1
|
Maggs X. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2024. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- X Maggs
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Jiang B, He Y, Elsler A, Wang S, Keating JN, Song J, Kearns SL, Benton MJ. Extended embryo retention and viviparity in the first amniotes. Nat Ecol Evol 2023; 7:1131-1140. [PMID: 37308704 PMCID: PMC10333127 DOI: 10.1038/s41559-023-02074-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/17/2023] [Indexed: 06/14/2023]
Abstract
The amniotic egg with its complex fetal membranes was a key innovation in vertebrate evolution that enabled the great diversification of reptiles, birds and mammals. It is debated whether these fetal membranes evolved in eggs on land as an adaptation to the terrestrial environment or to control antagonistic fetal-maternal interaction in association with extended embryo retention (EER). Here we report an oviparous choristodere from the Lower Cretaceous period of northeast China. The ossification sequence of the embryo confirms that choristoderes are basal archosauromorphs. The discovery of oviparity in this assumed viviparous extinct clade, together with existing evidence, suggests that EER was the primitive reproductive mode in basal archosauromorphs. Phylogenetic comparative analyses on extant and extinct amniotes suggest that the first amniote displayed EER (including viviparity).
Collapse
Affiliation(s)
- Baoyu Jiang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China.
| | - Yiming He
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Armin Elsler
- School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, UK
| | - Shengyu Wang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Joseph N Keating
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Junyi Song
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Stuart L Kearns
- School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, UK
| | - Michael J Benton
- School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Blaimer BB, Santos BF, Cruaud A, Gates MW, Kula RR, Mikó I, Rasplus JY, Smith DR, Talamas EJ, Brady SG, Buffington ML. Key innovations and the diversification of Hymenoptera. Nat Commun 2023; 14:1212. [PMID: 36869077 PMCID: PMC9984522 DOI: 10.1038/s41467-023-36868-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
The order Hymenoptera (wasps, ants, sawflies, and bees) represents one of the most diverse animal lineages, but whether specific key innovations have contributed to its diversification is still unknown. We assembled the largest time-calibrated phylogeny of Hymenoptera to date and investigated the origin and possible correlation of particular morphological and behavioral innovations with diversification in the order: the wasp waist of Apocrita; the stinger of Aculeata; parasitoidism, a specialized form of carnivory; and secondary phytophagy, a reversal to plant-feeding. Here, we show that parasitoidism has been the dominant strategy since the Late Triassic in Hymenoptera, but was not an immediate driver of diversification. Instead, transitions to secondary phytophagy (from parasitoidism) had a major influence on diversification rate in Hymenoptera. Support for the stinger and the wasp waist as key innovations remains equivocal, but these traits may have laid the anatomical and behavioral foundations for adaptations more directly associated with diversification.
Collapse
Affiliation(s)
- Bonnie B Blaimer
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, Germany.
- National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA.
