1
|
Wang J, Tao W, Kocher TD, Wang D. Sex chromosome turnover and biodiversity in fishes. J Genet Genomics 2024; 51:1351-1360. [PMID: 39233051 DOI: 10.1016/j.jgg.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The impact of sex chromosomes and their turnover in speciation remains a subject of ongoing debate in the field of evolutionary biology. Fishes are the largest group of vertebrates, and they exhibit unparalleled sexual plasticity, as well as diverse sex-determining (SD) genes, sex chromosomes, and sex-determination mechanisms. This diversity is hypothesized to be associated with the frequent turnover of sex chromosomes in fishes. Although it is evident that amh and amhr2 are repeatedly and independently recruited as SD genes, their relationship with the rapid turnover of sex chromosomes and the biodiversity of fishes remains unknown. We summarize the canonical models of sex chromosome turnover and highlight the vital roles of gene mutation and hybridization with empirical evidence. We revisit Haldane's rule and the large X-effect and propose the hypothesis that sex chromosomes accelerate speciation by multiplying genotypes via hybridization. By integrating recent findings on the turnover of SD genes, sex chromosomes, and sex-determination systems in fish species, this review provides insights into the relationship between sex chromosome evolution and biodiversity in fishes.
Collapse
Affiliation(s)
- Jingrong Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Yi X, Wang D, Reid K, Feng X, Löytynoja A, Merilä J. Sex chromosome turnover in hybridizing stickleback lineages. Evol Lett 2024; 8:658-668. [PMID: 39328282 PMCID: PMC11424075 DOI: 10.1093/evlett/qrae019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 04/19/2024] [Indexed: 09/28/2024] Open
Abstract
Recent discoveries of sex chromosome diversity across the tree of life have challenged the canonical model of conserved sex chromosome evolution and evoked new theories on labile sex chromosomes that maintain less differentiation and undergo frequent turnover. However, theories of labile sex chromosome evolution lack direct empirical support due to the paucity of case studies demonstrating ongoing sex chromosome turnover in nature. Two divergent lineages (viz. WL & EL) of nine-spined sticklebacks (Pungitius pungitius) with different sex chromosomes (linkage group [LG] 12 in the EL, unknown in the WL) hybridize in a natural secondary contact zone in the Baltic Sea, providing an opportunity to study ongoing turnover between coexisting sex chromosomes. In this study, we first identify an 80 kbp genomic region on LG3 as the sex-determining region (SDR) using whole-genome resequencing data of family crosses of a WL population. We then verify this region as the SDR in most other WL populations and demonstrate a potentially ongoing sex chromosome turnover in admixed marine populations where the evolutionarily younger and homomorphic LG3 sex chromosome replaces the older and heteromorphic LG12 sex chromosome. The results provide a rare glimpse of sex chromosome turnover in the wild and indicate the possible existence of additional yet undiscovered sex chromosome diversity in Pungitius sticklebacks.
Collapse
Affiliation(s)
- Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Dandan Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Xueyun Feng
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Yu H, Du X, Chen X, Liu L, Wang X. Transforming growth factor-β (TGF-β): A master signal pathway in teleost sex determination. Gen Comp Endocrinol 2024; 355:114561. [PMID: 38821217 DOI: 10.1016/j.ygcen.2024.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Sex determination and differentiation in fish has always been a hot topic in genetic breeding of aquatic animals. With the advances in next-generation sequencing (NGS) in recent years, sex chromosomes and sex determining genes can be efficiently identified in teleosts. To date, master sex determination genes have been elucidated in 114 species, of which 72 species have sex determination genes belonging to TGF-β superfamily. TGF-β is the only signaling pathway that the largest proportion of components, which including ligands (amhy, gsdfy, gdf6), receptors (amhr, bmpr), and regulator (id2bby), have opportunity recognized as a sex determination gene. In this review, we focus on the recent studies about teleost sex-determination genes within TGF-β superfamily and propose several hypotheses on how these genes regulate sex determination process. Differing from other reviews, our review specifically devotes significant attention to all members of the TGF-β signal pathway, not solely the sex determination genes within the TGF-β superfamily. However, the functions of the paralogous genes of TGF superfamily are still needed ongoing research. Further studies are required to more accurately interpret the molecular mechanism of TGF-β superfamily sex determination genes.
