1
|
Moosmann M, Greenway R, Oester R, Matthews B. The role of fish predators and their foraging traits in shaping zooplankton community structure. Ecol Lett 2024; 27:e14382. [PMID: 38361474 DOI: 10.1111/ele.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Differentiation of foraging traits among predator populations may help explain observed variation in the structure of prey communities. However, few studies have investigated the phenotypic effects of predators on their prey in natural communities. Here, we use a comparative analysis of 78 Greenlandic lakes to examine how foraging trait variation among threespine stickleback populations can help explain variation in zooplankton community composition among lakes. We find that landscape-scale variation in zooplankton composition was jointly explained by lake properties, such as size and water chemistry, and the presence and absence of both stickleback and arctic char. Additional variation in zooplankton community structure can be explained by stickleback jaw protrusion, a trait with known utility for foraging on zooplankton, but only in lakes where stickleback co-occur with arctic char. Overall, our results illustrate how trait variation of predators, alongside other ecosystem properties, can influence the composition of prey communities in nature.
Collapse
Affiliation(s)
- Marvin Moosmann
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Ryan Greenway
- Department of Biology, University of Constance, Constance, Germany
| | - Rebecca Oester
- Department of Aquatic Ecology, EAWAG, Kastanienbaum, Dübendorf, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| |
Collapse
|
2
|
Nixon KJA, Parzer HF. Got milkweed? Genetic assimilation as potential source for the evolution of nonmigratory monarch butterfly wing shape. Evol Dev 2024; 26:e12463. [PMID: 37971877 DOI: 10.1111/ede.12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/09/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Monarch butterflies (Danaus plexippus) are well studied for their annual long-distance migration from as far north as Canada to their overwintering grounds in Central Mexico. At the end of the cold season, monarchs start to repopulate North America through short-distance migration over the course of multiple generations. Interestingly, some populations in various tropical and subtropical islands do not migrate and exhibit heritable differences in wing shape and size, most likely an adaptation to island life. Less is known about forewing differences between long- and short-distance migrants in relation to island populations. Given their different migratory behaviors, we hypothesized that these differences would be reflected in wing morphology. To test this, we analyzed forewing shape and size of three different groups: nonmigratory, lesser migratory (migrate short-distances), and migratory (migrate long-distances) individuals. Significant differences in shape appear in all groups using geometric morphometrics. As variation found between migratory and lesser migrants has been shown to be caused by phenotypic plasticity, and lesser migrants develop intermediate forewing shapes between migratory and nonmigratory individuals, we suggest that genetic assimilation might be an important mechanism to explain the heritable variation found between migratory and nonmigratory populations. Additionally, our research confirms previous studies which show that forewing size is significantly smaller in nonmigratory populations when compared to both migratory phenotypes. Finally, we found sexual dimorphism in forewing shape in all three groups, but for size in nonmigratory populations only. This might have been caused by reduced constraints on forewing size in nonmigratory populations.
Collapse
Affiliation(s)
- Kyra J A Nixon
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, New Jersey, USA
| | - Harald F Parzer
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, New Jersey, USA
| |
Collapse
|
3
|
Rosenthal DM, Deng L, Rose T, Touchon JC. One of these things is not like the other: Mixed predator cues result in lopsided phenotypic responses in a Neotropical tadpole. PLoS One 2023; 18:e0285968. [PMID: 37220106 DOI: 10.1371/journal.pone.0285968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Many organisms have evolved to produce different phenotypes in response to environmental variation. Dendropsophus ebraccatus tadpoles develop opposing shifts in morphology and coloration when they are exposed to invertebrate vs vertebrate predators. Each of these alternate phenotypes are adaptive, conferring a survival advantage against the predator with which tadpoles were reared but imposing a survival cost with the mismatched predator. Here, we measured the phenotypic response of tadpoles to graded cues and mixed cues of both fish and dragonfly nymphs. Prey species like D. ebraccatus commonly co-occur with both of these types of predators, amongst many others as well. In our first experiment, tadpoles increased investment in defensive phenotypes in response to increasing concentrations of predator cues. Whereas morphology only differed in the strongest predation cue, tail spot coloration differed even at the lowest cue concentration. In our second experiment, tadpoles reared with cues from both predators developed an intermediate yet skewed phenotype that was most similar to the fish-induced phenotype. Previous studies have shown that fish are more lethal than dragonfly larvae; thus tadpoles responded most strongly to the more dangerous predator, even though the number of prey consumed by each predator was the same. This may be due to D. ebraccatus having evolved a stronger response to fish or because fish produce more kairomones than do dragonflies for a given amount of food. We demonstrate that not only do tadpoles assess predation risk via the concentration of predation cues in the water, they produce a stronger response to a more lethal predator even when the strength of cues is presumed to be identical.
