1
|
Augustijnen H, Lucek K. Beyond gene flow: (non)-parallelism of secondary contact in a pair of highly differentiated sibling species. Mol Ecol 2024; 33:e17488. [PMID: 39119885 DOI: 10.1111/mec.17488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Replicated secondary contact zones can provide insights into the barriers to gene flow that are important during speciation and can reveal to which degree secondary contact may result in similar evolutionary outcomes. Here, we studied two secondary contact zones between highly differentiated Alpine butterflies of the genus Erebia using whole-genome resequencing data. We assessed the genomic relationships between populations and species and found hybridization to be rare, with no to little current or historical introgression in either contact zone. There are large similarities between contact zones, consistent with an allopatric origin of interspecific differentiation, with no indications for ongoing reinforcing selection. Consistent with expected reduced effective population size, we further find that scaffolds related to the Z-chromosome show increased differentiation compared to the already high levels across the entire genome, which could also hint towards a contribution of the Z chromosome to species divergence in this system. Finally, we detected the presence of the endosymbiont Wolbachia, which can cause reproductive isolation between its hosts, in all E. cassioides, while it appears to be fully or largely absent in contact zone populations of E. tyndarus. We discuss how this rare pattern may have arisen and how it may have affected the dynamics of speciation upon secondary contact.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Kay Lucek
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
2
|
Martins ARP, Warren NB, McMillan WO, Barrett RDH. Spatiotemporal dynamics in butterfly hybrid zones. INSECT SCIENCE 2024; 31:328-353. [PMID: 37596954 DOI: 10.1111/1744-7917.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Evaluating whether hybrid zones are stable or mobile can provide novel insights for evolution and conservation biology. Butterflies exhibit high sensitivity to environmental changes and represent an important model system for the study of hybrid zone origins and maintenance. Here, we review the literature exploring butterfly hybrid zones, with a special focus on their spatiotemporal dynamics and the potential mechanisms that could lead to their movement or stability. We then compare different lines of evidence used to investigate hybrid zone dynamics and discuss the strengths and weaknesses of each approach. Our goal with this review is to reveal general conditions associated with the stability or mobility of butterfly hybrid zones by synthesizing evidence obtained using different types of data sampled across multiple regions and spatial scales. Finally, we discuss spatiotemporal dynamics in the context of a speciation/divergence continuum, the relevance of hybrid zones for conservation biology, and recommend key topics for future investigation.
Collapse
Affiliation(s)
- Ananda R Pereira Martins
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Natalie B Warren
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Rowan D H Barrett
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Cornet C, Mora P, Augustijnen H, Nguyen P, Escudero M, Lucek K. Holocentric repeat landscapes: From micro-evolutionary patterns to macro-evolutionary associations with karyotype evolution. Mol Ecol 2023. [PMID: 37577951 DOI: 10.1111/mec.17100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
Repetitive elements can cause large-scale chromosomal rearrangements, for example through ectopic recombination, potentially promoting reproductive isolation and speciation. Species with holocentric chromosomes, that lack a localized centromere, might be more likely to retain chromosomal rearrangements that lead to karyotype changes such as fusions and fissions. This is because chromosome segregation during cell division should be less affected than in organisms with a localized centromere. The relationships between repetitive elements and chromosomal rearrangements and how they may translate to patterns of speciation in holocentric organisms are though poorly understood. Here, we use a reference-free approach based on low-coverage short-read sequencing data to characterize the repeat landscape of two independently evolved holocentric groups: Erebia butterflies and Carex sedges. We consider both micro- and macro-evolutionary scales to investigate the repeat landscape differentiation between Erebia populations and the association between repeats and karyotype changes in a phylogenetic framework for both Erebia and Carex. At a micro-evolutionary scale, we found population differentiation in repeat landscape that increases with overall intraspecific genetic differentiation among four Erebia species. At a macro-evolutionary scale, we found indications for an association between repetitive elements and karyotype changes along both Erebia and Carex phylogenies. Altogether, our results suggest that repetitive elements are associated with the level of population differentiation and chromosomal rearrangements in holocentric clades and therefore likely play a role in adaptation and potentially species diversification.