Collapse
Affiliation(s)
- Haiyang Yu
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xinxin Du
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xue Chen
- School of Resource & Environment and Safety Engineering, Jining University, Qufu, Shandong, China
| | - Longxue Liu
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| |
Collapse
|
4
|
Yi X, Kemppainen P, Reid K, Chen Y, Rastas P, Fraimout A, Merilä J. Heterogeneous genomic architecture of skeletal armour traits in sticklebacks. J Evol Biol 2024; 37:995-1008. [PMID: 39073424 DOI: 10.1093/jeb/voae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/28/2024] [Accepted: 07/27/2024] [Indexed: 07/30/2024]
Abstract
Whether populations adapt to similar selection pressures using the same underlying genetic variants depends on population history and the distribution of standing genetic variation at the metapopulation level. Studies of sticklebacks provide a case in point: when colonizing and adapting to freshwater habitats, three-spined sticklebacks (Gasterosteus aculeatus) with high gene flow tend to fix the same adaptive alleles in the same major loci, whereas nine-spined sticklebacks (Pungitius pungitius) with limited gene flow tend to utilize a more heterogeneous set of loci. In accordance with this, we report results of quantitative trait locus (QTL) analyses using a backcross design showing that lateral plate number variation in the western European nine-spined sticklebacks mapped to 3 moderate-effect QTL, contrary to the major-effect QTL in three-spined sticklebacks and different from the 4 QTL previously identified in the eastern European nine-spined sticklebacks. Furthermore, several QTL were identified associated with variation in lateral plate size, and 3 moderate-effect QTL with body size. Together, these findings indicate more heterogenous and polygenic genetic underpinnings of skeletal armour variation in nine-spined than three-spined sticklebacks, indicating limited genetic parallelism underlying armour trait evolution in the family Gasterostidae.
Collapse
Affiliation(s)
- Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Petri Kemppainen
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ying Chen
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Pasi Rastas
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antoine Fraimout
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Yi X, Kemppainen P, Merilä J. SLRfinder: A method to detect candidate sex-linked regions with linkage disequilibrium clustering. Mol Ecol Resour 2024; 24:e13985. [PMID: 38850116 DOI: 10.1111/1755-0998.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Despite their critical roles in genetic sex determination, sex chromosomes remain unknown in many non-model organisms, especially those having recently evolved sex-linked regions (SLRs). These evolutionarily young and labile sex chromosomes are important for understanding early sex chromosome evolution but are difficult to identify due to the lack of Y/W degeneration and SLRs limited to small genomic regions. Here, we present SLRfinder, a method to identify candidate SLRs using linkage disequilibrium (LD) clustering, heterozygosity and genetic divergence. SLRfinder does not rely on specific sequencing methods or a specific type of reference genome (e.g., from the homomorphic sex). In addition, the input of SLRfinder does not require phenotypic sexes, which may be unknown from population sampling, but sex information can be incorporated and is necessary to validate candidate SLRs. We tested SLRfinder using various published datasets and compared it to the local principal component analysis (PCA) method and the depth-based method Sex Assignment Through Coverage (SATC). As expected, the local PCA method could not be used to identify unknown SLRs. SATC works better on conserved sex chromosomes, whereas SLRfinder outperforms SATC in analysing labile sex chromosomes, especially when SLRs harbour inversions. Power analyses showed that SLRfinder worked better when sampling more populations that share the same SLR. If analysing one population, a relatively larger sample size (around 50) is needed for sufficient statistical power to detect significant SLR candidates, although true SLRs are likely always top-ranked. SLRfinder provides a novel and complementary approach for identifying SLRs and uncovering additional sex chromosome diversity in nature.