| | - Bernardo F Santos
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, Germany
- National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Astrid Cruaud
- CBGP, INRAe, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Michael W Gates
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Robert R Kula
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - István Mikó
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Jean-Yves Rasplus
- CBGP, INRAe, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - David R Smith
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Elijah J Talamas
- Florida State Collection of Arthropods, Division of Plant Industry, Florida Department of Agriculture and Consumer Services, 1911 SW 34th St, Gainesville, FL, 32608, USA
| | - Seán G Brady
- National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Matthew L Buffington
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| |
Collapse
|
4
|
Moein F, Jamzad Z, Rahiminejad M, Landis JB, Mirtadzadini M, Soltis DE, Soltis PS. Towards a global perspective for Salvia L.: Phylogeny, diversification and floral evolution. J Evol Biol 2023; 36:589-604. [PMID: 36759951 DOI: 10.1111/jeb.14149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 02/11/2023]
Abstract
Salvia is the most species-rich genus in Lamiaceae, encompassing approximately 1000 species distributed all over the world. We sought a new evolutionary perspective for Salvia by employing macroevolutionary analyses to address the tempo and mode of diversification. To study the association of floral traits with speciation and extinction, we modelled and explored the evolution of corolla length and the lever-mechanism pollination system across our Salvia phylogeny. We reconstructed a multigene phylogeny for 366 species of Salvia in the broad sense including all major recognized lineages and 50 species from Iran, a region previously overlooked in studies of the genus. Our comprehensive sampling of Iranian species of Salvia provides higher phylogenetic resolution for southwestern Asian species than obtained in previous studies. Our phylogenetic data in combination with divergence time estimates were used to examine the evolution of corolla length, woody versus herbaceous habit, and presence versus absence of a lever mechanism. We investigated the timing and dependence of Salvia diversification related to corolla length evolution through a disparity test and BAMM analysis. A HiSSE model was used to evaluate the dependency of diversification on the lever-mechanism pollination system in Salvia. A medium corolla length (15-18 mm) was reconstructed as the ancestral state for Salvia with multiple shifts to shorter and longer corollas. Macroevolutionary model analyses indicate that corolla length disparity is high throughout Salvia evolution, significantly different from expectations under a Brownian motion model during the last 28 million years of evolution. Our analyses show evidence of a higher diversification rate of corolla length for some Andean species of Salvia compared to other members of the genus. Based on our tests of diversification models, we reject the hypothesis of a direct effect of the lever mechanism on Salvia diversification. Therefore, we suggest caution in considering the lever-mechanism pollination system as one of the main drivers of speciation in Salvia.
Collapse
Affiliation(s)
- Fatemeh Moein
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ziba Jamzad
- Department of Botany, Research Institute of Forest and Rangelands, Tehran, Iran
| | - Mohammadreza Rahiminejad
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, New York, USA.,BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, New York, USA
| | | | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida, USA.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA.,The Genetics Institute, University of Florida, Gainesville, Florida, USA.,The Biodiversity Institute, University of Florida, Gainesville, Florida, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA.,The Genetics Institute, University of Florida, Gainesville, Florida, USA.,The Biodiversity Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Lu M, Fradera-Soler M, Forest F, Barraclough TG, Grace OM. Evidence linking life-form to a major shift in diversification rate in Crassula. AMERICAN JOURNAL OF BOTANY 2022; 109:272-290. [PMID: 34730230 DOI: 10.1002/ajb2.1797] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Plants have evolved different ecological strategies in response to environmental challenges, and a higher lability of such strategies is more common in plant groups that adapt to various niches. Crassula (Crassulaceae), occurring in varied mesic to xeric habitats, exhibits a remarkable diversity of life-forms. However, whether any particular life-form trait has shaped species diversification in Crassula has remained unexplored. This study aims to investigate diversification patterns within Crassula and identify potential links to its life-form evolution. METHODS A phylogenetic tree of 140 Crassula taxa was reconstructed using plastid and nuclear loci and dated based on the nuclear DNA information only. We reconstructed ancestral life-form characters to estimate the evolutionary trends of ecophysiological change, and subsequently estimated net diversification rates. Multiple diversification models were applied to examine the association between certain life-forms and net diversification rates. RESULTS Our findings confirm a radiation within Crassula in the last 10 million years. A configuration of net diversification rate shifts was detected, which coincides with the emergence of a speciose lineage during the late Miocene. The results of ancestral state reconstruction demonstrate a high lability of life-forms in Crassula, and the trait-dependent diversification analyses revealed that the increased diversification is strongly associated with a compact growth form. CONCLUSIONS Transitions between life-forms in Crassula seem to have driven adaptation and shaped diversification of this genus across various habitats. The diversification patterns we inferred are similar to those observed in other major succulent lineages, with the most-speciose clades originating in the late Miocene.