Collapse
Affiliation(s)
- Dean M Rosenthal
- Biology Department, Vassar College, Poughkeepsie, New York, United States of America
| | - Luana Deng
- Biology Department, Vassar College, Poughkeepsie, New York, United States of America
| | - Tarif Rose
- Biology Department, Vassar College, Poughkeepsie, New York, United States of America
| | - Justin C Touchon
- Biology Department, Vassar College, Poughkeepsie, New York, United States of America
| |
Collapse
|
4
|
Kuo HC, Yao CT, Liao BY, Weng MP, Dong F, Hsu YC, Hung CM. Weak gene-gene interaction facilitates the evolution of gene expression plasticity. BMC Biol 2023; 21:57. [PMID: 36941675 PMCID: PMC10029303 DOI: 10.1186/s12915-023-01558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Individual organisms may exhibit phenotypic plasticity when they acclimate to different conditions. Such plastic responses may facilitate or constrain the adaptation of their descendant populations to new environments, complicating their evolutionary trajectories beyond the genetic blueprint. Intriguingly, phenotypic plasticity itself can evolve in terms of its direction and magnitude during adaptation. However, we know little about what determines the evolution of phenotypic plasticity, including gene expression plasticity. Recent laboratory-based studies suggest dominance of reversing gene expression plasticity-plastic responses that move the levels of gene expression away from the new optima. Nevertheless, evidence from natural populations is still limited. RESULTS Here, we studied gene expression plasticity and its evolution in the montane and lowland populations of an elevationally widespread songbird-the Rufous-capped Babbler (Cyanoderma ruficeps)-with reciprocal transplant experiments and transcriptomic analyses; we set common gardens at altitudes close to these populations' native ranges. We confirmed the prevalence of reversing plasticity in genes associated with altitudinal adaptation. Interestingly, we found a positive relationship between magnitude and degree of evolution in gene expression plasticity, which was pertinent to not only adaptation-associated genes but also the whole transcriptomes from multiple tissues. Furthermore, we revealed that genes with weaker expressional interactions with other genes tended to exhibit stronger plasticity and higher degree of plasticity evolution, which explains the positive magnitude-evolution relationship. CONCLUSIONS Our experimental evidence demonstrates that species may initiate their adaptation to new habitats with genes exhibiting strong expression plasticity. We also highlight the role of expression interdependence among genes in regulating the magnitude and evolution of expression plasticity. This study illuminates how the evolution of phenotypic plasticity in gene expression facilitates the adaptation of species to challenging environments in nature.
Collapse
Affiliation(s)
- Hao-Chih Kuo
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Te Yao
- Division of Zoology, Endemic Species Research Institute, Nantou, 55244, Taiwan
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Meng-Pin Weng
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Feng Dong
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yu-Cheng Hsu
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
5
|
Levis NA, McKay DJ, Pfennig DW. Disentangling the developmental origins of a novel phenotype: enhancement versus reversal of environmentally induced gene expression. Proc Biol Sci 2022; 289:20221764. [PMID: 36285495 PMCID: PMC9597403 DOI: 10.1098/rspb.2022.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
Increasing evidence suggests that many novel traits might have originated via plasticity-led evolution (PLE). Yet, little is known of the developmental processes that underpin PLE, especially in its early stages. One such process is 'phenotypic accommodation', which occurs when, in response to a change in the environment, an organism experiences adjustments across variable parts of its phenotype that improve its fitness. Here, we asked if environmentally induced changes in gene expression are enhanced or reversed during phenotypic accommodation of a novel, complex phenotype in spadefoot toad tadpoles (Spea multiplicata). More genes than expected were affected by both the environment and phenotypic accommodation in the liver and brain. However, although phenotypic accommodation primarily reversed environmentally induced changes in gene expression in liver tissue, it enhanced these changes in brain tissue. Thus, depending on the tissue, phenotypic accommodation may either minimize functional disruption via reversal of gene expression patterns or promote novelty via enhancement of existing expression patterns. Our study thereby provides insights into the developmental origins of a novel phenotype and the incipient stages of PLE.
Collapse
Affiliation(s)
- Nicholas A. Levis
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel J. McKay
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David W. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Preston JC, Wooliver R, Driscoll H, Coughlin A, Sheth SN. Spatial variation in high temperature-regulated gene expression predicts evolution of plasticity with climate change in the scarlet monkeyflower. Mol Ecol 2022; 31:1254-1268. [PMID: 34859530 PMCID: PMC8821412 DOI: 10.1111/mec.16300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
A major way that organisms can adapt to changing environmental conditions is by evolving increased or decreased phenotypic plasticity. In the face of current global warming, more attention is being paid to the role of plasticity in maintaining fitness as abiotic conditions change over time. However, given that temporal data can be challenging to acquire, a major question is whether evolution in plasticity across space can predict adaptive plasticity across time. In growth chambers simulating two thermal regimes, we generated transcriptome data for western North American scarlet monkeyflowers (Mimulus cardinalis) collected from different latitudes and years (2010 and 2017) to test hypotheses about how plasticity in gene expression is responding to increases in temperature, and if this pattern is consistent across time and space. Supporting the genetic compensation hypothesis, individuals whose progenitors were collected from the warmer-origin northern 2017 descendant cohort showed lower thermal plasticity in gene expression than their cooler-origin northern 2010 ancestors. This was largely due to a change in response at the warmer (40°C) rather than cooler (20°C) treatment. A similar pattern of reduced plasticity, largely due to a change in response at 40°C, was also found for the cooler-origin northern versus the warmer-origin southern population from 2017. Our results demonstrate that reduced phenotypic plasticity can evolve with warming and that spatial and temporal changes in plasticity predict one another.
