LimnologyUniversity of WisconsinMadisonWisconsinUSA,Washington Department of Fish and WildlifeMill CreekWashingtonUSA
| | - J. Derek Hogan
- Department of Life SciencesTexas A&M University–Corpus ChristiCorpus ChristiTexasUSA
| | - Galen Holt
- Centre for Regional and Rural FuturesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Kristine N. Moody
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA,Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA,Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Johanna L. K. Wren
- Department of OceanographySchool of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at MānoaHonoluluHawaiʻiUSA,Pacific Islands Fisheries Science Center, NOAA/NMFS, NOAA IRCHonoluluHawaiʻiUSA
| | - Donald R. Kobayashi
- Pacific Islands Fisheries Science Center, NOAA/NMFS, NOAA IRCHonoluluHawaiʻiUSA
| | - Michael J. Blum
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA,Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Peter B. McIntyre
- Center for LimnologyUniversity of WisconsinMadisonWisconsinUSA,Department of Natural Resources and the EnvironmentCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
2
|
Heim-Ballew H, Moody KN, Blum MJ, McIntyre PB, Hogan JD. Migratory flexibility in native Hawai'ian amphidromous fishes. JOURNAL OF FISH BIOLOGY 2020; 96:456-468. [PMID: 31814124 DOI: 10.1111/jfb.14224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
We assessed the prevalence of life history variation across four of the five native amphidromous Hawai'ian gobioids to determine whether some or all exhibit evidence of partial migration. Analysis of otolith Sr.: Ca concentrations affirmed that all are amphidromous and revealed evidence of partial migration in three of the four species. We found that 25% of Lentipes concolor (n = 8), 40% of Eleotris sandwicensis (n = 20) and 29% of Stenogobius hawaiiensis (n = 24) did not exhibit a migratory life-history. In contrast, all individuals of Sicyopterus stimpsoni (n = 55) included in the study went to sea as larvae. Lentipes concolor exhibited the shortest mean larval duration (LD) at 87 days, successively followed by E. sandwicensis (mean LD = 102 days), S. hawaiiensis (mean LD = 114 days) and S. stimpsoni (mean LD = 120 days). These findings offer a fresh perspective on migratory life histories that can help improve efforts to conserve and protect all of these and other at-risk amphidromous species that are subject to escalating anthropogenic pressures in both freshwater and marine environments.
Collapse
Affiliation(s)
- Heidi Heim-Ballew
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Kristine N Moody
- Department of Ecology and Evolutionary Biology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | - Michael J Blum
- Department of Ecology and Evolutionary Biology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | - Peter B McIntyre
- Center for Limnology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
| | - James D Hogan
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| |
Collapse
|
3
|
Abdou A, Lord C, Keith P, Galzin R. Phylogéographie de Neritina stumpffi Boettger, 1890 et Neritina canalis Sowerby, 1825 (Gastropoda, Cycloneritida, Neritidae). ZOOSYSTEMA 2019. [DOI: 10.5252/zoosystema2019v41a12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ahmed Abdou
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Muséum national d'Histoire naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD, case postale 26, 57 rue Cuvier, F-75231 Paris cedex 05 (Fran
| | - Clara Lord
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Muséum national d'Histoire naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD, case postale 26, 57 rue Cuvier, F-75231 Paris cedex 05 (Fran
| | - Philippe Keith
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Muséum national d'Histoire naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD, case postale 26, 57 rue Cuvier, F-75231 Paris cedex 05 (Fran
| | - René Galzin
- Laboratoire d'excellence Corail, USR 3278 CNRS-EPHE-UPVD, Centre de Recherches insulaires et Observatoire de l'Environnement (CRIOBE), BP 1013 Papetoai, 98729 Moorea, Polynésie française (France)
| |
Collapse
|
4
|
Diamond KM, Lagarde R, Schoenfuss HL, Walker JA, Ponton D, Blob RW. Relationship of escape performance with predator regime and ontogeny in fishes. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kelly M Diamond
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - RaphaëL Lagarde
- Hydrô Réunion, Z.I des Sables, Etang Salé, La Réunion, France
- ENTROPIE, IRD-Université de La Réunion-CNRS, Laboratoire d’Excellence CORAIL, c/o Université de Perpignan Via Domitia, Perpignan, France
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN, USA
| | - Jeffrey A Walker
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Dominique Ponton
- ENTROPIE, IRD-Université de La Réunion-CNRS, Laboratoire d’Excellence CORAIL, c/o Université de Perpignan Via Domitia, Perpignan, France
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
5
|
