1
|
Cerone M, Smith TK. Exploring the activity of the putative Δ6-desaturase and its role in bloodstream form life-cycle transitions in Trypanosoma brucei. PLoS Pathog 2025; 21:e1012691. [PMID: 39965027 DOI: 10.1371/journal.ppat.1012691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/27/2025] [Accepted: 01/26/2025] [Indexed: 02/20/2025] Open
Abstract
Trypanosomatids have been shown to possess an exclusive and finely regulated biosynthetic pathway for de novo synthesis of fatty acids (FAs) and particularly of polyunsaturated fatty acids (PUFAs). The key enzymes for the process of unsaturation are known as desaturases. In this work, we explored the biocatalytic activity of the putative Δ6-desaturase (Tb11.v5.0580) in the native organism T. brucei, whose expression level varies dramatically between life cycle stages. Utilising FA analysis via GC-MS, we were able to elucidate i) via genetic manipulation of the level of expression of Δ6-desaturases in both procyclic (PCF) and bloodstream (BSF) forms of T. brucei and ii) via supplementation of the media with various levels of FA sources, that docosahexaenoic acid (22:6) and/or docosapentaenoic acid (22:5) are the products, while arachidonic acid (20:4) and/or docosatetraenoic acid (22:4) are the substrates of this Δ6-desaturase. Surprisingly, we were able to observe, via lipidomic analysis with ESI-MS/MS, an increase in inositol-phosphoryl ceramide (IPC) in response to the overexpression of Δ6-desaturase in low-fat media in BSF. The formation of IPC is normally only observed in the stumpy and procyclic forms of T. brucei. Therefore, the expression levels of Δ6-desaturases, which increases between BSF, stumpy and PCF, might be involved in the cascade(s) of metabolic events that contributes to these remodelling of the lipid pools and ultimately morphological changes, which are key to the transition between these life-cycle stages. We were in fact able to show that the overexpression of Δ6-desaturase is indeed linked to the expression of protein associated with differentiation (PAD1) in stumpy, and of the upregulation of some proteins and metabolites which are normally upregulated in stumpy and PCF.
Collapse
Affiliation(s)
- Michela Cerone
- Schools of Chemistry and Biology, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, Scotland
| | - Terry K Smith
- Schools of Chemistry and Biology, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, Scotland
| |
Collapse
|
2
|
Dubey AP, Tylec BL, Yi S, Tedeschi FA, Smith JT, Read LK. KRBP72 facilitates ATPase-dependent editing progression through a structural roadblock in mitochondrial A6 mRNA. Nucleic Acids Res 2025; 53:gkae1153. [PMID: 39673519 PMCID: PMC11754742 DOI: 10.1093/nar/gkae1153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 12/16/2024] Open
Abstract
Uridine insertion/deletion editing of mitochondrial messenger RNAs (mRNAs) in kinetoplastids entails the coordinated action of three complexes. RNA Editing Catalytic Complexes (RECCs) catalyze the enzymatic reactions, while the RNA Editing Substrate Binding Complex (RESC) and RNA Editing Helicase 2 Complex (REH2C) coordinate interactions between RECCs, mRNAs and hundreds of guide RNAs that direct edited sequences. Additionally, numerous auxiliary factors are required for productive editing of specific mRNAs. Here, we elucidate the role of KRBP72, an editing auxiliary factor of the ABC adenosine triphosphatase (ATPase) family that exhibits RNA-binding activity. In procyclic form Trypanosoma brucei, KRBP72 knockdown leads to a pause in editing at the base of a predicted stem loop structure in adenosine triphosphate synthase subunit 6 (A6) mRNA. Enhanced cross-linking and affinity purification revealed KRBP72 binding sites both within and upstream of this stem loop. KRBP72 ATPase activity is essential for its A6 mRNA editing function; however, its RNA-binding activity is dispensable. KRBP72 interacts with most RESC proteins in an RNase-sensitive manner. By contrast, RESC12A associates with KRBP72 in an RNase-insensitive fashion, and RESC12A promotes KRBP72's interaction with RNA. Hence, KRBP72 ATPase activity facilitates progression of editing through a challenging secondary structure, highlighting this protein's crucial role in A6 mRNA editing.
