1
|
Li Y, Mamonova E, Köhler N, van Kleunen M, Stift M. Breakdown of self-incompatibility due to genetic interaction between a specific S-allele and an unlinked modifier. Nat Commun 2023; 14:3420. [PMID: 37296115 PMCID: PMC10256779 DOI: 10.1038/s41467-023-38802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Breakdown of self-incompatibility has frequently been attributed to loss-of-function mutations of alleles at the locus responsible for recognition of self-pollen (i.e. the S-locus). However, other potential causes have rarely been tested. Here, we show that self-compatibility of S1S1-homozygotes in selfing populations of the otherwise self-incompatible Arabidopsis lyrata is not due to S-locus mutation. Between-breeding-system cross-progeny are self-compatible if they combine S1 from the self-compatible cross-partner with recessive S1 from the self-incompatible cross-partner, but self-incompatible with dominant S-alleles. Because S1S1 homozygotes in outcrossing populations are self-incompatible, mutation of S1 cannot explain self-compatibility in S1S1 cross-progeny. This supports the hypothesis that an S1-specific modifier unlinked to the S-locus causes self-compatibility by functionally disrupting S1. Self-compatibility in S19S19 homozygotes may also be caused by an S19-specific modifier, but we cannot rule out a loss-of-function mutation of S19. Taken together, our findings indicate that breakdown of self-incompatibility is possible without disruptive mutations at the S-locus.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany.
| | - Ekaterina Mamonova
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Nadja Köhler
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany.
| |
Collapse
|
2
|
Sandner TM, Gemeinholzer B, Lemmer J, Matthies D, Ensslin A. Continuous inbreeding affects genetic variation, phenology, and reproductive strategy in ex situ cultivated Digitalis lutea. AMERICAN JOURNAL OF BOTANY 2022; 109:1545-1559. [PMID: 36164840 DOI: 10.1002/ajb2.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Ex situ cultivation is important for plant conservation, but cultivation in small populations may result in genetic changes by drift, inbreeding, or unconscious selection. Repeated inbreeding potentially influences not only plant fitness, but also floral traits and interactions with pollinators, which has not yet been studied in an ex situ context. METHODS We studied the molecular genetic variation of Digitalis lutea from a botanic garden population cultivated for 30 years, a frozen seed bank conserving the original genetic structure, and two current wild populations including the source population. In a common garden, we studied the effects of experimental inbreeding and between-population crosses on performance, reproductive traits, and flower visitation of plants from the garden and a wild population. RESULTS Significant genetic differentiation was found between the garden population and the wild population from which the seeds had originally been gathered. After experimental selfing, inbreeding depression was only found for germination and leaf size of plants from the wild population, indicating a history of inbreeding in the smaller garden population. Moreover, garden plants flowered earlier and had floral traits related to selfing, whereas wild plants had traits related to attracting pollinators. Bumblebees visited more flowers of outbred than inbred plants and of wild than garden plants. CONCLUSIONS Our case study suggests that high levels of inbreeding during ex situ cultivation can influence reproductive traits and thus interactions with pollinators. Together with the effects of genetic erosion and unconscious selection, these changes may affect the success of reintroductions into natural habitats.