Collapse
Affiliation(s)
- Jill C. Preston
- Department of Plant Biology, The University of Vermont, 63 Carrigan Drive, Burlington, VT 05405, USA,Corresponding author:
| | - Rachel Wooliver
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA,Current address: Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Heather Driscoll
- Bioinformatics Core, Vermont Biomedical Research Network, Department of Biology, Norwich University, 158 Harmon Drive, Northfield, VT 05663, USA
| | - Aeran Coughlin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Seema N. Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
de Carvalho CF, Nosil P. Phenotypic plasticity in a gene-centric world. Curr Biol 2022. [DOI: 10.1016/j.cub.2022.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Bailey NW, Desjonquères C, Drago A, Rayner JG, Sturiale SL, Zhang X. A neglected conceptual problem regarding phenotypic plasticity's role in adaptive evolution: The importance of genetic covariance and social drive. Evol Lett 2021; 5:444-457. [PMID: 34621532 PMCID: PMC8484725 DOI: 10.1002/evl3.251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023] Open
Abstract
There is tantalizing evidence that phenotypic plasticity can buffer novel, adaptive genetic variants long enough to permit their evolutionary spread, and this process is often invoked in explanations for rapid adaptive evolution. However, the strength and generality of evidence for it is controversial. We identify a conceptual problem affecting this debate: recombination, segregation, and independent assortment are expected to quickly sever associations between genes controlling novel adaptations and genes contributing to trait plasticity that facilitates the novel adaptations by reducing their indirect fitness costs. To make clearer predictions about this role of plasticity in facilitating genetic adaptation, we describe a testable genetic mechanism that resolves the problem: genetic covariance between new adaptive variants and trait plasticity that facilitates their persistence within populations. We identify genetic architectures that might lead to such a covariance, including genetic coupling via physical linkage and pleiotropy, and illustrate the consequences for adaptation rates using numerical simulations. Such genetic covariances may also arise from the social environment, and we suggest the indirect genetic effects that result could further accentuate the process of adaptation. We call the latter mechanism of adaptation social drive, and identify methods to test it. We suggest that genetic coupling of plasticity and adaptations could promote unusually rapid ‘runaway’ evolution of novel adaptations. The resultant dynamics could facilitate evolutionary rescue, adaptive radiations, the origin of novelties, and other commonly studied processes.
Collapse
Affiliation(s)
- Nathan W Bailey
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| | - Camille Desjonquères
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom.,Department of Biological Sciences University of Wisconsin-Milwaukee Milwaukee Wisconsin 53201
| | - Ana Drago
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| | - Jack G Rayner
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| | - Samantha L Sturiale
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom.,Current Address: Department of Biology Georgetown University Washington DC 20057
| | - Xiao Zhang
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| |
Collapse
|
9
|
Moosmann M, Cuenca-Cambronero M, De Lisle S, Greenway R, Hudson CM, Lürig MD, Matthews B. On the evolution of trophic position. Ecol Lett 2021; 24:2549-2562. [PMID: 34553481 PMCID: PMC9290349 DOI: 10.1111/ele.13888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/24/2021] [Accepted: 08/26/2021] [Indexed: 01/05/2023]
Abstract
The trophic structure of food webs is primarily determined by the variation in trophic position among species and individuals. Temporal dynamics of food web structure are central to our understanding of energy and nutrient fluxes in changing environments, but little is known about how evolutionary processes shape trophic position variation in natural populations. We propose that trophic position, whose expression depends on both environmental and genetic determinants of the diet variation in individual consumers, is a quantitative trait that can evolve via natural selection. Such evolution can occur either when trophic position is correlated with other heritable morphological and behavioural traits under selection, or when trophic position is a target of selection, which is possible if the fitness effects of prey items are heterogeneously distributed along food chains. Recognising trophic position as an evolving trait, whose expression depends on the food web context, provides an important conceptual link between behavioural foraging theory and food web dynamics, and a useful starting point for the integration of ecological and evolutionary studies of trophic position.