Collapse
Affiliation(s)
- Meng Lu
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK
| | - Marc Fradera-Soler
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Olwen M Grace
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
6
|
Miller EC, Mesnick SL, Wiens JJ. Sexual Dichromatism Is Decoupled from Diversification over Deep Time in Fishes. Am Nat 2021; 198:232-252. [PMID: 34260865 DOI: 10.1086/715114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSexually selected traits have long been thought to drive diversification, but support for this hypothesis has been persistently controversial. In fishes, sexually dimorphic coloration is associated with assortative mating and speciation among closely related species, as shown in classic studies. However, it is unclear whether these results can generalize to explain diversity patterns across ray-finned fishes, which contain the majority of vertebrate species and 96% of fishes. Here, we use phylogenetic approaches to test for an association between sexual dichromatism and diversification rates (speciation minus extinction) in ray-finned fishes. We assembled dichromatism data for 10,898 species, a data set of unprecedented size. We found no difference in diversification rates between monochromatic and dichromatic species when including all ray-finned fishes. However, at lower phylogenetic scales (within orders and families), some intermediate-sized clades did show an effect of dichromatism on diversification. Surprisingly, dichromatism could significantly increase or decrease diversification rates. Moreover, we found no effect in many of the clades initially used to link dichromatism to speciation in fishes (e.g., cichlids) or an effect only at shallow scales (within subclades). Overall, we show how the effects of dichromatism on diversification are highly variable in direction and restricted to certain clades and phylogenetic scales.
Collapse
|
7
|
Kurita T, Kojima Y, Hossman MY, Nishikawa K. Phylogenetic position of a bizarre lizard Harpesaurus implies the co-evolution between arboreality, locomotion, and reproductive mode in Draconinae (Squamata: Agamidae). SYST BIODIVERS 2020. [DOI: 10.1080/14772000.2020.1795741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Takaki Kurita
- Natural History Museum and Institute, Chiba. Aoba-cho 955-2, Chuo-ku, Chiba, 260-8682, Japan
| | - Yosuke Kojima
- Department of Biology, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Chiba, Japan
| | - Mohamad Yazid Hossman
- Research Development and Innovation Division, Section of Biodiversity Fauna, Forest Department Sarawak, Kuching, 93250, Sarawak, Malaysia
| | - Kanto Nishikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
8
|
Tonini JFR, Ferreira RB, Pyron RA. Specialized breeding in plants affects diversification trajectories in Neotropical frogs. Evolution 2020; 74:1815-1825. [PMID: 32510580 DOI: 10.1111/evo.14037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/15/2020] [Accepted: 05/30/2020] [Indexed: 11/30/2022]
Abstract
Many animals breed exclusively in plants that accumulate rainwater (phytotelma; e.g., bromeliad, bamboo, fruit husk, and tree hole), to which they are either physiologically or behaviorally specialized for this microhabitat. Of the numerous life-history modes observed in frogs, few are as striking or potentially consequential as the transition from pond- or stream-breeding to the deposition of eggs or larvae in phytotelmata. Such specialization can increase offspring survivorship due to reduced competition and predation, representing potential ecological opportunity for adaptive radiation, yet few lineages of phytotelma-breeding frogs appear to have diversified extensively after such a transition, at least in the New World. We use a phylogeny of Neotropical frogs and data on breeding microhabitat to understand the evolutionary transitions involved with specialized phytotelma-breeding. First, we find that phytotelma-breeding is present in at least 168 species in 10 families of frogs. Across the phylogeny, we estimate 14 origins of phytotelma-breeding and 115 reversals, showing that phytotelma-breeding is a highly labile character. Second, phytotelma-breeding lineages overall have higher net diversification than nonphytotelma-breeding ones. This specialization represents an ecological opportunity resulting in increased diversification in most families with phytotelma-breeding lineages, whereas phytotelma-breeding toads have restricted diversification histories.