Collapse
MESH Headings
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/enzymology
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/chemistry
- RNA Editing
- Protozoan Proteins/metabolism
- Protozoan Proteins/genetics
- Protozoan Proteins/chemistry
- Adenosine Triphosphatases/metabolism
- Adenosine Triphosphatases/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Mitochondria/genetics
- Mitochondria/metabolism
- Binding Sites
- RNA, Mitochondrial/metabolism
- RNA, Mitochondrial/genetics
- Mitochondrial Proton-Translocating ATPases/metabolism
- Mitochondrial Proton-Translocating ATPases/genetics
- Mitochondrial Proton-Translocating ATPases/chemistry
- RNA, Protozoan/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/chemistry
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Guide, Kinetoplastida/genetics
- Nucleic Acid Conformation
Collapse
Affiliation(s)
- Ashutosh P Dubey
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA
| | - Brianna L Tylec
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd., Cleveland, OH 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd., Cleveland, OH 44106, USA
| | - Frank A Tedeschi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd., Cleveland, OH 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd., Cleveland, OH 44106, USA
| | - Joseph T Smith
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Hauser DA, Kaiser M, Mäser P, Albisetti A. Venturicidin A affects the mitochondrial membrane potential and induces kDNA loss in Trypanosoma brucei. Antimicrob Agents Chemother 2024; 68:e0167123. [PMID: 38869301 PMCID: PMC11232411 DOI: 10.1128/aac.01671-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
Neglected tropical diseases caused by trypanosomatid parasites have devastating health and economic consequences, especially in tropical areas. New drugs or new combination therapies to fight these parasites are urgently needed. Venturicidin A, a macrolide extracted from Streptomyces, inhibits the ATP synthase complex of fungi and bacteria. However, its effect on trypanosomatids is not fully understood. In this study, we tested venturicidin A on a panel of trypanosomatid parasites using Alamar Blue assays and found it to be highly active against Trypanosoma brucei and Leishmania donovani, but much less so against Trypanosoma evansi. Using fluorescence microscopy, we observed a rapid loss of the mitochondrial membrane potential in T. brucei bloodstream forms upon venturicidin A treatment. Additionally, we report the loss of mitochondrial DNA in approximately 40%-50% of the treated parasites. We conclude that venturicidin A targets the ATP synthase of T. brucei, and we suggest that this macrolide could be a candidate for anti-trypanosomatid drug repurposing, drug combinations, or medicinal chemistry programs.
Collapse
Affiliation(s)
- Dennis A Hauser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Anna Albisetti
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Darden C, Donkor JE, Korolkova O, Barozai MYK, Chaudhuri M. Distinct structural motifs are necessary for targeting and import of Tim17 in Trypanosoma brucei mitochondrion. mSphere 2024; 9:e0055823. [PMID: 38193679 PMCID: PMC10871166 DOI: 10.1128/msphere.00558-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Nuclear-encoded mitochondrial proteins are correctly translocated to their proper sub-mitochondrial destination using location-specific mitochondrial targeting signals and via multi-protein import machineries (translocases) in the outer and inner mitochondrial membranes (TOM and TIMs, respectively). However, targeting signals of multi-pass Tims are less defined. Here, we report the characterization of the targeting signals of Trypanosoma brucei Tim17 (TbTim17), an essential component of the most divergent TIM complex. TbTim17 possesses a characteristic secondary structure including four predicted transmembrane (TM) domains in the center with hydrophilic N- and C-termini. After examining mitochondrial localization of various deletion and site-directed mutants of TbTim17 in T. brucei using subcellular fractionation and confocal microscopy, we located at least two internal targeting signals (ITS): (i) within TM1 (31-50 AAs) and (ii) TM4 + loop 3 (120-136 AAs). Both signals are required for proper targeting and integration of TbTim17 in the membrane. Furthermore, a positively charged residue (K122) is critical for mitochondrial localization of TbTim17. This is the first report of characterizing the ITS for a multipass inner membrane protein in a divergent eukaryote, like T. brucei.IMPORTANCEAfrican trypanosomiasis (AT) is a deadly disease in human and domestic animals, caused by the parasitic protozoan Trypanosoma brucei. Therefore, AT is not only a concern for human health but also for economic development in the vast area of sub-Saharan Africa. T. brucei possesses a single mitochondrion per cell that imports hundreds of nuclear-encoded mitochondrial proteins for its functions. T. brucei Tim17 (TbTim17), an essential component of the TbTIM17 complex, is a nuclear-encoded protein; thus, it is necessary to be imported from the cytosol to form the TbTIM17 complex. Here, we demonstrated that the internal targeting signals within the transmembrane 1 (TM1) and TM4 with loop 3, and residue K122 are required collectively for import and integration of TbTim17 in the T. brucei mitochondrion. This information could be utilized to block TbTim17 function and parasite growth.
