1
|
Suda K, Suzuki T, Hayashi S, Okuyama H, Tsukamoto D, Matsuo T, Tamura K, Ito M. Correlation Between Subgenome-biased DNA Loss and DNA Transposon Activation Following Hybridization in the Allotetraploid Xenopus Frogs. Genome Biol Evol 2024; 16:evae179. [PMID: 39304189 DOI: 10.1093/gbe/evae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
In certain tetraploid species resulting from interspecific hybridization, one parent's subgenome is known to selectively undergo DNA loss. The molecular mechanisms behind this remain unclear. In our study, we compared the genomes of a standard diploid species with two allotetraploid species from the Xenopus genus, both possessing L (longer) and S (shorter) homoeologous subgenomes. We observed substantial gene losses and intergenic DNA deletions in both the S and L subgenomes of the tetraploid species. Gene losses were around 1,000 to 3,000 for L and 4,000 to 6,000 for S, with especially prominent losses in the S subgenome. Many of these losses likely occurred shortly after interspecific hybridization in both L/S subgenomes. We also deduced frequent large inversions in the S subgenome. Upon reassessing transposon dynamics using updated genome databases, we reaffirmed heightened DNA transposon activity during the hybridization, as previously reported. We next investigated whether S subgenome-biased DNA loss could be correlated with the activation of DNA transposons following hybridization. Notably, distinct patterns were observed in the dynamics of DNA transposons between the L and S subgenomes. Several DNA transposon subfamilies correlated positively with DNA deletions in the S subgenome and negatively in the L subgenome. Based on these results, we propose a model that, upon and after hybridization between two related diploid Xenopus species, the mixture of their genomes resulted in the derepression of DNA transposons, especially in the S subgenome, leading to selective DNA loss in the S subgenome.
Collapse
Affiliation(s)
- Kosuke Suda
- Department of Bioscience, School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Takahiro Suzuki
- Department of Bioscience, School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Shun Hayashi
- Department of Bioscience, School of Science, Kitasato University, Kanagawa 252-0373, Japan
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Honoka Okuyama
- Department of Bioscience, School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Daisuke Tsukamoto
- Department of Bioscience, School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Takuya Matsuo
- Department of Bioscience, School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Kei Tamura
- Department of Bioscience, School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Michihiko Ito
- Department of Bioscience, School of Science, Kitasato University, Kanagawa 252-0373, Japan
| |
Collapse
|
2
|
Cauret CMS, Jordan DC, Kukoly LM, Burton SR, Anele EU, Kwiecien JM, Gansauge MT, Senthillmohan S, Greenbaum E, Meyer M, Horb ME, Evans BJ. Functional dissection and assembly of a small, newly evolved, W chromosome-specific genomic region of the African clawed frog Xenopus laevis. PLoS Genet 2023; 19:e1010990. [PMID: 37792893 PMCID: PMC10578606 DOI: 10.1371/journal.pgen.1010990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/16/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
Genetic triggers for sex determination are frequently co-inherited with other linked genes that may also influence one or more sex-specific phenotypes. To better understand how sex-limited regions evolve and function, we studied a small W chromosome-specific region of the frog Xenopus laevis that contains only three genes (dm-w, scan-w, ccdc69-w) and that drives female differentiation. Using gene editing, we found that the sex-determining function of this region requires dm-w but that scan-w and ccdc69-w are not essential for viability, female development, or fertility. Analysis of mesonephros+gonad transcriptomes during sexual differentiation illustrates masculinization of the dm-w knockout transcriptome, and identifies mostly non-overlapping sets of differentially expressed genes in separate knockout lines for each of these three W-specific gene compared to wildtype sisters. Capture sequencing of almost all Xenopus species and PCR surveys indicate that the female-determining function of dm-w is present in only a subset of species that carry this gene. These findings map out a dynamic evolutionary history of a newly evolved W chromosome-specific genomic region, whose components have distinctive functions that frequently degraded during Xenopus diversification, and evidence the evolutionary consequences of recombination suppression.