Collapse
Affiliation(s)
- João Filipe Riva Tonini
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, 20052.,Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, 02138
| | - Rodrigo Barbosa Ferreira
- Projeto Bromeligenous, Instituto de Pesquisa, Ensino e Preservação Ambiental Marcos Daniel, Vitória, ES 29056-020, Brazil
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, 20052
| |
Collapse
|
9
|
Aldridge RD, Siegel DS, Goldberg SR, Pyron RA. Seasonal Timing of Spermatogenesis and Mating in Squamates: A Reinterpretation. COPEIA 2020. [DOI: 10.1643/ch-19-230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Robert D. Aldridge
- Department of Biology, Saint Louis University (Emeritus), St. Louis, Missouri 63103; . Send reprint requests to this address
| | - Dustin S. Siegel
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri 63701;
| | | | - R. Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052;
| |
Collapse
|
10
|
Portik DM, Bell RC, Blackburn DC, Bauer AM, Barratt CD, Branch WR, Burger M, Channing A, Colston TJ, Conradie W, Dehling JM, Drewes RC, Ernst R, Greenbaum E, Gvoždík V, Harvey J, Hillers A, Hirschfeld M, Jongsma GFM, Kielgast J, Kouete MT, Lawson LP, Leaché AD, Loader SP, Lötters S, Meijden AVD, Menegon M, Müller S, Nagy ZT, Ofori-Boateng C, Ohler A, Papenfuss TJ, Rößler D, Sinsch U, Rödel MO, Veith M, Vindum J, Zassi-Boulou AG, McGuire JA. Sexual Dichromatism Drives Diversification within a Major Radiation of African Amphibians. Syst Biol 2020; 68:859-875. [PMID: 31140573 DOI: 10.1093/sysbio/syz023] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/15/2019] [Accepted: 04/09/2019] [Indexed: 01/11/2023] Open
Abstract
Theory predicts that sexually dimorphic traits under strong sexual selection, particularly those involved with intersexual signaling, can accelerate speciation and produce bursts of diversification. Sexual dichromatism (sexual dimorphism in color) is widely used as a proxy for sexual selection and is associated with rapid diversification in several animal groups, yet studies using phylogenetic comparative methods to explicitly test for an association between sexual dichromatism and diversification have produced conflicting results. Sexual dichromatism is rare in frogs, but it is both striking and prevalent in African reed frogs, a major component of the diverse frog radiation termed Afrobatrachia. In contrast to most other vertebrates, reed frogs display female-biased dichromatism in which females undergo color transformation, often resulting in more ornate coloration in females than in males. We produce a robust phylogeny of Afrobatrachia to investigate the evolutionary origins of sexual dichromatism in this radiation and examine whether the presence of dichromatism is associated with increased rates of net diversification. We find that sexual dichromatism evolved once within hyperoliids and was followed by numerous independent reversals to monochromatism. We detect significant diversification rate heterogeneity in Afrobatrachia and find that sexually dichromatic lineages have double the average net diversification rate of monochromatic lineages. By conducting trait simulations on our empirical phylogeny, we demonstrate that our inference of trait-dependent diversification is robust. Although sexual dichromatism in hyperoliid frogs is linked to their rapid diversification and supports macroevolutionary predictions of speciation by sexual selection, the function of dichromatism in reed frogs remains unclear. We propose that reed frogs are a compelling system for studying the roles of natural and sexual selection on the evolution of sexual dichromatism across micro- and macroevolutionary timescales.