Collapse
Affiliation(s)
- Marvin Moosmann
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Maria Cuenca-Cambronero
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Ryan Greenway
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| | - Cameron M Hudson
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Blake Matthews
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| |
Collapse
|
10
|
Levis NA, Kelly PW, Harmon EA, Ehrenreich IM, McKay DJ, Pfennig DW. Transcriptomic bases of a polyphenism. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:482-495. [PMID: 34142757 DOI: 10.1002/jez.b.23066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/22/2021] [Accepted: 05/22/2021] [Indexed: 11/06/2022]
Abstract
Polyphenism-in which multiple distinct phenotypes are produced from a single genotype owing to differing environmental conditions-is commonplace, but its molecular bases are poorly understood. Here, we examine the transcriptomic bases of a polyphenism in Mexican spadefoot toads (Spea multiplicata). Depending on their environment, their tadpoles develop into either a default "omnivore" morph or a novel "carnivore" morph. We compared patterns of gene expression among sibships that exhibited high versus low production of carnivores when reared in conditions that induce the carnivore morph versus those that do not. We found that production of the novel carnivore morph actually involved changes in fewer genes than did the maintenance of the default omnivore morph in the inducing environment. However, only body samples showed this pattern; head samples showed the opposite pattern. We also found that changes to lipid metabolism (especially cholesterol biosynthesis) and peroxisome contents and function might be crucial for establishing and maintaining differences between the morphs. Thus, our findings suggest that carnivore phenotype might have originally evolved following the breakdown of robustness mechanisms that maintain the default omnivore phenotype, and that the carnivore morph is developmentally regulated by lipid metabolism and peroxisomal form, function, and/or signaling. This study also serves as a springboard for further exploration into the nature and causes of plasticity in an emerging model system.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA.,Current affiliation: Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Patrick W Kelly
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Emily A Harmon
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, University of Southern, Los Angeles, California, USA
| | - Daniel J McKay
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Parker BJ, Driscoll RMH, Grantham ME, Hrcek J, Brisson JA. Wing plasticity and associated gene expression varies across the pea aphid biotype complex. Evolution 2021; 75:1143-1149. [PMID: 33527425 DOI: 10.1111/evo.14174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Developmental phenotypic plasticity is a widespread phenomenon that allows organisms to produce different adult phenotypes in response to different environments. Investigating the molecular mechanisms underlying plasticity has the potential to reveal the precise changes that lead to the evolution of plasticity as a phenotype. Here, we study wing plasticity in multiple host-plant adapted populations of pea aphids as a model for understanding adaptation to different environments within a single species. We describe the wing plasticity response of different "biotypes" to a crowded environment and find differences within as well as among biotypes. We then use transcriptome profiling to compare a highly plastic pea aphid genotype to one that shows no plasticity and find that the latter exhibits no gene expression differences between environments. We conclude that the loss of plasticity has been accompanied by a loss of differential gene expression and therefore that genetic assimilation has occurred. Our gene expression results generalize previous studies that have shown a correlation between plasticity in morphology and gene expression.
Collapse
Affiliation(s)
- Benjamin J Parker
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.,Department of Zoology, University of Oxford, Oxford, OX13PS, UK.,Department of Microbiology, University of Tennessee, Knoxville, TN, 37916, USA
| | - Rose M H Driscoll
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Mary E Grantham
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Jan Hrcek
- Department of Zoology, University of Oxford, Oxford, OX13PS, UK.,Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
| | - Jennifer A Brisson
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
12
|
Casasa S, Zattara EE, Moczek AP. Nutrition-responsive gene expression and the developmental evolution of insect polyphenism. Nat Ecol Evol 2020; 4:970-978. [PMID: 32424280 DOI: 10.1038/s41559-020-1202-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/09/2020] [Indexed: 01/05/2023]
Abstract
Nutrition-responsive development is a ubiquitous and highly diversified example of phenotypic plasticity, yet its underlying molecular and developmental mechanisms and modes of evolutionary diversification remain poorly understood. We measured genome-wide transcription in three closely related species of horned beetles exhibiting strikingly diverse degrees of nutrition responsiveness in the development of male weaponry. We show that (1) counts of differentially expressed genes between low- and high-nutritional backgrounds mirror species-specific degrees of morphological nutrition responsiveness; (2) evolutionary exaggeration of morphological responsiveness is underlain by both amplification of ancestral nutrition-responsive gene expression and recruitment of formerly low nutritionally responsive genes; and (3) secondary loss of morphological responsiveness to nutrition coincides with a dramatic reduction in gene expression plasticity. Our results further implicate genetic accommodation of ancestrally high variability of gene expression plasticity in both exaggeration and loss of nutritional plasticity, yet reject a major role of taxon-restricted genes in the developmental regulation and evolution of nutritional plasticity.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, USA.
| | - Eduardo E Zattara
- Department of Biology, Indiana University, Bloomington, IN, USA. .,INIBIOMA, Universidad Nacional del Comahue - CONICET, Bariloche, Argentina.