Collapse
Affiliation(s)
- Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Petri Kemppainen
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Castel J, Pradillon F, Cueff V, Leger G, Daguin-Thiébaut C, Ruault S, Mary J, Hourdez S, Jollivet D, Broquet T. Genetic sex determination in three closely related hydrothermal vent gastropods, including one species with intersex individuals. J Evol Biol 2024; 37:779-794. [PMID: 38699972 DOI: 10.1093/jeb/voae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Molluscs have undergone many transitions between separate sexes and hermaphroditism, which is of interest in studying the evolution of sex determination and differentiation. Here, we combined multi-locus genotypes obtained from restriction site-associated DNA (RAD) sequencing with anatomical observations of the gonads of three deep-sea hydrothermal vent gastropods of the genus Alviniconcha living in the southwest Pacific. We found that all three species (Alviniconcha boucheti, Alviniconcha strummeri, and Alviniconcha kojimai) share the same male-heterogametic XY sex-determination system but that the gonads of XX A. kojimai individuals are invaded by a variable proportion of male reproductive tissue. The identification of Y-specific RAD loci (found only in A. boucheti) and the phylogenetic analysis of three sex-linked loci shared by all species suggested that X-Y recombination has evolved differently within each species. This situation of three species showing variation in gonadal development around a common sex-determination system provides new insights into the reproductive mode of poorly known deep-sea species and opens up an opportunity to study the evolution of recombination suppression on sex chromosomes and its association with mixed or transitory sexual systems.
Collapse
Affiliation(s)
- Jade Castel
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Florence Pradillon
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, Plouzané, France
| | - Valérie Cueff
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, Plouzané, France
| | - Guillaume Leger
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, Plouzané, France
| | | | - Stéphanie Ruault
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Jean Mary
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Stéphane Hourdez
- UMR 8222 LECOB CNRS-Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Didier Jollivet
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Thomas Broquet
- UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
7
|
Kitano J, Ansai S, Takehana Y, Yamamoto Y. Diversity and Convergence of Sex-Determination Mechanisms in Teleost Fish. Annu Rev Anim Biosci 2024; 12:233-259. [PMID: 37863090 DOI: 10.1146/annurev-animal-021122-113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Sexual reproduction is prevalent across diverse taxa. However, sex-determination mechanisms are so diverse that even closely related species often differ in sex-determination systems. Teleost fish is a taxonomic group with frequent turnovers of sex-determining mechanisms and thus provides us with great opportunities to investigate the molecular and evolutionary mechanisms underlying the turnover of sex-determining systems. Here, we compile recent studies on the diversity of sex-determination mechanisms in fish. We demonstrate that genes in the TGF-β signaling pathway are frequently used for master sex-determining (MSD) genes. MSD genes arise via two main mechanisms, duplication-and-transposition and allelic mutations, with a few exceptions. We also demonstrate that temperature influences sex determination in many fish species, even those with sex chromosomes, with higher temperatures inducing differentiation into males in most cases. Finally, we review theoretical models for the turnover of sex-determining mechanisms and discuss what questions remain elusive.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan;
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
| | - Yusuke Takehana
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan;
| | - Yoji Yamamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan;
| |
Collapse
|
8
|
Shen X, Hu J, Yáñez JM, Bastos Gomes G, Poon ZWJ, Foster D, Alarcon JF, Shao L, Guo X, Shao Y, Huerlimann R, Li C, Goulden E, Anderson K, Fan G, Domingos JA. Exploring the cobia (Rachycentron canadum) genome: unveiling putative male heterogametic regions and identification of sex-specific markers. Gigascience 2024; 13:giae034. [PMID: 38995143 PMCID: PMC11240236 DOI: 10.1093/gigascience/giae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Cobia (Rachycentron canadum) is the only member of the Rachycentridae family and exhibits considerable sexual dimorphism in growth rate. Sex determination in teleosts has been a long-standing basic biological question, and the molecular mechanisms of sex determination/differentiation in cobia are completely unknown. RESULTS Here, we reported 2 high-quality, chromosome-level annotated male and female cobia genomes with assembly sizes of 586.51 Mb (contig/scaffold N50: 86.0 kb/24.3 Mb) and 583.88 Mb (79.9 kb/22.5 Mb), respectively. Synteny inference among perciform genomes revealed that cobia and the remora Echeneis naucrates were sister groups. Further, whole-genome resequencing of 31 males and 60 females, genome-wide association study, and sequencing depth analysis identified 3 short male-specific regions within a 10.7-kb continuous genomic region on male chromosome 18, which hinted at an undifferentiated sex chromosome system with a putative XX/XY mode of sex determination in cobia. Importantly, the only 2 genes within/between the male-specific regions, epoxide hydrolase 1 (ephx1, renamed cephx1y) and transcription factor 24 (tcf24, renamed ctcf24y), showed testis-specific/biased gene expression, whereas their counterparts cephx1x and ctf24x, located in female chromosome 18, were similarly expressed in both sexes. In addition, male-specific PCR targeting the cephx1y gene revealed that this genomic feature is conserved in cobia populations from Panama, Brazil, Australia, and Japan. CONCLUSION The first comprehensive genomic survey presented here is a valuable resource for future studies on cobia population structure and dynamics, conservation, and evolutionary history. Furthermore, it establishes evidence of putative male heterogametic regions with 2 genes playing a potential role in the sex determination of the species, and it provides further support for the rapid evolution of sex-determining mechanisms in teleost fish.