Collapse
Affiliation(s)
- Daniel M Portik
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Rayna C Bell
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0162, USA
| | - David C Blackburn
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Aaron M Bauer
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Christopher D Barratt
- Department of Environmental Sciences, University of Basel, Basel 4056, Switzerland.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 0413, Germany.,Max Planck Institute for Evolutionary Anthropology, Leipzig 0413, Germany
| | - William R Branch
- Port Elizabeth Museum, P.O. Box 11347, Humewood 6013, South Africa.,Department of Zoology, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031, South Africa
| | - Marius Burger
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa.,Flora Fauna & Man, Ecological Services Ltd. Tortola, British Virgin, Island
| | - Alan Channing
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Timothy J Colston
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA.,Zoological Natural History Museum, Addis Ababa University, Arat Kilo, Addis Ababa, Ethiopia
| | - Werner Conradie
- Port Elizabeth Museum, P.O. Box 11347, Humewood 6013, South Africa.,School of Natural Resource Management, Nelson Mandela University, George Campus, George 6530, South Africa
| | - J Maximilian Dehling
- Department of Biology, Institute of Sciences, University of Koblenz-Landau, Universitätsstr. 1, D-56070 Koblenz, Germany
| | - Robert C Drewes
- California Academy of Sciences, San Francisco, CA 94118, USA
| | - Raffael Ernst
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstr. 159, Dresden 01109, Germany.,Department of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin 12165, Germany
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Václav Gvoždík
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.,Department of Zoology, National Museum, Prague, Czech Republic
| | | | - Annika Hillers
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Biodiversity Dynamics, Invalidenstr. 43, Berlin 10115, Germany.,Across the River - A Transboundary Peace Park for Sierra Leone and Liberia, The Royal Society for the Protection of Birds, 164 Dama Road, Kenema, Sierra Leone
| | - Mareike Hirschfeld
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Biodiversity Dynamics, Invalidenstr. 43, Berlin 10115, Germany
| | - Gregory F M Jongsma
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jos Kielgast
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen 2100, Denmark
| | - Marcel T Kouete
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Lucinda P Lawson
- Department of Biological Sciences, University of Cincinnati, 614 Rieveschl Hall, Cincinnati, OH 45220, USA.,Life Sciences, Field Museum of Natural History, 1400 S. Lake Shore Dr., Chicago, IL 60605, USA
| | - Adam D Leaché
- Department of Biology, Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Simon P Loader
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK
| | - Stefan Lötters
- Biogeography Department, Trier University, Universitätsring 15, Trier 54296, Germany
| | - Arie Van Der Meijden
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, No. 7, 4485-661 Vairão, Vila do Conde, Portugal
| | - Michele Menegon
- Tropical Biodiversity Section, Science Museum of Trento, Corso del lavoro e della Scienza 3, Trento 38122, Italy
| | - Susanne Müller
- Biogeography Department, Trier University, Universitätsring 15, Trier 54296, Germany
| | - Zoltán T Nagy
- Royal Belgian Institute of Natural Sciences, OD Taxonomy and Phylogeny, Rue Vautier 29, B-1000 Brussels, Belgium
| | | | - Annemarie Ohler
- Département Origines et Evolution, Muséum National d'Histoire Naturelle, UMR 7205 ISYEB, 25 rue Cuvier, Paris 75005, France
| | | | - Daniela Rößler
- Biogeography Department, Trier University, Universitätsring 15, Trier 54296, Germany
| | - Ulrich Sinsch
- Department of Biology, Institute of Sciences, University of Koblenz-Landau, Universitätsstr. 1, D-56070 Koblenz, Germany
| | - Mark-Oliver Rödel
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Biodiversity Dynamics, Invalidenstr. 43, Berlin 10115, Germany
| | - Michael Veith
- Biogeography Department, Trier University, Universitätsring 15, Trier 54296, Germany
| | - Jens Vindum
- California Academy of Sciences, San Francisco, CA 94118, USA
| | - Ange-Ghislain Zassi-Boulou
- Institut National de Recherche en Sciences Exactes et Naturelles, Brazzaville BP 2400, République du Congo
| | - Jimmy A McGuire
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Bauer AM. Gecko Adhesion in Space and Time: A Phylogenetic Perspective on the Scansorial Success Story. Integr Comp Biol 2019; 59:117-130. [DOI: 10.1093/icb/icz020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