Collapse
Affiliation(s)
- Chauncey Darden
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Joseph E. Donkor
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Olga Korolkova
- The Consolidated Research Instrumentation, Informatics, Statistics, and Learning Integration Suite (CRISALIS), Meharry Medical College, Nashville, Tennessee, USA
| | | | - Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Smith JT, Tylec B, Naguleswaran A, Roditi I, Read LK. Developmental dynamics of mitochondrial mRNA abundance and editing reveal roles for temperature and the differentiation-repressive kinase RDK1 in cytochrome oxidase subunit II mRNA editing. mBio 2023; 14:e0185423. [PMID: 37795988 PMCID: PMC10653865 DOI: 10.1128/mbio.01854-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Trypanosoma brucei is the unicellular parasite that causes African sleeping sickness and nagana disease in livestock. The parasite has a complex life cycle consisting of several developmental forms in the human and tsetse fly insect vector. Both the mammalian and insect hosts provide different nutritional environments, so T. brucei must adapt its metabolism to promote its survival and to complete its life cycle. As T. brucei is transmitted from the human host to the fly, the parasite must regulate its mitochondrial gene expression through a process called uridine insertion/deletion editing to achieve mRNAs capable of being translated into functional respiratory chain proteins required for energy production in the insect host. Therefore, it is essential to understand the mechanisms by which T. brucei regulates mitochondrial gene expression during transmission from the mammalian host to the insect vector.
Collapse
Affiliation(s)
- Joseph T. Smith
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Brianna Tylec
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Laurie K. Read
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
6
|
Taleva G, Husová M, Panicucci B, Hierro-Yap C, Pineda E, Biran M, Moos M, Šimek P, Butter F, Bringaud F, Zíková A. Mitochondrion of the Trypanosoma brucei long slender bloodstream form is capable of ATP production by substrate-level phosphorylation. PLoS Pathog 2023; 19:e1011699. [PMID: 37819951 PMCID: PMC10593219 DOI: 10.1371/journal.ppat.1011699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
The long slender bloodstream form Trypanosoma brucei maintains its essential mitochondrial membrane potential (ΔΨm) through the proton-pumping activity of the FoF1-ATP synthase operating in the reverse mode. The ATP that drives this hydrolytic reaction has long been thought to be generated by glycolysis and imported from the cytosol via an ATP/ADP carrier (AAC). Indeed, we demonstrate that AAC is the only carrier that can import ATP into the mitochondrial matrix to power the hydrolytic activity of the FoF1-ATP synthase. However, contrary to expectations, the deletion of AAC has no effect on parasite growth, virulence or levels of ΔΨm. This suggests that ATP is produced by substrate-level phosphorylation pathways in the mitochondrion. Therefore, we knocked out the succinyl-CoA synthetase (SCS) gene, a key mitochondrial enzyme that produces ATP through substrate-level phosphorylation in this parasite. Its absence resulted in changes to the metabolic landscape of the parasite, lowered virulence, and reduced mitochondrial ATP content. Strikingly, these SCS mutant parasites become more dependent on AAC as demonstrated by a 25-fold increase in their sensitivity to the AAC inhibitor, carboxyatractyloside. Since the parasites were able to adapt to the loss of SCS in culture, we also analyzed the more immediate phenotypes that manifest when SCS expression is rapidly suppressed by RNAi. Importantly, when performed under nutrient-limited conditions mimicking various host environments, SCS depletion strongly affected parasite growth and levels of ΔΨm. In totality, the data establish that the long slender bloodstream form mitochondrion is capable of generating ATP via substrate-level phosphorylation pathways.