Collapse
Affiliation(s)
- Camille Cornet
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pablo Mora
- Department of Experimental Biology, Genetics Area, University of Jaén, Jaén, Spain
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Hannah Augustijnen
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Petr Nguyen
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Marcial Escudero
- Department of Plant Biology and Ecology, University of Seville, Seville, Spain
| | - Kay Lucek
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
4
|
Jospin A, Chittaro Y, Bolt D, Demergès D, Gurcel K, Hensle J, Sanchez A, Praz C, Lucek K. Genomic evidence for three distinct species in the Erebia manto complex in Central Europe (Lepidoptera, Nymphalidae). CONSERV GENET 2023; 24:293-304. [PMID: 37187800 PMCID: PMC10175325 DOI: 10.1007/s10592-023-01501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023]
Abstract
A problem to implement conservation strategies is that in many cases recognized taxa are in fact complexes of several cryptic species. Failure to properly delineate species may lead to misplaced priorities or to inadequate conservation measures. One such species complex is the yellow-spotted ringlet Erebia manto, which comprises several phenotypically distinct lineages, whose degree of genomic isolation has so far not been assessed. Some of these lineages are geographically restricted and thus possibly represent distinct units with conservation priorities. Using several thousand nuclear genomic markers, we evaluated to which degree the bubastis lineage from the Alps and the vogesiaca lineage from the Vosges, are genetically isolated from the widespread manto lineage. Our results suggest that both lineages are genetically as strongly differentiated from manto as other taxonomically well separated sibling species in this genus from each other, supporting a delineation of bubastis and vogesiaca as independent species. Given the restricted and isolated range of vogesiaca as well as the disjunct distribution of bubastis, our findings have significant implication for future conservation efforts on these formerly cryptic species and highlight the need to investigate the genomic identity within species complexes. Supplementary Information The online version contains supplementary material available at 10.1007/s10592-023-01501-w.
Collapse
Affiliation(s)
- Amanda Jospin
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | | | | | - David Demergès
- Conservatoire d’espaces Naturels de Lorraine, 20 Chemin de L’école Des Xettes, 88400 Gérardmer, France
| | | | | | - Andreas Sanchez
- Info Fauna, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Christophe Praz
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Info Fauna, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Kay Lucek
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
5
|
Andersen JC, Havill NP, Boettner GH, Chandler JL, Caccone A, Elkinton JS. Real-time geographic settling of a hybrid zone between the invasive winter moth (Operophtera brumata L.) and the native Bruce spanworm (O. bruceata Hulst). Mol Ecol 2022; 31:6617-6633. [PMID: 35034394 DOI: 10.1111/mec.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/04/2022] [Indexed: 01/13/2023]
Abstract
Hybridization plays an important and underappreciated role in shaping the evolutionary trajectories of species. Following the introduction of a non-native organism to a novel habitat, hybridization with a native congener may affect the probability of establishment of the introduced species. In most documented cases of hybridization between a native and a non-native species, a mosaic hybrid zone is formed, with hybridization occurring heterogeneously across the landscape. In contrast, most naturally occurring hybrid zones are clinal in structure. Here, we report on a long-term microsatellite data set that monitored hybridization between the invasive winter moth, Operophtera brumata (Lepidoptera: Geometridae), and the native Bruce spanworm, O. bruceata, over a 12-year period. Our results document one of the first examples of the real-time formation and geographic settling of a clinal hybrid zone. In addition, by comparing one transect in Massachusetts where extreme winter cold temperatures have been hypothesized to restrict the distribution of winter moth, and one in coastal Connecticut, where winter temperatures are moderated by Long Island Sound, we found that the location of the hybrid zone appeared to be independent of environmental variables and maintained under a tension model wherein the stability of the hybrid zone was constrained by population density, reduced hybrid fitness, and low dispersal rates. Documenting the formation of a contemporary clinal hybrid zone may provide important insights into the factors that shaped other well-established hybrid zones.