Collapse
Affiliation(s)
- Caroline M. S. Cauret
- Biology Department, McMaster University, Hamilton, Ontario, Canada
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Danielle C. Jordan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts United States of America
- The School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Sarah R. Burton
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts United States of America
| | - Emmanuela U. Anele
- Biology Department, McMaster University, Hamilton, Ontario, Canada
- Department Zoology, Ahmadu Bello University, Zaria, Nigeria
| | - Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Marie-Theres Gansauge
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Eli Greenbaum
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, United States of America
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marko E. Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts United States of America
| | - Ben J. Evans
- Biology Department, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Premachandra T, Cauret CMS, Conradie W, Measey J, Evans BJ. Population genomics and subgenome evolution of the allotetraploid frog Xenopus laevis in southern Africa. G3 (BETHESDA, MD.) 2022; 13:6916838. [PMID: 36524354 PMCID: PMC9911082 DOI: 10.1093/g3journal/jkac325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Allotetraploid genomes have two distinct genomic components called subgenomes that are derived from separate diploid ancestral species. Many genomic characteristics such as gene function, expression, recombination, and transposable element mobility may differ significantly between subgenomes. To explore the possibility that subgenome population structure and gene flow may differ as well, we examined genetic variation in an allotetraploid frog-the African clawed frog (Xenopus laevis)-over the dynamic and varied habitat of its native range in southern Africa. Using reduced representation genome sequences from 91 samples from 12 localities, we found no strong evidence that population structure and gene flow differed substantially by subgenome. We then compared patterns of population structure in the nuclear genome to the mitochondrial genome using Sanger sequences from 455 samples from 183 localities. Our results provide further resolution to the geographic distribution of mitochondrial and nuclear diversity in this species and illustrate that population structure in both genomes corresponds roughly with variation in seasonal rainfall and with the topography of southern Africa.
Collapse
Affiliation(s)
- Tharindu Premachandra
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, ON L8S4K1, Canada
| | - Caroline M S Cauret
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, ON L8S4K1, Canada,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Werner Conradie
- Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood, Gqeberha 6013, South Africa,Department of Conservation Management, Natural Resource Science and Management Cluster, Faculty of Science, Nelson Mandela University, George Campus, George 6019, South Africa
| | - John Measey
- Corresponding author: Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| | | |
Collapse
|
4
|
Fukui A, Matsunami M. Gene Structure Analysis of Chemokines and Their Receptors in Allotetraploid Frog, Xenopus laevis. Front Genet 2022; 12:787979. [PMID: 35126458 PMCID: PMC8811506 DOI: 10.3389/fgene.2021.787979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Chemokines, relatively small secreted proteins, are involved in cell migration and function in various biological events, including immunity, morphogenesis, and disease. Due to their nature, chemokines tend to be a target of hijacking of immunity by virus and therefore show an exceptionally high mutation rate. Xenopus laevis is considered an excellent model to investigate the effect of whole-genome duplication for gene family evolution. Because its allotetraploidization occurred around 17–18 million years ago, ancestral subgenomes L and S were well conserved. Based on the gene model of human and diploid frog Xenopus tropicalis, we identified 52 chemokine genes and 26 chemokine receptors in X. laevis. The retention rate of the gene in the X. laevis L and S subgenomes was 96% (45/47) and 68% (32/47), respectively. We conducted molecular phylogenetic analysis and found clear orthologies in all receptor genes but not in the ligand genes, suggesting rapid divergences of the ligand. dN/dS calculation demonstrated that dN/dS ratio greater than one was observed in the four ligand genes, cxcl8b.1.S, cxcl18.S, ccl21.S, and xcl1.L, but nothing in receptor genes. These results revealed that the whole-genome duplication promotes diversification of chemokine ligands in X. laevis while conserving the genes necessary for homeostasis, suggesting that selective pressure also supports a rapid divergence of the chemokines in amphibians.