Collapse
Affiliation(s)
- Gergana Taleva
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
| | - Michaela Husová
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
| | - Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
| | - Erika Pineda
- Univ. Bordeaux, CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, Bordeaux, France
| | - Marc Biran
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Bordeaux, France
| | - Martin Moos
- Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech republic
| | - Petr Šimek
- Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech republic
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Frédéric Bringaud
- Univ. Bordeaux, CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, Bordeaux, France
| | - Alena Zíková
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
| |
Collapse
|
7
|
McDermott SM, Pham V, Lewis I, Tracy M, Stuart K. mt-LAF3 is a pseudouridine synthase ortholog required for mitochondrial rRNA and mRNA gene expression in Trypanosoma brucei. Int J Parasitol 2023; 53:573-583. [PMID: 37268169 PMCID: PMC10527287 DOI: 10.1016/j.ijpara.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/04/2023]
Abstract
Trypanosoma brucei and related kinetoplastid parasites possess unique RNA processing pathways, including in their mitochondria, that regulate metabolism and development. Altering RNA composition or conformation through nucleotide modifications is one such pathway, and modifications including pseudouridine regulate RNA fate and function in many organisms. We surveyed pseudouridine synthase (PUS) orthologs in trypanosomatids, with a particular interest in mitochondrial enzymes due to their potential importance for mitochondrial function and metabolism. Trypanosoma brucei mitochondrial (mt)-LAF3 is an ortholog of human and yeast mitochondrial PUS enzymes, and a mitoribosome assembly factor, but structural studies differ in their conclusion as to whether it has PUS catalytic activity. Here, we generated T. brucei cells that are conditionally null (CN) for mt-LAF3 expression and showed that mt-LAF3 loss is lethal and disrupts mitochondrial membrane potential (ΔΨm). Addition of a mutant gamma ATP synthase allele to the CN cells permitted ΔΨm maintenance and cell survival, allowing us to assess primary effects on mitochondrial RNAs. As expected, these studies showed that loss of mt-LAF3 dramatically decreases levels of mitochondrial 12S and 9S rRNAs. Notably, we also observed decreases in mitochondrial mRNA levels, including differential effects on edited vs. pre-edited mRNAs, indicating that mt-LAF3 is required for mitochondrial rRNA and mRNA processing, including of edited transcripts. To assess the importance of PUS catalytic activity in mt-LAF3 we mutated a conserved aspartate that is necessary for catalysis in other PUS enzymes and showed it is not essential for cell growth, or maintenance of ΔΨm and mitochondrial RNA levels. Together, these results indicate that mt-LAF3 is required for normal expression of mitochondrial mRNAs in addition to rRNAs, but that PUS catalytic activity is not required for these functions. Instead, our work, combined with previous structural studies, suggests that T. brucei mt-LAF3 acts as a mitochondrial RNA-stabilizing scaffold.
Collapse
Affiliation(s)
- Suzanne M McDermott
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | - Vy Pham
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Isaac Lewis
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Maxwell Tracy
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Kenneth Stuart
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
8
|
Gowda V, Dinesh S, Sharma S. Manipulative neuroparasites: uncovering the intricacies of neurological host control. Arch Microbiol 2023; 205:314. [PMID: 37603130 DOI: 10.1007/s00203-023-03637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023]
Abstract
Manipulative neuroparasites are a fascinating group of organisms that possess the ability to hijack the nervous systems of their hosts, manipulating their behavior in order to enhance their own survival and reproductive success. This review provides an overview of the different strategies employed by manipulative neuroparasites, ranging from viruses to parasitic worms and fungi. By examining specific examples, such as Toxoplasma gondii, Leucochloridium paradoxum, and Ophiocordyceps unilateralis, we highlight the complex mechanisms employed by these parasites to manipulate their hosts' behavior. We explore the mechanisms through which these parasites alter the neural processes and behavior of their hosts, including the modulation of neurotransmitters, hormonal pathways, and neural circuits. This review focuses less on the diseases that neuroparasites induce and more on the process of their neurological manipulation. We also investigate the fundamental mechanisms of host manipulation in the developing field of neuroparasitology, which blends neuroscience and parasitology. Finally, understanding the complex interaction between manipulative neuroparasites and their hosts may help us to better understand the fundamentals of behavior, neurology, and host-parasite relationships.