Collapse
Affiliation(s)
- Jeremy C Andersen
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, Connecticut, USA
| | - George H Boettner
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jennifer L Chandler
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Adalgisa Caccone
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Joseph S Elkinton
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Augustijnen H, Patsiou T, Lucek K. Secondary contact rather than coexistence-Erebia butterflies in the Alps. Evolution 2022; 76:2669-2686. [PMID: 36117267 PMCID: PMC9828779 DOI: 10.1111/evo.14615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 01/22/2023]
Abstract
Secondary contact zones are ideal systems to study the processes that govern the evolution of reproductive barriers, especially at advanced stages of the speciation process. An increase in reproductive isolation resulting from selection against maladaptive hybrids is thought to contribute to reproductive barrier buildup in secondary contact zones. Although such processes have been invoked for many systems, it remains unclear to which extent they influence contact zone dynamics in nature. Here, we study a very narrow contact zone between the butterfly species Erebia cassioides and Erebia tyndarus in the Swiss Alps. We quantified phenotypic traits related to wing shape and reproduction as well as ecology to compare the degree of intra- and interspecific differentiation. Even though only very few first-generation hybrids occur, we find no strong indications for current reinforcing selection, suggesting that if reinforcement occurred in our system, it likely operated in the past. Additionally, we show that both species differ less in their ecological niche at the contact zone than elsewhere, which could explain why coexistence between these butterflies may currently not be possible.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental SciencesUniversity of BaselBaselCH‐4056Switzerland
| | - Theofania Patsiou
- Institute of Plant SciencesUniversity of BernBernCH‐3013Switzerland
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Kay Lucek
- Department of Environmental SciencesUniversity of BaselBaselCH‐4056Switzerland
| |
Collapse
|
7
|
Nitrogen and carbon stable isotope analysis sheds light on trophic competition between two syntopic land iguana species from Galápagos. Sci Rep 2022; 12:16897. [PMID: 36207376 PMCID: PMC9546867 DOI: 10.1038/s41598-022-21134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Coexistence between closely related species can lead to intense competition for resources. Stable isotope analysis (SIA) is a reliable tool to estimate the extent of species competition. We employed SIA to evaluate niche partitioning among two syntopic species of Galápagos land iguanas: Conolophus subcristatus and C. marthae. Samples were collected on Wolf Volcano, Isabela Island, where C. marthae is endemic and syntopic with C. subcristatus. We determined δ13C and δ15N ratios and described the isotopic niche of each species using corrected standard ellipse area (SEAc). We tested for differentiation between the isotopic niches, while controlling for sex, body size, spatial location of samples and mean annual primary productivity at capture points, using bivariate linear models. Despite the extensive overlap of the isotopic niches, we found species and sex to be a significant, interacting predictor of a sample’s location in the δ13C, δ15N space, indicating the existence of niche partitioning mechanisms acting between species and sexes. We also found that body size and productivity at the capture points, compounded with yet undetermined spatial effects, explain ca. 75% of the differences observed between species and sexes, providing evidence for differential microhabitat and food-items usage. Our study provides essential baselines for evaluating conservation actions for C. marthae, such as the potential translocation to a sanctuary area free of competition from C. subcristatus.
Collapse
|
8
|
Blattner L, Lucek K, Beck N, Berner D, Fumetti S. Intra‐Alpine Islands: Population genomic inference reveals high degree of isolation between freshwater spring habitats. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Lucas Blattner
- Department of Environmental Sciences, Geoecology University of Basel Basel Switzerland
| | - Kay Lucek
- Department of Environmental Sciences, Plant Ecology and Evolution University of Basel Basel Switzerland
| | - Nathanael Beck
- Department of Environmental Sciences, Geoecology University of Basel Basel Switzerland
| | - Daniel Berner
- Department of Environmental Sciences, Animal Diversity and Evolution University of Basel Basel Switzerland
| | - Stefanie Fumetti
- Department of Environmental Sciences, Geoecology University of Basel Basel Switzerland
| |
Collapse
|
9
|
Lucek K, Bouaouina S, Jospin A, Grill A, de Vos JM. Prevalence and relationship of endosymbiotic Wolbachia in the butterfly genus Erebia. BMC Ecol Evol 2021; 21:95. [PMID: 34020585 PMCID: PMC8140509 DOI: 10.1186/s12862-021-01822-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Wolbachia is an endosymbiont common to most invertebrates, which can have significant evolutionary implications for its host species by acting as a barrier to gene flow. Despite the importance of Wolbachia, still little is known about its prevalence and diversification pattern among closely related host species. Wolbachia strains may phylogenetically coevolve with their hosts, unless horizontal host-switches are particularly common. We address these issues in the genus Erebia, one of the most diverse Palearctic butterfly genera. RESULTS We sequenced the Wolbachia genome from a strain infecting Erebia cassioides and showed that it belongs to the Wolbachia supergroup B, capable of infecting arthropods from different taxonomic orders. The prevalence of Wolbachia across 13 closely related Erebia host species based on extensive population-level genetic data revealed that multiple Wolbachia strains jointly infect all investigated taxa, but with varying prevalence. Finally, the phylogenetic relationships of Wolbachia strains are in some cases significantly associated to that of their hosts, especially among the most closely related Erebia species, demonstrating mixed evidence for phylogenetic coevolution. CONCLUSIONS Closely related host species can be infected by closely related Wolbachia strains, evidencing some phylogenetic coevolution, but the actual pattern of infection more often reflects historical or contemporary geographic proximity among host species. Multiple processes, including survival in distinct glacial refugia, recent host shifts in sympatry, and a loss of Wolbachia during postglacial range expansion seem to have jointly shaped the complex interactions between Wolbachia evolution and the diversification of its host among our studied Erebia species.
Collapse
Affiliation(s)
- Kay Lucek
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH- 4056, Basel, Switzerland.
| | - Selim Bouaouina
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH- 4056, Basel, Switzerland
| | - Amanda Jospin
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Andrea Grill
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland
| | - Jurriaan M de Vos
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH- 4056, Basel, Switzerland
| |
Collapse
|