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
13
|
Kelly M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180176. [PMID: 30966963 DOI: 10.1098/rstb.2018.0176] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Theory suggests that evolutionary changes in phenotypic plasticity could either hinder or facilitate evolutionary rescue in a changing climate. Nevertheless, the actual role of evolving plasticity in the responses of natural populations to climate change remains unresolved. Direct observations of evolutionary change in nature are rare, making it difficult to assess the relative contributions of changes in trait means versus changes in plasticity to climate change responses. To address this gap, this review explores several proxies that can be used to understand evolving plasticity in the context of climate change, including space for time substitutions, experimental evolution and tests for genomic divergence at environmentally responsive loci. Comparisons among populations indicate a prominent role for divergence in environmentally responsive traits in local adaptation to climatic gradients. Moreover, genomic comparisons among such populations have identified pervasive divergence in the regulatory regions of environmentally responsive loci. Taken together, these lines of evidence suggest that divergence in plasticity plays a prominent role in adaptation to climatic gradients over space, indicating that evolving plasticity is also likely to play a key role in adaptive responses to climate change through time. This suggests that genetic variation in plastic responses to the environment (G × E) might be an important predictor of species' vulnerabilities to climate-driven decline or extinction. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Morgan Kelly
- Biological Sciences, Louisiana State University , Baton Rouge, LA 70808 , USA
| |
Collapse
|
14
|
Seidl F, Levis NA, Schell R, Pfennig DW, Pfennig KS, Ehrenreich IM. Genome of Spea multiplicata, a Rapidly Developing, Phenotypically Plastic, and Desert-Adapted Spadefoot Toad. G3 (BETHESDA, MD.) 2019; 9:3909-3919. [PMID: 31578218 PMCID: PMC6893194 DOI: 10.1534/g3.119.400705] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
Abstract
Frogs and toads (anurans) are widely used to study many biological processes. Yet, few anuran genomes have been sequenced, limiting research on these organisms. Here, we produce a draft genome for the Mexican spadefoot toad, Spea multiplicata, which is a member of an unsequenced anuran clade. Atypically for amphibians, spadefoots inhabit deserts. Consequently, they possess many unique adaptations, including rapid growth and development, prolonged dormancy, phenotypic (developmental) plasticity, and adaptive, interspecies hybridization. We assembled and annotated a 1.07 Gb Sp. multiplicata genome containing 19,639 genes. By comparing this sequence to other available anuran genomes, we found gene amplifications in the gene families of nodal, hyas3, and zp3 in spadefoots, and obtained evidence that anuran genome size differences are partially driven by variability in intergenic DNA content. We also used the genome to identify genes experiencing positive selection and to study gene expression levels in spadefoot hybrids relative to their pure-species parents. Completion of the Sp. multiplicata genome advances efforts to determine the genetic bases of spadefoots' unique adaptations and enhances comparative genomic research in anurans.
Collapse
Affiliation(s)
- Fabian Seidl
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, and
| | - Nicholas A Levis
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Rachel Schell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, and
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, and
| |
Collapse
|
15
|
Sasaki MC, Dam HG. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. GLOBAL CHANGE BIOLOGY 2019; 25:4147-4164. [PMID: 31449341 DOI: 10.1111/gcb.14811] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Differences in population vulnerability to warming are defined by spatial patterns in thermal adaptation. These patterns may be driven by natural selection over spatial environmental gradients, but can also be shaped by gene flow, especially in marine taxa with high dispersal potential. Understanding and predicting organismal responses to warming requires disentangling the opposing effects of selection and gene flow. We begin by documenting genetic divergence of thermal tolerance and developmental phenotypic plasticity. Ten populations of the widespread copepod Acartia tonsa were collected from sites across a large thermal gradient, ranging from the Florida Keys to Northern New Brunswick, Canada (spanning over 20° latitude). Thermal performance curves (TPCs) from common garden experiments revealed local adaptation at the sampling range extremes, with thermal tolerance increasing at low latitudes and decreasing at high latitudes. The opposite pattern was observed in phenotypic plasticity, which was strongest at high latitudes. No relationship was observed between phenotypic plasticity and environmental variables. Instead, the results are consistent with the hypothesis of a trade-off between thermal tolerance and the strength of phenotypic plasticity. Over a large portion of the sampled range, however, we observed a remarkable lack of differentiation of TPCs. To examine whether this lack of divergence is the result of selection for a generalist performance curve or constraint by gene flow, we analyzed cytochrome oxidase I mtDNA sequences, which revealed four distinct genetic clades, abundant genetic diversity, and widely distributed haplotypes. Strong divergence in thermal performance within genetic clades, however, suggests that the pace of thermal adaptation can be relatively rapid. The combined insight from the laboratory physiological experiments and genetic data indicate that gene flow constrains differentiation of TPCs. This balance between gene flow and selection has implications for patterns of vulnerability to warming. Taking both genetic differentiation and phenotypic plasticity into account, our results suggest that local adaptation does not increase vulnerability to warming, and that low-latitude populations in general may be more vulnerable to predicted temperature change over the next century.