Collapse
Affiliation(s)
- Tobias M Sandner
- Plant Ecology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | | | | - Diethart Matthies
- Plant Ecology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
3
|
Stresses affect inbreeding depression in complex ways: disentangling stress-specific genetic effects from effects of initial size in plants. Heredity (Edinb) 2021; 127:347-356. [PMID: 34188195 PMCID: PMC8478953 DOI: 10.1038/s41437-021-00454-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The magnitude of inbreeding depression (ID) varies unpredictably among environments. ID often increases in stressful environments suggesting that these expose more deleterious alleles to selection or increase their effects. More simply, ID could increase under conditions that amplify phenotypic variation (CV²), e.g., by accentuating size hierarchies among plants. These mechanisms are difficult to distinguish when stress increases both ID and phenotypic variation. We grew in- and outbred progeny of Mimulus guttatus under six abiotic stress treatments (control, waterlogging, drought, nutrient deficiency, copper addition, and clipping) with and without competition by the grass Poa palustris. ID differed greatly among stress treatments with δ varying from 7% (control) to 61% (waterlogging) but did not consistently increase with stress intensity. Poa competition increased ID under nutrient deficiency but not other stresses. Analyzing effects of initial size on performance of outbred plants suggests that under some conditions (low N, clipping) competition increased ID by amplifying initial size differences. In other cases (e.g., high ID under waterlogging), particular environments amplified the deleterious genetic effects of inbreeding suggesting differential gene expression. Interestingly, conditions that increased the phenotypic variability of inbred progeny regularly increased ID whereas variability among outbred progeny showed no relationship to ID. Our study reconciles the stress- and phenotypic variability hypotheses by demonstrating how specific conditions (rather than stress per se) act to increase ID. Analyzing CV² separately in inbred and outbred progeny while including effects of initial plant size improve our ability to predict how ID and gene expression vary across environments.
Collapse
|
4
|
Gorman CE, Li Y, Dorken ME, Stift M. No evidence for incipient speciation by selfing in North American Arabidopsis lyrata. J Evol Biol 2021; 34:1397-1405. [PMID: 34228843 DOI: 10.1111/jeb.13901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/01/2021] [Accepted: 07/03/2021] [Indexed: 01/01/2023]
Abstract
Self-fertilization inherently restricts gene flow by reducing the fraction of offspring that can be produced by inter-population matings. Therefore, mating system transitions from outcrossing to selfing could result in reproductive isolation between selfing and outcrossing lineages and provide a starting point for speciation. In newly diverged lineages, for example after a transition to selfing, further reproductive isolation can be caused by a variety of prezygotic and post-zygotic mechanisms that operate before, during and after pollination. In animals, prezygotic barriers tend to evolve faster than post-zygotic ones. This is not necessarily the case for plants, for which the relative importance of post-mating, post-fertilization and early-acting post-zygotic barriers has been investigated far less. To test whether post-pollination isolation exists between populations of North American Arabidopsis lyrata that differ in breeding (self-incompatible versus self-compatible) and mating system (outcrossing versus selfing), we compared patterns of seed set after crosses made within populations, between populations of the same mating system and between populations with different mating systems. We found no evidence for post-pollination isolation between plants from selfing populations (self-compatible, low outcrossing rates) and outcrossing populations (self-incompatible, high outcrossing rates) via either prezygotic or early-acting post-zygotic mechanisms. Together with the results of other studies indicating the absence of reproductive barriers acting before and during pollination, we conclude that the transition to selfing in this study system has not led to the formation of reproductive barriers between selfing and outcrossing populations of North American A. lyrata.
Collapse
Affiliation(s)
| | - Yan Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Marcel E Dorken
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Marc Stift
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
5
|
Hoffmann AA, Miller AD, Weeks AR. Genetic mixing for population management: From genetic rescue to provenancing. Evol Appl 2021; 14:634-652. [PMID: 33767740 PMCID: PMC7980264 DOI: 10.1111/eva.13154] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Animal and plant species around the world are being challenged by the deleterious effects of inbreeding, loss of genetic diversity, and maladaptation due to widespread habitat destruction and rapid climate change. In many cases, interventions will likely be needed to safeguard populations and species and to maintain functioning ecosystems. Strategies aimed at initiating, reinstating, or enhancing patterns of gene flow via the deliberate movement of genotypes around the environment are generating growing interest with broad applications in conservation and environmental management. These diverse strategies go by various names ranging from genetic or evolutionary rescue to provenancing and genetic resurrection. Our aim here is to provide some clarification around terminology and to how these strategies are connected and linked to underlying genetic processes. We draw on case studies from the literature and outline mechanisms that underlie how the various strategies aim to increase species fitness and impact the wider community. We argue that understanding mechanisms leading to species decline and community impact is a key to successful implementation of these strategies. We emphasize the need to consider the nature of source and recipient populations, as well as associated risks and trade-offs for the various strategies. This overview highlights where strategies are likely to have potential at population, species, and ecosystem scales, but also where they should probably not be attempted depending on the overall aims of the intervention. We advocate an approach where short- and long-term strategies are integrated into a decision framework that also considers nongenetic aspects of management.