Collapse
Affiliation(s)
- Vishvas Gowda
- Department of Bioinformatics, BioNome, Bangalore, 560043, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bangalore, 560043, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bangalore, 560043, India.
| |
Collapse
|
9
|
Darden C, Donkor J, Korolkova O, Khan Barozai MY, Chaudhuri M. Distinct structural motifs are necessary for targeting and import of Tim17 in Trypanosoma brucei mitochondrion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548172. [PMID: 37461662 PMCID: PMC10350046 DOI: 10.1101/2023.07.07.548172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Nuclear-encoded mitochondrial proteins are correctly translocated to their proper sub-mitochondrial destination using location specific mitochondrial targeting signals (MTSs) and via multi-protein import machineries (translocases) in the outer and inner mitochondrial membranes (TOM and TIMs, respectively). However, MTSs of multi-pass Tims are less defined. Here we report the characterization of the MTSs of Trypanosoma brucei Tim17 (TbTim17), an essential component of the most divergent TIM complex. TbTim17 possesses a characteristic secondary structure including four predicted transmembrane (TM) domains in the center with hydrophilic N- and C-termini. After examining mitochondrial localization of various deletion and site-directed mutants of TbTim17 in T. brucei using subcellular fractionation and confocal microscopy we located at least two internal signals, 1) within TM1 (31-50 AAs) and 2) TM4 + Loop 3 (120-136 AAs). Both signals are required for proper targeting and integration of TbTim17 in the membrane. Furthermore, a positively charged residue (K 122 ) is critical for mitochondrial localization of TbTim17. This is the first report of characterizing the internal mitochondrial targeting signals (ITS) for a multipass inner membrane protein in a divergent eukaryote, like T. brucei . Summary Internal targeting signals within the TM1, TM4 with Loop 3, and residue K122 are required collectively for import and integration of TbTim17 in the T. brucei mitochondrion. This information could be utilized to block parasite growth.
Collapse
|
10
|
Halliday C, Dean S, Sunter JD, Wheeler RJ. Subcellular protein localisation of Trypanosoma brucei bloodstream form-upregulated proteins maps stage-specific adaptations. Wellcome Open Res 2023; 8:46. [PMID: 37251657 PMCID: PMC10209625 DOI: 10.12688/wellcomeopenres.18586.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Genome-wide subcellular protein localisation in Trypanosoma brucei, through our TrypTag project, has comprehensively dissected the molecular organisation of this important pathogen. Powerful as this resource is , T. brucei has multiple developmental forms and we previously only analysed the procyclic form. This is an insect life cycle stage, leaving the mammalian bloodstream form unanalysed. The expectation is that between life stages protein localisation would not change dramatically (completely unchanged or shifting to analogous stage-specific structures). However, this has not been specifically tested. Similarly, which organelles tend to contain proteins with stage-specific expression can be predicted from known stage specific adaptations but has not been comprehensively tested. Methods: We used endogenous tagging with mNG to determine the sub-cellular localisation of the majority of proteins encoded by transcripts significantly upregulated in the bloodstream form, and performed comparison to the existing localisation data in procyclic forms. Results: We have confirmed the localisation of known stage-specific proteins and identified the localisation of novel stage-specific proteins. This gave a map of which organelles tend to contain stage specific proteins: the mitochondrion for the procyclic form, and the endoplasmic reticulum, endocytic system and cell surface in the bloodstream form. Conclusions: This represents the first genome-wide map of life cycle stage-specific adaptation of organelle molecular machinery in T. brucei.
Collapse
Affiliation(s)
- Clare Halliday
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | | |
Collapse
|
11
|
Halliday C, Dean S, Sunter JD, Wheeler RJ. Subcellular protein localisation of Trypanosoma brucei bloodstream form-upregulated proteins maps stage-specific adaptations. Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.18586.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background: Genome-wide subcellular protein localisation in Trypanosoma brucei, through our TrypTag project, has comprehensively dissected the molecular organisation of this important pathogen. Powerful as this resource is, T. brucei has multiple developmental forms and we previously only analysed the procyclic form. This is an insect life cycle stage, leaving the mammalian bloodstream form unanalysed. The expectation is that between life stages protein localisation would not change dramatically (completely unchanged or shifting to analogous stage-specific structures). However, this has not been specifically tested. Similarly, which organelles tend to contain proteins with stage-specific expression can be predicted from known stage specific adaptations but has not been comprehensively tested. Methods: We used endogenous tagging with mNG to determine the sub-cellular localisation of the majority of proteins encoded by transcripts significantly upregulated in the bloodstream form, and performed comparison to the existing localisation data in procyclic forms. Results: We have confirmed the localisation of known and identified the localisation of novel stage-specific proteins. This gave a map of which organelles tend to contain stage specific proteins: the mitochondrion for the procyclic form, and the endoplasmic reticulum, endocytic system and cell surface in the bloodstream form. Conclusions: This represents the first genome-wide map of life cycle stage-specific adaptation of organelle molecular machinery in T. brucei.
Collapse
|