Moody KN, Wren JLK, Kobayashi DR, Blum MJ, Ptacek MB, Blob RW, Toonen RJ, Schoenfuss HL, Childress MJ. Evidence of local adaptation in a waterfall-climbing Hawaiian goby fish derived from coupled biophysical modeling of larval dispersal and post-settlement selection. BMC Evol Biol 2019; 19:88. [PMID: 30975077 PMCID: PMC6458715 DOI: 10.1186/s12862-019-1413-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background Local adaptation of marine and diadromous species is thought to be a product of larval dispersal, settlement mortality, and differential reproductive success, particularly in heterogeneous post-settlement habitats. We evaluated this premise with an oceanographic passive larval dispersal model coupled with individual-based models of post-settlement selection and reproduction to infer conditions that underlie local adaptation in Sicyopterus stimpsoni, an amphidromous Hawaiian goby known for its ability to climb waterfalls. Results Our model results demonstrated that larval dispersal is spatio-temporally asymmetric, with more larvae dispersed from the southeast (the Big Island) to northwest (Kaua‘i) along the archipelago, reflecting prevailing conditions such as El Niño/La Niña oscillations. Yet connectivity is nonetheless sufficient to result in homogenous populations across the archipelago. We also found, however, that ontogenetic shifts in habitat can give rise to adaptive morphological divergence when the strength of predation-driven post-settlement selection crosses a critical threshold. Notably, our simulations showed that larval dispersal is not the only factor determining the likelihood of morphological divergence. We found adaptive potential and evolutionary trajectories of S. stimpsoni were greater on islands with stronger environmental gradients and greater variance in larval cohort morphology due to fluctuating immigration. Conclusions Contrary to expectation, these findings indicate that immigration can act in concert with selection to favor local adaptation and divergence in species with marine larval dispersal. Further development of model simulations, parameterized to reflect additional empirical estimates of abiotic and biotic factors, will help advance our understanding of the proximate and ultimate mechanisms driving adaptive evolution, population resilience, and speciation in marine-associated species. Electronic supplementary material The online version of this article (10.1186/s12862-019-1413-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristine N Moody
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, 37996, USA. .,The ByWater Institute, Tulane University, New Orleans, LA, 70118, USA. .,Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA.
| | - Johanna L K Wren
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.,Joint Institute of Marine and Atmospheric Research, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.,Pacific Islands Fisheries Science Center, NOAA/NMFS, NOAA IRC, Honolulu, HI, 96818, USA
| | - Donald R Kobayashi
- Pacific Islands Fisheries Science Center, NOAA/NMFS, NOAA IRC, Honolulu, HI, 96818, USA
| | - Michael J Blum
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, 37996, USA.,The ByWater Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Margaret B Ptacek
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St Cloud, MN, 56301, USA
| | - Michael J Childress
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
6
|
Liang HY, Feng ZP, Pei B, Li Y, Yang XT. Demographic expansion of two Tamarix species along the Yellow River caused by geological events and climate change in the Pleistocene. Sci Rep 2018; 8:60. [PMID: 29311687 PMCID: PMC5758526 DOI: 10.1038/s41598-017-19034-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
The geological events and climatic fluctuations during the Pleistocene played important roles in shaping patterns of species distribution. However, few studies have evaluated the patterns of species distribution that were influenced by the Yellow River. The present work analyzed the demography of two endemic tree species that are widely distributed along the Yellow River, Tamarix austromongolica and Tamarix chinensis, to understand the role of the Yellow River and Pleistocene climate in shaping their distribution patterns. The most common chlorotype, chlorotype 1, was found in all populations, and its divergence time could be dated back to 0.19 million years ago (Ma). This dating coincides well with the formation of the modern Yellow River and the timing of Marine Isotope Stages 5e-6 (MIS 5e-6). Bayesian reconstructions along with models of paleodistribution revealed that these two species experienced a demographic expansion in population size during the Quaternary period. Approximate Bayesian computation analyses supported a scenario of expansion approximately from the upper to lower reaches of the Yellow River. Our results provide support for the roles of the Yellow River and the Pleistocene climate in driving demographic expansion of the populations of T. austromongolica and T. chinensis. These findings are useful for understanding the effects of geological events and past climatic fluctuations on species distribution patterns.
Collapse
Affiliation(s)
- Hong-Yan Liang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.,Sanmenxia Polytechnic, Sanmenxia, 472000, China
| | - Zhi-Pei Feng
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bing Pei
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yong Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xi-Tian Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|