Collapse
Affiliation(s)
- Ary A. Hoffmann
- School of BioSciencesBio21 InstituteThe University of MelbourneParkvilleVic.Australia
| | - Adam D. Miller
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityWarrnamboolVic.Australia
- Deakin Genomics CentreDeakin UniversityGeelongVic.Australia
| | - Andrew R. Weeks
- School of BioSciencesBio21 InstituteThe University of MelbourneParkvilleVic.Australia
- cesar Pty LtdParkvilleVic.Australia
| |
Collapse
|
6
|
Gorman CE, Bond L, van Kleunen M, Dorken ME, Stift M. Limited phenological and pollinator-mediated isolation among selfing and outcrossing Arabidopsis lyrata populations. Proc Biol Sci 2020; 287:20202323. [PMID: 33234079 DOI: 10.1098/rspb.2020.2323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transitions from outcrossing to selfing have been a frequent evolutionary shift in plants and clearly play a role in species divergence. However, many questions remain about the initial mechanistic basis of reproductive isolation during the evolution of selfing. For instance, how important are pre-zygotic pre-pollination mechanisms (e.g. changes in phenology and pollinator visitation) in maintaining reproductive isolation between newly arisen selfing populations and their outcrossing ancestors? To test whether changes in phenology and pollinator visitation isolate selfing populations of Arabidopsis lyrata from outcrossing populations, we conducted a common garden experiment with plants from selfing and outcrossing populations as well as their between-population hybrids. Specifically, we asked whether there was isolation between outcrossing and selfing plants and their between-population hybrids through differences in (1) the timing or intensity of flowering; and/or (2) pollinator visitation. We found that phenology largely overlapped between plants from outcrossing and selfing populations. There were also no differences in pollinator preference related to mating system. Additionally, pollinators preferred to visit flowers on the same plant rather than exploring nearby plants, creating a large opportunity for self-fertilization. Overall, this suggests that pre-zygotic pre-pollination mechanisms do not strongly reproductively isolate plants from selfing and outcrossing populations of Arabidopsis lyrata.
Collapse
Affiliation(s)
- Courtney E Gorman
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Lindsay Bond
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, Canada K9J 0G2
| | - Mark van Kleunen
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, People's Republic of China
| | - Marcel E Dorken
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, Canada K9J 0G2
| | - Marc Stift
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
7
|
Gorman CE, Steinecke C, van Kleunen M, Dorken ME, Stift M. A shift towards the annual habit in selfing Arabidopsis lyrata. Biol Lett 2020; 16:20200402. [PMID: 32991824 PMCID: PMC7532718 DOI: 10.1098/rsbl.2020.0402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/09/2020] [Indexed: 11/12/2022] Open
Abstract
An annual life history is often associated with the ability to self-fertilize. However, it is unknown whether the evolution of selfing commonly precedes the evolution of annuality, or vice versa. Using a 2-year common garden experiment, we asked if the evolution of selfing in the normally perennial Arabidopsis lyrata was accompanied by a shift towards the annual habit. Despite their very recent divergence from obligately outcrossing populations, selfing plants exhibited a 39% decrease in over-winter survival after the first year compared with outcrossing plants. Our data ruled out the most obvious underlying mechanism: differences in reproductive investment in the first year did not explain differences in survival. We conclude that transitions to selfing in perennial A. lyrata may be accompanied by a shift towards annuality, but drivers of the process require further investigation.