Collapse
Affiliation(s)
- Matthew C Sasaki
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Hans G Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
16
|
Sabino-Pinto J, Goedbloed DJ, Sanchez E, Czypionka T, Nolte AW, Steinfartz S. The Role of Plasticity and Adaptation in the Incipient Speciation of a Fire Salamander Population. Genes (Basel) 2019; 10:genes10110875. [PMID: 31683677 PMCID: PMC6896149 DOI: 10.3390/genes10110875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Phenotypic plasticity and local adaptation via genetic change are two major mechanisms of response to dynamic environmental conditions. These mechanisms are not mutually exclusive, since genetic change can establish similar phenotypes to plasticity. This connection between both mechanisms raises the question of how much of the variation observed between species or populations is plastic and how much of it is genetic. In this study, we used a structured population of fire salamanders (Salamandra salamandra), in which two subpopulations differ in terms of physiology, genetics, mate-, and habitat preferences. Our goal was to identify candidate genes for differential habitat adaptation in this system, and to explore the degree of plasticity compared to local adaptation. We therefore performed a reciprocal transfer experiment of stream- and pond-originated salamander larvae and analyzed changes in morphology and transcriptomic profile (using species-specific microarrays). We observed that stream- and pond-originated individuals diverge in morphology and gene expression. For instance, pond-originated larvae have larger gills, likely to cope with oxygen-poor ponds. When transferred to streams, pond-originated larvae showed a high degree of plasticity, resembling the morphology and gene expression of stream-originated larvae (reversion); however the same was not found for stream-originated larvae when transferred to ponds, where the expression of genes related to reduction-oxidation processes was increased, possibly to cope with environmental stress. The lack of symmetrical responses between transplanted animals highlights the fact that the adaptations are not fully plastic and that some level of local adaptation has already occurred in this population. This study illuminates the process by which phenotypic plasticity allows local adaptation to new environments and its potential role in the pathway of incipient speciation.
Collapse
Affiliation(s)
- Joana Sabino-Pinto
- Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - Daniel J Goedbloed
- Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - Eugenia Sanchez
- Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Till Czypionka
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Arne W Nolte
- Department of Ecological Genomics, Institute for Biology and Environmental Sciences, University of Oldenburg, 26129 Oldenburg, Germany.
| | - Sebastian Steinfartz
- University of Leipzig, Institute of Biology, Molecular Evolution and Systematics of Animals, 04103 Leipzig, Germany.
| |
Collapse
|
17
|
Levis NA, Pfennig DW. Plasticity‐led evolution: A survey of developmental mechanisms and empirical tests. Evol Dev 2019; 22:71-87. [DOI: 10.1111/ede.12309] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nicholas A. Levis
- Department of Biology University of North Carolina Chapel Hill North Carolina
| | - David W. Pfennig
- Department of Biology University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
18
|
Levis NA, Pfennig DW. How stabilizing selection and nongenetic inheritance combine to shape the evolution of phenotypic plasticity. J Evol Biol 2019; 32:706-716. [PMID: 30968503 DOI: 10.1111/jeb.13475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022]
Abstract
Relatively little is known about whether and how nongenetic inheritance interacts with selection to impact the evolution of phenotypic plasticity. Here, we empirically evaluated how stabilizing selection and a common form of nongenetic inheritance-maternal environmental effects-jointly influence the evolution of phenotypic plasticity in natural populations of spadefoot toads. We compared populations that previous fieldwork has shown to have evolved conspicuous plasticity in resource-use phenotypes ("resource polyphenism") with those that, owing to stabilizing selection favouring a narrower range of such phenotypes, appear to have lost this plasticity. We show that: (a) this apparent loss of plasticity in nature reflects a condition-dependent maternal effect and not a genetic loss of plasticity, that is "genetic assimilation," and (b) this plasticity is not costly. By shielding noncostly plasticity from selection, nongenetic inheritance generally, and maternal effects specifically, can preclude genetic assimilation from occurring and consequently impede adaptive (genetic) evolution.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Kelly PW, Pfennig DW, de la Serna Buzón S, Pfennig KS. Male sexual signal predicts phenotypic plasticity in offspring: implications for the evolution of plasticity and local adaptation. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180179. [PMID: 30966958 PMCID: PMC6365869 DOI: 10.1098/rstb.2018.0179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2018] [Indexed: 01/18/2023] Open
Abstract
In a rapidly changing world, understanding the processes that influence a population's ability to respond to natural selection is critical for identifying how to preserve biodiversity. Two such processes are phenotypic plasticity and sexual selection. Whereas plasticity can facilitate local adaptation, sexual selection potentially impedes local adaptation, especially in rapidly changing or variable environments. Here we hypothesize that, when females preferentially choose males that sire plastic offspring, sexual selection can actually facilitate local adaptation to variable or novel environments by promoting the evolution of adaptive plasticity. We tested this hypothesis by evaluating whether male sexual signals could indicate plasticity in their offspring and, concomitantly, their offspring's ability to produce locally adapted phenotypes. Using spadefoot toads ( Spea multiplicata) as our experimental system, we show that a male sexual signal predicts plasticity in his offspring's resource-use morphology. Specifically, faster-calling males (which are preferred by females) produce more plastic offspring; such plasticity, in turn, enables these males' offspring to respond adaptively to the spadefoots' highly variable environment. The association between a preferred male signal and adaptive plasticity in his offspring suggests that female mate choice can favour the evolution and maintenance of phenotypic plasticity and thereby foster adaptation to a variable environment. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
|
20
|
Levis NA, Pfennig DW. Plasticity-led evolution: evaluating the key prediction of frequency-dependent adaptation. Proc Biol Sci 2019; 286:20182754. [PMID: 30963848 PMCID: PMC6408876 DOI: 10.1098/rspb.2018.2754] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/05/2019] [Indexed: 01/20/2023] Open
Abstract
Plasticity-led evolution occurs when a change in the environment triggers a change in phenotype via phenotypic plasticity, and this pre-existing plasticity is subsequently refined by selection into an adaptive phenotype. A critical, but largely untested prediction of plasticity-led evolution (and evolution by natural selection generally) is that the rate and magnitude of evolutionary change should be positively associated with a phenotype's frequency of expression in a population. Essentially, the more often a phenotype is expressed and exposed to selection, the greater its opportunity for adaptive refinement. We tested this prediction by competing against each other spadefoot toad tadpoles from different natural populations that vary in how frequently they express a novel, environmentally induced carnivore ecomorph. As expected, laboratory-reared tadpoles whose parents were derived from populations that express the carnivore ecomorph more frequently were superior competitors for the resource for which this ecomorph is specialized-fairy shrimp. These tadpoles were better at using this resource both because they were more efficient at capturing and consuming shrimp and because they produced more exaggerated carnivore traits. Moreover, they exhibited these more carnivore-like features even without experiencing the inducing cue, suggesting that this ecomorph has undergone an extreme form of plasticity-led evolution-genetic assimilation. Thus, our findings provide evidence that the frequency of trait expression drives the magnitude of adaptive refinement, thereby validating a key prediction of plasticity-led evolution specifically and adaptive evolution generally.
