1
|
Nunes MDS, McGregor AP. Developmental evolution in fast-forward: insect male genital diversification. Trends Genet 2024:S0168-9525(24)00256-7. [PMID: 39578177 DOI: 10.1016/j.tig.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Insect male genitalia are among the fastest evolving structures of animals. Studying these changes among closely related species represents a powerful approach to dissect developmental processes and genetic mechanisms underlying phenotypic diversification and the underlying evolutionary drivers. Here, we review recent breakthroughs in understanding the developmental and genetic bases of the evolution of genital organs among Drosophila species and other insects. This work has helped reveal how tissue and organ size evolve and understand the appearance of morphological novelties, and how these phenotypic changes are generated through altering gene expression and redeployment of gene regulatory networks. Future studies of genital evolution in Drosophila and a wider range of insects hold great promise to help understand the specification, differentiation, and diversification of organs more generally.
Collapse
Affiliation(s)
- Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| | - Alistair P McGregor
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
2
|
Genevcius BC, Calandriello DC, Torres TT. Molecular and Developmental Signatures of Genital Size Macro-Evolution in Bugs. Mol Biol Evol 2022; 39:6742344. [PMID: 36181434 PMCID: PMC9585474 DOI: 10.1093/molbev/msac211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our understanding of the genetic architecture of phenotypic traits has experienced drastic growth over the last years. Nevertheless, the majority of studies associating genotypes and phenotypes have been conducted at the ontogenetic level. Thus, we still have an elusive knowledge of how these genetic-developmental architectures evolve themselves and how their evolution is mirrored in the phenotypic change across evolutionary time. We tackle this gap by reconstructing the evolution of male genital size, one of the most complex traits in insects, together with its underlying genetic architecture. Using the order Hemiptera as a model, spanning over 350 million years of evolution, we estimate the correlation between genitalia and three features: development rate, body size, and rates of DNA substitution in 68 genes associated with genital development. We demonstrate that genital size macro-evolution has been largely dependent on body size and weakly influenced by development rate and phylogenetic history. We further revealed significant correlations between mutation rates and genital size for 19 genes. Interestingly, these genes have diverse functions and participate in distinct signaling pathways, suggesting that genital size is a complex trait whose fast evolution has been enabled by molecular changes associated with diverse morphogenetic processes. Our data further demonstrate that the majority of DNA evolution correlated with the genitalia has been shaped by negative selection or neutral evolution. Thus, in terms of sequence evolution, changes in genital size are predominantly facilitated by relaxation of constraints rather than positive selection, possibly due to the high pleiotropic nature of the morphogenetic genes.
Collapse
Affiliation(s)
| | - Denis C Calandriello
- Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo (SP), Brazil
| | - Tatiana T Torres
- Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo (SP), Brazil
| |
Collapse
|
3
|
Tanaka KM, Takahashi K, Rice G, Rebeiz M, Kamimura Y, Takahashi A. Trichomes on female reproductive tract: rapid diversification and underlying gene regulatory network in Drosophila suzukii and its related species. BMC Ecol Evol 2022; 22:93. [PMID: 35902820 PMCID: PMC9331688 DOI: 10.1186/s12862-022-02046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The ovipositors of some insects are external female genitalia, which have their primary function to deliver eggs. Drosophila suzukii and its sibling species D. subpulchrella are known to have acquired highly sclerotized and enlarged ovipositors upon their shifts in oviposition sites from rotting to ripening fruits. Inside the ovipositor plates, there are scale-like polarized protrusions termed "oviprovector scales" that are likely to aid the mechanical movement of the eggs. The size and spatial distribution of the scales need to be rearranged following the divergence of the ovipositors. In this study, we examined the features of the oviprovector scales in D. suzukii and its closely related species. We also investigated whether the scales are single-cell protrusions comprised of F-actin under the same conserved gene regulatory network as the well-characterized trichomes on the larval cuticular surface. RESULTS The oviprovector scales of D. suzukii and D. subpulchrella were distinct in size and spatial arrangement compared to those of D. biarmipes and other closely related species. The scale numbers also varied greatly among these species. The comparisons of the size of the scales suggested a possibility that the apical cell area of the oviprovector has expanded upon the elongation of the ovipositor plates in these species. Our transcriptome analysis revealed that 43 out of the 46 genes known to be involved in the trichome gene regulatory network are expressed in the developing female genitalia of D. suzukii and D. subpulchrella. The presence of Shavenbaby (Svb) or svb was detected in the inner cavity of the developing ovipositors of D. melanogaster, D. suzukii, and D. subpulchrella. Also, shavenoid (sha) was expressed in the corresponding patterns in the developing ovipositors and showed differential expression levels between D. suzukii and D. subpulchrella at 48 h APF. CONCLUSIONS The oviprovector scales have divergent size and spatial arrangements among species. Therefore, these scales may represent a rapidly diversifying morphological trait of the female reproductive tract reflecting ecological contexts. Furthermore, our results showed that the gene regulatory network underlying trichome formation is also utilized to develop the rapidly evolving trichomes on the oviprovectors of these flies.
Collapse
Affiliation(s)
- Kentaro M Tanaka
- Department of Biological Sciences, Tokyo Metropolitan University, 192-0397, Hachioji, Japan
| | - Kanoko Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, 192-0397, Hachioji, Japan
| | - Gavin Rice
- Department of Biological Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | | | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, 192-0397, Hachioji, Japan.