An evolutionary perspective on gecko adhesion was previously hampered by a lack of an explicit phylogeny for the group and of robust comparative methods to study trait evolution, an underappreciation for the taxonomic and structural diversity of geckos, and a dearth of fossil evidence bearing directly on the origin of the scansorial apparatus. With a multigene dataset as the basis for a comprehensive gekkotan phylogeny, model-based methods have recently been employed to estimate the number of unique derivations of the adhesive system and its role in lineage diversification. Evidence points to a single basal origin of the spinulate oberhautchen layer of the epidermis, which is a necessary precursor for the subsequent elaboration of a functional adhesive mechanism in geckos. However, multiple gains and losses are implicated for the elaborated setae that are necessary for adhesion via van der Waals forces. The well-supported phylogeny of gekkotans has demonstrated that convergence and parallelism in digital design are even more prevalent than previously believed. It also permits the reexamination of previously collected morphological data in an explicitly evolutionary context. Both time-calibrated trees and recently discovered amber fossils that preserve gecko toepads suggest that a fully-functional adhesive apparatus was not only present, but also represented by diverse architectures, by the mid-Cretaceous. Further characterization and phylogenetically-informed analyses of the other components of the adhesive system (muscles, tendons, blood sinuses, etc.) will permit a more comprehensive reconstruction of the evolutionary pathway(s) by which geckos have achieved their structural and taxonomic diversity. A phylogenetic perspective can meaningfully inform functional and performance studies of gecko adhesion and locomotion and can contribute to advances in bioinspired materials.
Collapse
Affiliation(s)
- A M Bauer
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
12
|
Russell AP, Gamble T. Evolution of the Gekkotan Adhesive System: Does Digit Anatomy Point to One or More Origins? Integr Comp Biol 2019; 59:131-147. [DOI: 10.1093/icb/icz006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Recently-developed, molecularly-based phylogenies of geckos have provided the basis for reassessing the number of times adhesive toe-pads have arisen within the Gekkota. At present both a single origin and multiple origin hypotheses prevail, each of which has consequences that relate to explanations about digit form and evolutionary transitions underlying the enormous variation in adhesive toe pad structure among extant, limbed geckos (pygopods lack pertinent features). These competing hypotheses result from mapping the distribution of toe pads onto a phylogenetic framework employing the simple binary expedient of whether such toe pads are present or absent. It is evident, however, that adhesive toe pads are functional complexes that consist of a suite of integrated structural components that interact to bring about adhesive contact with the substratum and release from it. We evaluated the competing hypotheses about toe pad origins using 34 features associated with digit structure (drawn from the overall form of the digits; the presence and form of adhesive scansors; the proportions and structure of the phalanges; aspects of digital muscular and tendon morphology; presence and form of paraphalangeal elements; and the presence and form of substrate compliance-enhancing structures). We mapped these onto a well-supported phylogeny to reconstruct their evolution. Nineteen of these characters proved to be informative for all extant, limbed geckos, allowing us to assess which of them exhibit co-occurrence and/or clade-specificity. We found the absence of adhesive toe pads to be the ancestral state for the extant Gekkota as a whole, and our data to be consistent with independent origins of adhesive toe pads in the Diplodactylidae, Sphaerodactylidae, Phyllodactylidae, and Gekkonidae, with a strong likelihood of multiple origins in the latter three families. These findings are consistent with recently-published evidence of the presence of adhesively-competent digits in geckos generally regarded as lacking toe pads. Based upon morphology we identify other taxa at various locations within the gekkotan tree that are promising candidates for the expression of the early phases of adhesively-assisted locomotion. Investigation of functionally transitional forms will be valuable for enhancing our understanding of what is necessary and sufficient for the transition to adhesively-assisted locomotion, and for those whose objectives are to develop simulacra of the gekkotan adhesive system for biotechnological applications.