Collapse
Affiliation(s)
- Nicholas A. Levis
- Department of Biology, University of North Carolina, CB no. 3280, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
21
|
Hsu SK, Jakšić AM, Nolte V, Barghi N, Mallard F, Otte KA, Schlötterer C. A 24 h Age Difference Causes Twice as Much Gene Expression Divergence as 100 Generations of Adaptation to a Novel Environment. Genes (Basel) 2019; 10:E89. [PMID: 30696109 PMCID: PMC6410183 DOI: 10.3390/genes10020089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 02/08/2023] Open
Abstract
Gene expression profiling is one of the most reliable high-throughput phenotyping methods, allowing researchers to quantify the transcript abundance of expressed genes. Because many biotic and abiotic factors influence gene expression, it is recommended to control them as tightly as possible. Here, we show that a 24 h age difference of Drosophilasimulans females that were subjected to RNA sequencing (RNA-Seq) five and six days after eclosure resulted in more than 2000 differentially expressed genes. This is twice the number of genes that changed expression during 100 generations of evolution in a novel hot laboratory environment. Importantly, most of the genes differing in expression due to age introduce false positives or negatives if an adaptive gene expression analysis is not controlled for age. Our results indicate that tightly controlled experimental conditions, including precise developmental staging, are needed for reliable gene expression analyses, in particular in an evolutionary framework.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Neda Barghi
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - François Mallard
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Kathrin A Otte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
| | | |
Collapse
|
22
|
Corl A, Bi K, Luke C, Challa AS, Stern AJ, Sinervo B, Nielsen R. The Genetic Basis of Adaptation following Plastic Changes in Coloration in a Novel Environment. Curr Biol 2018; 28:2970-2977.e7. [PMID: 30197088 DOI: 10.1016/j.cub.2018.06.075] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/20/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023]
Abstract
Phenotypic plasticity has been hypothesized to precede and facilitate adaptation to novel environments [1-8], but examples of plasticity preceding adaptation in wild populations are rare (but see [9, 10]). We studied a population of side-blotched lizards, Uta stansburiana, living on a lava flow that formed 22,500 years ago [11] to understand the origin of their novel melanic phenotype that makes them cryptic on the black lava. We found that lizards living on and off of the lava flow exhibited phenotypic plasticity in coloration but also appeared to have heritable differences in pigmentation. We sequenced the exomes of 104 individuals and identified two known regulators of melanin production, PREP and PRKAR1A, which had markedly increased levels of divergence between lizards living on and off the lava flow. The derived variants in PREP and PRKAR1A were only found in the lava population and were associated with increased pigmentation levels in an experimental cohort of hatchling lizards. Simulations suggest that the derived variants in the PREP and PRKAR1A genes arose recently and were under strong positive selection in the lava population. Overall, our results suggest that ancestral plasticity for coloration facilitated initial survival in the lava environment and was followed by genetic changes that modified the phenotype in the direction of the induced plastic response, possibly through de novo mutations. These observations provide a detailed example supporting the hypothesis that plasticity aids in the initial colonization of a novel habitat, with natural selection subsequently refining the phenotype with genetic adaptations to the new environment. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ammon Corl
- Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA; Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA; Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Claudia Luke
- Center for Environmental Inquiry, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928, USA
| | - Akshara Sree Challa
- Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Aaron James Stern
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building # 3140, Berkeley, CA 94720-3140, USA; Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building # 3140, Berkeley, CA 94720-3140, USA
| |
Collapse
|
23
|
Morphological novelty emerges from pre-existing phenotypic plasticity. Nat Ecol Evol 2018; 2:1289-1297. [PMID: 29988161 DOI: 10.1038/s41559-018-0601-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/08/2018] [Indexed: 02/01/2023]
Abstract
Plasticity-first evolution (PFE) posits that novel features arise when selection refines pre-existing phenotypic plasticity into an adaptive phenotype. However, PFE is controversial because few tests have been conducted in natural populations. Here we present evidence that PFE fostered the origin of an evolutionary novelty that allowed certain amphibians to invade a new niche-a distinctive carnivore morph. We compared morphology, gene expression and growth of three species of spadefoot toad tadpoles when reared on alternative diets: Scaphiopus holbrookii, which (like most frogs) never produce carnivores; Spea multiplicata, which sometimes produce carnivores, but only through diet-induced plasticity; and Spea bombifrons, which often produce carnivores regardless of diet. Consistent with PFE, we found diet-induced plasticity-in morphology and gene expression-in Sc. holbrookii, adaptive refinement of this plasticity in Sp. multiplicata, and further refinement of the carnivore phenotype in Sp. bombifrons. Generally, phenotypic plasticity might play a significant, if underappreciated, role in evolutionary innovation.