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 192-0397, Hachioji, Japan.
| |
Collapse
|
4
|
Cheng Z, Yoshizawa K. Exploration of the homology among the muscles associated with the female genitalia of the three suborders of Psocodea (Insecta). ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 66:101141. [PMID: 35114596 DOI: 10.1016/j.asd.2022.101141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
By using μCT technology, we reconstructed 3D models of the female genital structures and associated muscles of seven species from three suborders of Psocodea (free-living species only, formerly known as independent insect order "Psocoptera"). The homology of the female genital structures and associated muscles of different species is discussed. A total of 21 muscle groups were observed, and except for one muscle, all were homologized throughout the order. Moreover, some of the homologous muscles could be identified confidently in holometabolan insects. Using the muscles as landmarks, we discuss the homology of the ovipositor valves between Psocodea and other neopteran insects. Most importantly, the ovipositor of the suborder Trogiomorpha was identified to consist of the well-developed external valve (V3) plus a remnant of the dorsal valve (V2). We also examined the phylogenetic information included in the female genital muscles and found that certain muscles provide useful information and support deeper nodes (e.g., monophyly of the suborder Psocomorpha). The present study of female genital muscles not only helps us to better understand the phylogeny of Psocodea but also provides a solid foundation for research on muscle evolution.
Collapse
Affiliation(s)
- Zixin Cheng
- Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Japan.
| | - Kazunori Yoshizawa
- Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Japan
| |
Collapse
|
5
|
Dallai R, Fanciulli PP, Lupetti P, Mercati D. The ultrastructure of sperm and female sperm storage organs in the water strider Gerris lacustris L. (Heteroptera) and a possible example of genital coevolution. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101043. [PMID: 33689939 DOI: 10.1016/j.asd.2021.101043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The fine structural organization of the male and the female inner reproductive apparatuses of the water-strider Gerris lacustris was studied. The sperm of the species shows a long helicoidal acrosome provided with longitudinal tubules, and a short nucleus. The flagellum is characterized by crescent mitochondrial derivatives and a 9 + 9 + 2 axoneme, as occurs in all Heteroptera. The female reproductive apparatus is characterized by an extremely long spermathecal duct, filled with sperm, which plays the role of the main sperm storage organ. The duct has a thin epithelium surrounded by a complex of secretory and duct-forming cells. The spermathecal duct flows into the gynatrial sac. This region, together with the fertilization chamber, exhibits a simple epithelium with deep apical plasma membrane invaginations, and it does not show conspicuous secretions. The basal cell region shows plasma membrane infoldings forming thin cytoplasmic bands hosting mitochondria and large intercellular spaces. This organization is typical of epithelia active in fluid reabsorption. Two lateral large gynatrial glands open into the gynatrial sac. Such glands also exhibit secretory and duct forming cells. The same structure of these glands is also present along the proximal region of the fecundation canal. The duct forming cells of these regions have very wide ducts with peculiar cuticular finger-like structures at their opening into the gland duct lumen. The results of the present study suggest the occurrence of a coevolution between the sperm and the spermathecal duct lengths.
Collapse
Affiliation(s)
- Romano Dallai
- Department of Life Sciences, University of Siena, Italy.
| | | | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Italy.
| | - David Mercati
- Department of Life Sciences, University of Siena, Italy.
| |
Collapse
|
6
|
Sloan NS, Simmons LW. Female genitalia. Curr Biol 2020; 30:R1461-R1463. [PMID: 33352121 DOI: 10.1016/j.cub.2020.10.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this Quick guide, Nadia Sloan and Leigh Simmons introduce the diverse and fascinating biology of female genitalia.
Collapse
Affiliation(s)
- Nadia S Sloan
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia.
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
7
|
Roell T, Genevcius BC, Campos LA. Comparative morphology of clasping structures in predator stink bugs (Hemiptera: Pentatomidae: Asopinae): Insights into their function and evolution. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 57:100949. [PMID: 32422518 DOI: 10.1016/j.asd.2020.100949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Parameres are male genital structures found in many insects which are often used as clasping devices to exert dominance in copula. The asopines have evolved a remarkable additional pair of similar structures, often denominated processes, which combines with the parameres in a tweezers-like system. Processes in similar positions have also been found in other subfamilies of Pentatomidae, but smaller and less developed. Using scanning electron microscopy, we document the among-species variability found in the clasping structures in asopines. We first revealed a vast diversity of ornamentations, such as sensilla and microsculpture. When present, these ornamentations are invariably found on both, the parameres and processes, and often on the corresponding female parts, the valvifers VIII, indicating a functional role of attachment and sensory perception in copula for the ornamentations. We also show that the processes are drastically different between the Asopinae and non-asopines. Therefore, we suggest the term "pseudoclasper" for the Asopinae processes and "superior process of dorsal rim" for the remaining examined taxa. The pseudoclaspers are directly connected to and attached in the same place as the parameres in asopines, while the superior processes of dorsal rim and parameres are completely disconnected in other pentatomids. These results indicate a non-homologous origin between pseudoclaspers and superior processes of dorsal rim in Pentatomidae.
Collapse
Affiliation(s)
- Talita Roell
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Zoologia, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil.
| | - Bruno C Genevcius
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Rua do Matão 277, São Paulo, SP, Brazil.
| | - Luiz A Campos
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Zoologia, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|