Collapse
Affiliation(s)
- Anthony P Russell
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55113, USA
- Milwaukee Public Museum, Milwaukee, WI 53233, USA
| |
Collapse
|
13
|
Gamble T. Duplications in Corneous Beta Protein Genes and the Evolution of Gecko Adhesion. Integr Comp Biol 2019; 59:193-202. [DOI: 10.1093/icb/icz010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Corneous proteins are an important component of the tetrapod integument. Duplication and diversification of keratins and associated proteins are linked with the origin of most novel integumentary structures like mammalian hair, avian feathers, and scutes covering turtle shells. Accordingly, the loss of integumentary structures often coincides with the loss of genes encoding keratin and associated proteins. For example, many hair keratins in dolphins and whales have become pseudogenes. The adhesive setae of geckos and anoles are composed of both intermediate filament keratins (IF-keratins, formerly known as alpha-keratins) and corneous beta-proteins (CBPs, formerly known as beta-keratins) and recent whole genome assemblies of two gecko species and an anole uncovered duplications in seta-specific CBPs in each of these lineages. While anoles evolved adhesive toepads just once, there are two competing hypotheses about the origin(s) of digital adhesion in geckos involving either a single origin or multiple origins. Using data from three published gecko genomes, I examine CBP gene evolution in geckos and find support for a hypothesis where CBP gene duplications are associated with the repeated evolution of digital adhesion. Although these results are preliminary, I discuss how additional gecko genome assemblies, combined with phylogenies of keratin and associated protein genes and gene duplication models, can provide rigorous tests of several hypotheses related to gecko CBP evolution. This includes a taxon sampling strategy for sequencing and assembly of gecko genomes that could help resolve competing hypotheses surrounding the origin(s) of digital adhesion.
Collapse
Affiliation(s)
- Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55113, USA
- Milwaukee Public Museum, Milwaukee, WI 53233, USA
| |
Collapse
|
14
|
Esquerré D, Brennan IG, Catullo RA, Torres‐Pérez F, Keogh JS. How mountains shape biodiversity: The role of the Andes in biogeography, diversification, and reproductive biology in South America's most species‐rich lizard radiation (Squamata: Liolaemidae). Evolution 2018; 73:214-230. [DOI: 10.1111/evo.13657] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/04/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Damien Esquerré
- Division of Ecology and Evolution, Research School of BiologyThe Australian National University 0200 Canberra Australian Capital Territory Australia
| | - Ian G. Brennan
- Division of Ecology and Evolution, Research School of BiologyThe Australian National University 0200 Canberra Australian Capital Territory Australia
| | - Renee A. Catullo
- Division of Ecology and Evolution, Research School of BiologyThe Australian National University 0200 Canberra Australian Capital Territory Australia
- School of Science & Health and Hawkesbury Institute for the EnvironmentWestern Sydney University 2751 Perth New South Wales Australia
| | - Fernando Torres‐Pérez
- Instituto de BiologíaPontificia Universidad Católica de Valparaíso 2950 Valparaíso Chile
| | - J. Scott Keogh
- Division of Ecology and Evolution, Research School of BiologyThe Australian National University 0200 Canberra Australian Capital Territory Australia
| |
Collapse
|
15
|
Blaimer BB, Mawdsley JR, Brady SG. Multiple origins of sexual dichromatism and aposematism within large carpenter bees. Evolution 2018; 72:1874-1889. [PMID: 30039868 DOI: 10.1111/evo.13558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 07/05/2018] [Accepted: 07/15/2018] [Indexed: 12/24/2022]
Abstract
The evolution of reversed sexual dichromatism and aposematic coloration has long been of interest to both theoreticians and empiricists. Yet despite the potential connections between these phenomena, they have seldom been jointly studied. Large carpenter bees (genus Xylocopa) are a promising group for such comparative investigations as they are a diverse clade in which both aposematism and reversed sexual dichromatism can occur either together or separately. We investigated the evolutionary history of dichromatism and aposematism and a potential correlation of these traits with diversification rates within Xylocopa, using a newly generated phylogeny for 179 Xylocopa species based on ultraconserved elements (UCEs). A monochromatic, inconspicuous ancestor is indicated for the genus, with subsequent convergent evolution of sexual dichromatism and aposematism in multiple lineages. Aposematism is found to covary with reversed sexual dichromatism in many species; however, reversed dichromatism also evolved in non-aposematic species. Bayesian Analysis of Macroevolutionary Models (BAMM) did not show increased diversification in any specific clade in Xylocopa, whereas support from Hidden State Speciation and Extinction (HiSSE) models remained inconclusive regarding an association of increased diversification rates with dichromatism or aposematism. We discuss the evolution of color patterns and diversification in Xylocopa by considering potential drivers of dichromatism and aposematism.