Collapse
Affiliation(s)
- Xueyan Shen
- Tropical Futures Institute, James Cook University Singapore, 387380, Singapore
| | - Jie Hu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile
| | - Giana Bastos Gomes
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | | | | | | | - Libin Shao
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xinyu Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Yunchang Shao
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Geogia Tech Shenzhen Institute (GTSI), Tianjin University, Shen Zhen 518067, China
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, 904-0495, Japan
| | - Chengze Li
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, 904-0495, Japan
| | - Evan Goulden
- Department of Agriculture and Fisheries, Queensland Government, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Kelli Anderson
- Department of Agriculture and Fisheries, Queensland Government, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Jose A Domingos
- Tropical Futures Institute, James Cook University Singapore, 387380, Singapore
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville QLD 4811, Australia
| |
Collapse
|
9
|
de Menezes Cavalcante Sassi F, Sember A, Deon GA, Liehr T, Padutsch N, Oyakawa OT, Vicari MR, Bertollo LAC, Moreira-Filho O, de Bello Cioffi M. Homeology of sex chromosomes in Amazonian Harttia armored catfishes supports the X-fission hypothesis for the X 1X 2Y sex chromosome system origin. Sci Rep 2023; 13:15756. [PMID: 37735233 PMCID: PMC10514344 DOI: 10.1038/s41598-023-42617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
The Neotropical monophyletic catfish genus Harttia represents an excellent model to study karyotype and sex chromosome evolution in teleosts. Its species split into three phylogenetic clades distributed along the Brazilian territory and they differ widely in karyotype traits, including the presence of standard or multiple sex chromosome systems in some members. Here, we investigate the chromosomal rearrangements and associated synteny blocks involved in the origin of a multiple X1X2Y sex chromosome system present in three out of six sampled Amazonian-clade species. Using 5S and 18S ribosomal DNA fluorescence in situ hybridization and whole chromosome painting with probes corresponding to X1 and X2 chromosomes of X1X2Y system from H. punctata, we confirm previous assumptions that X1X2Y sex chromosome systems of H. punctata, H. duriventris and H. villasboas represent the same linkage groups which also form the putative XY sex chromosomes of H. rondoni. The shared homeology between X1X2Y sex chromosomes suggests they might have originated once in the common ancestor of these closely related species. A joint arrangement of mapped H. punctata X1 and X2 sex chromosomes in early diverging species of different Harttia clades suggests that the X1X2Y sex chromosome system may have formed through an X chromosome fission rather than previously proposed Y-autosome fusion.
Collapse
Affiliation(s)
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská, 89, Liběchov, Czech Republic
| | - Geize Aparecida Deon
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, 07747, Jena, Germany.