Collapse
Affiliation(s)
- Akimasa Fukui
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan
- *Correspondence: Akimasa Fukui,
| | | |
Collapse
|
5
|
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200103. [PMID: 34304588 PMCID: PMC8310718 DOI: 10.1098/rstb.2020.0103] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Dunja K. Lamatsch
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
6
|
Kuhl H, Guiguen Y, Höhne C, Kreuz E, Du K, Klopp C, Lopez-Roques C, Yebra-Pimentel ES, Ciorpac M, Gessner J, Holostenco D, Kleiner W, Kohlmann K, Lamatsch DK, Prokopov D, Bestin A, Bonpunt E, Debeuf B, Haffray P, Morvezen R, Patrice P, Suciu R, Dirks R, Wuertz S, Kloas W, Schartl M, Stöck M. A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200089. [PMID: 34247507 PMCID: PMC8273502 DOI: 10.1098/rstb.2020.0089] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Several hypotheses explain the prevalence of undifferentiated sex chromosomes in poikilothermic vertebrates. Turnovers change the master sex determination gene, the sex chromosome or the sex determination system (e.g. XY to WZ). Jumping master genes stay main triggers but translocate to other chromosomes. Occasional recombination (e.g. in sex-reversed females) prevents sex chromosome degeneration. Recent research has uncovered conserved heteromorphic or even homomorphic sex chromosomes in several clades of non-avian and non-mammalian vertebrates. Sex determination in sturgeons (Acipenseridae) has been a long-standing basic biological question, linked to economical demands by the caviar-producing aquaculture. Here, we report the discovery of a sex-specific sequence from sterlet (Acipenser ruthenus). Using chromosome-scale assemblies and pool-sequencing, we first identified an approximately 16 kb female-specific region. We developed a PCR-genotyping test, yielding female-specific products in six species, spanning the entire phylogeny with the most divergent extant lineages (A. sturio, A. oxyrinchus versus A. ruthenus, Huso huso), stemming from an ancient tetraploidization. Similar results were obtained in two octoploid species (A. gueldenstaedtii, A. baerii). Conservation of a female-specific sequence for a long period, representing 180 Myr of sturgeon evolution, and across at least one polyploidization event, raises many interesting biological questions. We discuss a conserved undifferentiated sex chromosome system with a ZZ/ZW-mode of sex determination and potential alternatives. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.
Collapse
Affiliation(s)
- Heiner Kuhl
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | | | - Christin Höhne
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Eva Kreuz
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Kang Du
- Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany.,The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Christophe Klopp
- SIGENAE, Plate-forme Bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAe, 31326 Castanet-Tolosan, France
| | | | | | - Mitica Ciorpac
- Danube Delta National Institute for Research and Development, Tulcea 820112, Romania.,Genetic Improvement Laboratory, Research Station for Cattle Breeding Dancu - Iasi (SCDCB Dancu), Academy of Agricultural and Forestry Sciences 'Gheorghe Ionescu-Sisesti', Iasi-Ungheni Street, No. 9, Holboca, Iași county 707252, Romania
| | - Jörn Gessner
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Daniela Holostenco
- Danube Delta National Institute for Research and Development, Tulcea 820112, Romania
| | - Wibke Kleiner
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Klaus Kohlmann
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Dunja K Lamatsch
- Research Department for Limnology, University of Innsbruck, A-5310 Mondsee, Austria
| | - Dmitry Prokopov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anastasia Bestin
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042 Rennes cedex, France
| | | | - Bastien Debeuf
- SCEA Sturgeon, 29 rue du Carillon, 17240 Saint Fort sur Gironde, France
| | - Pierrick Haffray
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042 Rennes cedex, France
| | - Romain Morvezen
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042 Rennes cedex, France
| | - Pierre Patrice
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042 Rennes cedex, France
| | - Radu Suciu
- Danube Delta National Institute for Research and Development, Tulcea 820112, Romania
| | - Ron Dirks
- Future Genomics Technologies B.V., Sylviusweg 74, 2333 BD, Leiden, The Netherlands
| | - Sven Wuertz
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany.,The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Matthias Stöck
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 and 310, 12587 Berlin, Germany
| |
Collapse
|
7
|
Song XY, Furman BLS, Premachandra T, Knytl M, Cauret CMS, Wasonga DV, Measey J, Dworkin I, Evans BJ. Sex chromosome degeneration, turnover, and sex-biased expression of sex-linked transcripts in African clawed frogs ( Xenopus). Philos Trans R Soc Lond B Biol Sci 2021; 376:20200095. [PMID: 34247503 DOI: 10.1098/rstb.2020.0095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The tempo of sex chromosome evolution-how quickly, in what order, why and how their particular characteristics emerge during evolution-remains poorly understood. To understand this further, we studied three closely related species of African clawed frog (genus Xenopus), that each has independently evolved sex chromosomes. We identified population polymorphism in the extent of sex chromosome differentiation in wild-caught Xenopus borealis that corresponds to a large, previously identified region of recombination suppression. This large sex-linked region of X. borealis has an extreme concentration of genes that encode transcripts with sex-biased expression, and we recovered similar findings in the smaller sex-linked regions of Xenopus laevis and Xenopus tropicalis. In two of these species, strong skews in expression (mostly female-biased in X. borealis, mostly male-biased in X. tropicalis) are consistent with expectations associated with recombination suppression, and in X. borealis, we hypothesize that a degenerate ancestral Y-chromosome transitioned into its contemporary Z-chromosome. These findings indicate that Xenopus species are tolerant of differences between the sexes in dosage of the products of multiple genes, and offer insights into how evolutionary transformations of ancestral sex chromosomes carry forward to affect the function of new sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Xue-Ying Song