Collapse
Affiliation(s)
- Bonnie B Blaimer
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20560.,Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695
| | - Jonathan R Mawdsley
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20560
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20560
| |
Collapse
|
16
|
Harrington SM, de Haan JM, Shapiro L, Ruane S. Habits and characteristics of arboreal snakes worldwide: arboreality constrains body size but does not affect lineage diversification. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Jordyn M de Haan
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | | | - Sara Ruane
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| |
Collapse
|
17
|
Hagey TJ, Uyeda JC, Crandell KE, Cheney JA, Autumn K, Harmon LJ. Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards. Evolution 2017; 71:2344-2358. [DOI: 10.1111/evo.13318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/20/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Travis J. Hagey
- BEACON Center for Evolution in Action Michigan State University East Lansing Michigan 48824
| | - Josef C. Uyeda
- Department of Biological Sciences University of Idaho Moscow Idaho 83844
| | - Kristen E. Crandell
- Department of Zoology University of Cambridge Cambridge CB2‐3EJ United Kingdom
| | - Jorn A. Cheney
- Structure and Motion Laboratory, The Royal Veterinary College University of London Hatfield United Kingdom
| | - Kellar Autumn
- Biology Department Lewis & Clark College Portland Oregon 97219
| | - Luke J. Harmon
- Department of Biological Sciences University of Idaho Moscow Idaho 83844
| |
Collapse
|
18
|
Kirchhoff KN, Hauffe T, Stelbrink B, Albrecht C, Wilke T. Evolutionary bottlenecks in brackish water habitats drive the colonization of fresh water by stingrays. J Evol Biol 2017; 30:1576-1591. [DOI: 10.1111/jeb.13128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 05/05/2017] [Accepted: 05/31/2017] [Indexed: 02/05/2023]
Affiliation(s)
- K. N. Kirchhoff
- Department of Animal Ecology and Systematics; Justus Liebig University Giessen; Giessen Germany
| | - T. Hauffe
- Department of Animal Ecology and Systematics; Justus Liebig University Giessen; Giessen Germany
| | - B. Stelbrink
- Department of Animal Ecology and Systematics; Justus Liebig University Giessen; Giessen Germany
| | - C. Albrecht
- Department of Animal Ecology and Systematics; Justus Liebig University Giessen; Giessen Germany
| | - T. Wilke
- Department of Animal Ecology and Systematics; Justus Liebig University Giessen; Giessen Germany
| |
Collapse
|
19
|
Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM. Repeated evolution of digital adhesion in geckos: a reply to Harrington and Reeder. J Evol Biol 2017; 30:1429-1436. [DOI: 10.1111/jeb.13097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 01/08/2023]
Affiliation(s)
- T. Gamble
- Department of Biological Sciences; Marquette University; Milwaukee WI USA
- Bell Museum of Natural History; University of Minnesota; St. Paul MN USA
| | - E. Greenbaum
- Department of Biological Sciences; University of Texas at El Paso; El Paso TX USA
| | - T. R. Jackman
- Department of Biology; Villanova University; Villanova PA USA
| | - A. P. Russell
- Department of Biological Sciences; University of Calgary; Calgary Canada
| | - A. M. Bauer
- Department of Biology; Villanova University; Villanova PA USA
| |
Collapse
|