Collapse
Affiliation(s)
- Courtney E. Gorman
- Biology Department, University of Konstanz, Konstanz, Baden-Württemberg, Germany
| | | | - Mark van Kleunen
- Biology Department, University of Konstanz, Konstanz, Baden-Württemberg, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, People's Republic of China
| | - Marcel E. Dorken
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Marc Stift
- Biology Department, University of Konstanz, Konstanz, Baden-Württemberg, Germany
| |
Collapse
|
8
|
Durand E, Chantreau M, Le Veve A, Stetsenko R, Dubin M, Genete M, Llaurens V, Poux C, Roux C, Billiard S, Vekemans X, Castric V. Evolution of self-incompatibility in the Brassicaceae: Lessons from a textbook example of natural selection. Evol Appl 2020; 13:1279-1297. [PMID: 32684959 PMCID: PMC7359833 DOI: 10.1111/eva.12933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Self-incompatibility (SI) is a self-recognition genetic system enforcing outcrossing in hermaphroditic flowering plants and results in one of the arguably best understood forms of natural (balancing) selection maintaining genetic variation over long evolutionary times. A rich theoretical and empirical population genetics literature has considerably clarified how the distribution of SI phenotypes translates into fitness differences among individuals by a combination of inbreeding avoidance and rare-allele advantage. At the same time, the molecular mechanisms by which self-pollen is specifically recognized and rejected have been described in exquisite details in several model organisms, such that the genotype-to-phenotype map is also pretty well understood, notably in the Brassicaceae. Here, we review recent advances in these two fronts and illustrate how the joint availability of detailed characterization of genotype-to-phenotype and phenotype-to-fitness maps on a single genetic system (plant self-incompatibility) provides the opportunity to understand the evolutionary process in a unique perspective, bringing novel insight on general questions about the emergence, maintenance, and diversification of a complex genetic system.
Collapse
Affiliation(s)
| | | | - Audrey Le Veve
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | | | - Manu Dubin
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Mathieu Genete
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité (ISYEB)Muséum national d'Histoire naturelleCNRS, Sorbonne Université, EPHE, Université des Antilles CP 5057 rue Cuvier, 75005 ParisFrance
| | - Céline Poux
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Camille Roux
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | | | | | | |
Collapse
|
9
|
Buckley J, Daly R, Cobbold CA, Burgess K, Mable BK. Changing environments and genetic variation: natural variation in inbreeding does not compromise short-term physiological responses. Proc Biol Sci 2019; 286:20192109. [PMID: 31744436 DOI: 10.1098/rspb.2019.2109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Selfing plant lineages are surprisingly widespread and successful in a broad range of environments, despite showing reduced genetic diversity, which is predicted to reduce their long-term evolutionary potential. However, appropriate short-term plastic responses to new environmental conditions might not require high levels of standing genetic variation. In this study, we tested whether mating system variation among populations, and associated changes in genetic variability, affected short-term responses to environmental challenges. We compared relative fitness and metabolome profiles of naturally outbreeding (genetically diverse) and inbreeding (genetically depauperate) populations of a perennial plant, Arabidopsis lyrata, under constant growth chamber conditions and an outdoor common garden environment outside its native range. We found no effect of inbreeding on survival, flowering phenology or short-term physiological responses. Specifically, naturally occurring inbreeding had no significant effects on the plasticity of metabolome profiles, using either multivariate approaches or analysis of variation in individual metabolites, with inbreeding populations showing similar physiological responses to outbreeding populations over time in both growing environments. We conclude that low genetic diversity in naturally inbred populations may not always compromise fitness or short-term physiological capacity to respond to environmental change, which could help to explain the global success of selfing mating strategies.
Collapse
Affiliation(s)
- James Buckley
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rónán Daly
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Karl Burgess
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
10
|
Mable BK. Conservation of adaptive potential and functional diversity: integrating old and new approaches. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1129-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|