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Benjamin L S Furman
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.,Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Tharindu Premachandra
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Martin Knytl
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.,Department of Cell Biology, Charles University, 7 Vinicna Street, Prague 12843, Czech Republic
| | - Caroline M S Cauret
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Ben J Evans
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
8
|
Boys IN, Mar KB, Schoggins JW. Functional-genomic analysis reveals intraspecies diversification of antiviral receptor transporter proteins in Xenopus laevis. PLoS Genet 2021; 17:e1009578. [PMID: 34014925 PMCID: PMC8172065 DOI: 10.1371/journal.pgen.1009578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/02/2021] [Accepted: 05/04/2021] [Indexed: 12/05/2022] Open
Abstract
The Receptor Transporter Protein (RTP) family is present in most, if not all jawed vertebrates. Most of our knowledge of this protein family comes from studies on mammalian RTPs, which are multi-function proteins that regulate cell-surface G-protein coupled receptor levels, influence olfactory system development, regulate immune signaling, and directly inhibit viral infection. However, mammals comprise less than one-tenth of extant vertebrate species, and our knowledge about the expression, function, and evolution of non-mammalian RTPs is limited. Here, we explore the evolutionary history of RTPs in vertebrates. We identify signatures of positive selection in many vertebrate RTP clades and characterize multiple, independent expansions of the RTP family outside of what has been described in mammals. We find a striking expansion of RTPs in the African clawed frog, Xenopus laevis, with 11 RTPs in this species as opposed to 1 to 4 in most other species. RNA sequencing revealed that most X. laevis RTPs are upregulated following immune stimulation. In functional assays, we demonstrate that at least three of these X. laevis RTPs inhibit infection by RNA viruses, suggesting that RTP homologs may serve as antiviral effectors outside of Mammalia.
Collapse
Affiliation(s)
- Ian N. Boys
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Katrina B. Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
9
|
Furman BLS, Cauret CMS, Knytl M, Song XY, Premachandra T, Ofori-Boateng C, Jordan DC, Horb ME, Evans BJ. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet 2020; 16:e1009121. [PMID: 33166278 PMCID: PMC7652241 DOI: 10.1371/journal.pgen.1009121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/16/2020] [Indexed: 11/18/2022] Open
Abstract
In many species, sexual differentiation is a vital prelude to reproduction, and disruption of this process can have severe fitness effects, including sterility. It is thus interesting that genetic systems governing sexual differentiation vary among-and even within-species. To understand these systems more, we investigated a rare example of a frog with three sex chromosomes: the Western clawed frog, Xenopus tropicalis. We demonstrate that natural populations from the western and eastern edges of Ghana have a young Y chromosome, and that a male-determining factor on this Y chromosome is in a very similar genomic location as a previously known female-determining factor on the W chromosome. Nucleotide polymorphism of expressed transcripts suggests genetic degeneration on the W chromosome, emergence of a new Y chromosome from an ancestral Z chromosome, and natural co-mingling of the W, Z, and Y chromosomes in the same population. Compared to the rest of the genome, a small sex-associated portion of the sex chromosomes has a 50-fold enrichment of transcripts with male-biased expression during early gonadal differentiation. Additionally, X. tropicalis has sex-differences in the rates and genomic locations of recombination events during gametogenesis that are similar to at least two other Xenopus species, which suggests that sex differences in recombination are genus-wide. These findings are consistent with theoretical expectations associated with recombination suppression on sex chromosomes, demonstrate that several characteristics of old and established sex chromosomes (e.g., nucleotide divergence, sex biased expression) can arise well before sex chromosomes become cytogenetically distinguished, and show how these characteristics can have lingering consequences that are carried forward through sex chromosome turnovers.
Collapse
Affiliation(s)
- Benjamin L. S. Furman
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd Vancouver, British Columbia, V6T 1Z4 Canada
| | - Caroline M. S. Cauret
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Martin Knytl
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Cell Biology, Charles University, 7 Vinicna Street, Prague, 12843, Czech Republic
| | - Xue-Ying Song
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Tharindu Premachandra
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | | | - Danielle C. Jordan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543 USA
| | - Marko E. Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543 USA
| | - Ben J. Evans
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|