Collapse
|
24
|
Czypionka T, Goedbloed DJ, Steinfartz S, Nolte AW. Plasticity and evolutionary divergence in gene expression associated with alternative habitat use in larvae of the European Fire Salamander. Mol Ecol 2018; 27:2698-2713. [PMID: 29742304 DOI: 10.1111/mec.14713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/27/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Transcriptomes of organisms reveal differentiation associated with the use of different habitats. However, this leaves open how much of the observed differentiation can be attributed to genetic differences or to transcriptional plasticity. In this study, we disentangle causes of differential gene expression in larvae of the European fire salamander from the Kottenforst forest in Germany. Larvae inhabit permanent streams and ephemeral ponds and represent an example of a young evolutionary split associated with contrasting ecological conditions. We hypothesized that adaptation towards differences in water temperature plays a role because the thermal regime between stream and pond habitats differs notably. Tissue samples from tail fins of larvae were collected to study gene expression using microarrays. We found ample evidence for differentiation among larvae occupying different habitats in nature with 2,800 of 11,797 genes being differentially expressed. We then quantified transcriptional plasticity towards temperature and genetic differentiation based on controlled temperature laboratory experiments. Gene-by-environment interactions modelling revealed that 28% of the gene expression divergence observed among samples in nature could be attributed to plasticity related to water temperature. Expression patterns of only a small number of 101 genes were affected by the genotype. Our analysis demonstrates that effects of environmental factors must be taken into account to explain variation of gene expression in salamanders in nature. Notwithstanding, it provides first evidence that genetic factors determined gene expression divergence between pond and stream ecotypes and could be involved in adaptive evolution.
Collapse
Affiliation(s)
- Till Czypionka
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Daniel J Goedbloed
- Department of Evolutionary Biology, Unit Molecular Ecology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sebastian Steinfartz
- Department of Evolutionary Biology, Unit Molecular Ecology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Arne W Nolte
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Ecological Genomics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
25
|
The role of ancestral phenotypic plasticity in evolutionary diversification: population density effects in horned beetles. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Levis NA, Pfennig DW. Phenotypic plasticity, canalization, and the origins of novelty: Evidence and mechanisms from amphibians. Semin Cell Dev Biol 2018; 88:80-90. [PMID: 29408711 DOI: 10.1016/j.semcdb.2018.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
A growing number of biologists have begun asking whether environmentally induced phenotypic change--'phenotypic plasticity'--precedes and facilitates the origin and canalization of novel, complex phenotypes. However, such 'plasticity-first evolution' (PFE) remains controversial. Here, we summarize the PFE hypothesis and describe how it can be evaluated in natural systems. We then review the evidence for PFE from amphibians (a group in which phenotypic plasticity is especially widespread) and describe how phenotypic plasticity might have facilitated macroevolutionary change. Finally, we discuss what is known about the proximate mechanisms of PFE in amphibians. We close with suggestions for future research. As we describe, amphibians offer some of the best support for plasticity's role in the origin of evolutionary novelties.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David W Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
27
|
Projecto-Garcia J, Biddle JF, Ragsdale EJ. Decoding the architecture and origins of mechanisms for developmental polyphenism. Curr Opin Genet Dev 2017; 47:1-8. [PMID: 28810163 DOI: 10.1016/j.gde.2017.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023]
Abstract
Developmental polyphenism affords a single genotype multiple solutions to match an organism to its environment. Because polyphenism is the extreme example of how development deviates from a linear genetic blueprint, it demands a genetic explanation for how environmental cues shunt development to hypothetically alternative modules. We highlight several recent advances that have begun to illuminate genetic mechanisms for polyphenism and how this recurring developmental novelty may arise. An emerging genetic knowledge of polyphenism is providing precise targets for testing hypotheses of how switch mechanisms are built-out of olfactory, nutrient-sensing, hormone-reception, and developmental and genetic buffering systems-to accommodate plasticity. Moreover, classic and new model systems are testing the genetic basis of polyphenism's proposed causal roles in evolutionary change.
Collapse
Affiliation(s)
- Joana Projecto-Garcia
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States
| | - Joseph F Biddle
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States
| | - Erik J Ragsdale
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States.
| |
Collapse
|