| | - Niklas Padutsch
- Institut für Humangenetik, Universitätsklinikum Jena, 07747, Jena, Germany
| | | | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Orlando Moreira-Filho
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
10
|
Mee JA, Yap E, Wuitchik DM. Pelvic spine reduction affects diet but not gill raker morphology in two polymorphic brook stickleback ( Culaea inconstans) populations. Ecol Evol 2023; 13:e10526. [PMID: 37720063 PMCID: PMC10500054 DOI: 10.1002/ece3.10526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
Pelvic spine polymorphism occurs in several species in the stickleback family (Gasterosteidae). Given the similar phenotypic polymorphisms in multiple stickleback species, we sought to determine the extent of parallelism in the ecological correlates of pelvic spine reduction. Based on a metabarcoding analysis of brook stickleback gut contents in two polymorphic populations, we found that significant diet differences were associated with pelvic spine reduction, but we found no clear or consistent trend supporting a tendency for benthic feeding in pelvic-reduced brook sticklebacks. These results contrast with those found in threespine sticklebacks where pelvic spine reduction is often associated with a benthic diet. Hence, we found non-parallel consequences of spine polymorphism across species. Furthermore, a difference in gill raker morphology has been frequently observed between ecomorphs with different diets in many fish species. However, we found no evidence of any difference in gill raker morphology associated with pelvic spine polymorphism in brook sticklebacks.
Collapse
Affiliation(s)
- Jonathan A. Mee
- Department of BiologyMount Royal UniversityCalgaryAlbertaCanada
| | - Emily Yap
- Department of BiologyMount Royal UniversityCalgaryAlbertaCanada
| | | |
Collapse
|
11
|
Sykes NTB, Kolora SRR, Sudmant PH, Owens GL. Rapid turnover and evolution of sex-determining regions in Sebastes rockfishes. Mol Ecol 2023; 32:5013-5027. [PMID: 37548650 DOI: 10.1111/mec.17090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Nature has evolved a wealth of sex determination (SD) mechanisms, driven by both genetic and environmental factors. Recent studies of SD in fishes have shown that not all taxa fit the classic paradigm of sex chromosome evolution and diverse SD methods can be found even among closely related species. Here, we apply a suite of genomic approaches to investigate sex-biased genomic variation in eight species of Sebastes rockfish found in the northeast Pacific Ocean. Using recently assembled chromosome-level rockfish genomes, we leverage published sequence data to identify disparate sex chromosomes and sex-biased loci in five species. We identify two putative male sex chromosomes in S. diaconus, a single putative sex chromosome in the sibling species S. carnatus and S. chrysomelas, and an unplaced sex determining contig in the sibling species S. miniatus and S. crocotulus. Our study provides evidence for disparate means of sex determination within a recently diverged set of species and sheds light on the diverse origins of sex determination mechanisms present in the animal kingdom.
Collapse
Affiliation(s)
- Nathan T B Sykes
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Sree Rohit Raj Kolora
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Center for Computational Biology, University of California, Berkeley, California, USA
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
12
|
Master-Key Regulators of Sex Determination in Fish and Other Vertebrates-A Review. Int J Mol Sci 2023; 24:ijms24032468. [PMID: 36768795 PMCID: PMC9917144 DOI: 10.3390/ijms24032468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In vertebrates, mainly single genes with an allele ratio of 1:1 trigger sex-determination (SD), leading to initial equal sex-ratios. Such genes are designated master-key regulators (MKRs) and are frequently associated with DNA structural variations, such as copy-number variation and null-alleles. Most MKR knowledge comes from fish, especially cichlids, which serve as a genetic model for SD. We list 14 MKRs, of which dmrt1 has been identified in taxonomically distant species such as birds and fish. The identification of MKRs with known involvement in SD, such as amh and fshr, indicates that a common network drives SD. We illustrate a network that affects estrogen/androgen equilibrium, suggesting that structural variation may exert over-expression of the gene and thus form an MKR. However, the reason why certain factors constitute MKRs, whereas others do not is unclear. The limited number of conserved MKRs suggests that their heterologous sequences could be used as targets in future searches for MKRs of additional species. Sex-specific mortality, sex reversal, the role of temperature in SD, and multigenic SD are examined, claiming that these phenomena are often consequences of artificial hybridization. We discuss the essentiality of taxonomic authentication of species to validate purebred origin before MKR searches.
Collapse
|
13
|
Ma W, Rovatsos M. Sex chromosome evolution: The remarkable diversity in the evolutionary rates and mechanisms. J Evol Biol 2022; 35:1581-1588. [DOI: 10.1111/jeb.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Wen‐Juan Ma
- Department of Molecular Biosciences University of Kansas Lawrence Kansas USA
| | | |
Collapse
|