1
|
Greenhough B, Roe E, Message R. Amphibious ethics and speculative immersions: laboratory aquariums as a site for developing a more inclusive animal geography. SCOTTISH GEOGRAPHICAL JOURNAL 2024:1-25. [PMID: 39449757 PMCID: PMC11495481 DOI: 10.1080/14702541.2024.2378308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/06/2024] [Indexed: 10/26/2024]
Abstract
Human capacity to sense and respond to the suffering of non-human animals is key to animal care and welfare. Intuitively these modes of relating seem best suited to interactions between humans and warm-blooded mammals who share human-like facial features and characteristics. Animal geographers and those working in animal welfare have noted the challenges that humans face in learning to care about fishes, and how this leads to welfare guidelines and regulations which are poorly suited to aquatic species. This paper draws on interviews with laboratory aquarists and biomedical researchers to explore how they have learnt to sense and respond to the needs of fishes in the laboratory. We offer two key observations. Firstly, despite significant bodily differences, humans find ways to empathise with fishes. Secondly, whilst observations of bodies and behaviours predominate in laboratory mammal welfare assessments, when working with fishes water quality serves as an important proxy for species health. We conclude that the laboratory aquarium signifies methodological and conceptual limits in contemporary animal geographies. We further argue that these barriers should be understood as cultural, and - as we demonstrate - that there is consequently scope and capacity to reach beyond them by engaging in amphibious ethics and speculative immersions.
Collapse
Affiliation(s)
- Beth Greenhough
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Emma Roe
- School of Geography and Environmental Science, University of Southampton, Highfield, UK
| | - Reuben Message
- School of Geography and the Environment, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Linares-Cordova JF, Roque A, Ruiz-Gómez MDL, Rey-Planellas S, Boglino A, Rodríguez-Montes de Oca GA, Ibarra-Zatarain Z. Farmed fish welfare research status in Latin America: A review. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39009502 DOI: 10.1111/jfb.15854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Latin America (LATAM) plays an important role in the world's production of aquatic animals and is the second most productive region in the world. Chile, Ecuador, Brazil, Mexico, Colombia, and Perú contribute 87% of LATAM aquaculture production. The fish welfare in aquaculture is of increasing public concern globally, and LATAM is no exception, growing in importance for fish farmers, authorities, and scientists. Although the topic is somewhat controversial, the welfare status of farmed fish has direct implications for their production and the sustainability of the industry. Therefore, this study analyses scientific papers on animal welfare in farmed fish, from the six countries in LATAM with the highest aquaculture production. The main objectives were to quantify the number of papers published between 2000 and 2023 on fish welfare by using scientific databases. A total of 285 papers were found for the period analysed. The country with the largest number of publications was Brazil (75.79%), followed by Chile (13.33%), Mexico (7.02%), Peru (1.75%), Ecuador, and Colombia (1.05%). Nile tilapia was the most studied species, appearing in 30.18% of the publications, with most of the studies mainly dealing with nutrition (32.28%). The growth of aquaculture is leading to joint efforts to generate knowledge on welfare issues, especially in poorly studied species with high production, to create policies that help minimize welfare risks. Given this, the insights generated by this review could be a useful addition to approaches investigating the trends and concepts of fish welfare in LATAM.
Collapse
Affiliation(s)
- Joel Fitzgerald Linares-Cordova
- Posgrado de Ciencias Agropecuarias, Colegio de Ciencias Agropecuarias, Universidad Autónoma de Sinaloa, Culiacán, Mexico
- Nayarit Centre for Innovation and Technological Transference (CENITT), Tepic, Mexico
| | - Ana Roque
- IRTA, Sant Carles de la Ràpita, Tarragona, Spain
| | - María de Lourdes Ruiz-Gómez
- Laboratorio de Ecología y Conducta, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | - Anaïs Boglino
- Nayarit Centre for Innovation and Technological Transference (CENITT), Tepic, Mexico
| | | | | |
Collapse
|
3
|
Sneddon LU, Schroeder P, Roque A, Finger-Baier K, Fleming A, Tinman S, Collet B. Pain management in zebrafish : Report from a FELASA Working Group. Lab Anim 2024; 58:261-276. [PMID: 38051824 PMCID: PMC11264547 DOI: 10.1177/00236772231198733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 12/07/2023]
Abstract
Empirical evidence suggests fishes meet the criteria for experiencing pain beyond a reasonable doubt and zebrafish are being increasingly used in studies of pain and nociception. Zebrafish are adopted across a wide range of experimental fields and their use is growing particularly in biomedical studies. Many laboratory procedures in zebrafish involve tissue damage and this may give rise to pain. Therefore, this FELASA Working Group reviewed the evidence for pain in zebrafish, the indicators used to assess pain and the impact of a range of drugs with pain-relieving properties. We report that there are several behavioural indicators that can be used to determine pain, including reduced activity, space use and distance travelled. Pain-relieving drugs prevent these responses, and we highlight the dose and administration route. To minimise or avoid pain, several refinements are suggested for common laboratory procedures. Finally, practical suggestions are made for the management and alleviation of pain in laboratory zebrafish, including recommendations for analgesia. Pain management is an important refinement in experimental animal use and so our report has the potential to improve zebrafish welfare during and after invasive procedures in laboratories across the globe.
Collapse
Affiliation(s)
- Lynne U Sneddon
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Paul Schroeder
- Red Kite Veterinary Consultants, 30 Upper High Street, Thame, Oxon, OX9 3EZ, UK
| | | | - Karin Finger-Baier
- Max Planck Institute of Neurobiology (now: Max Planck Institute for Biological Intelligence), Department Genes – Circuits – Behaviour, Martinsried, Germany
| | - Angeleen Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Simon Tinman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat Gan, Israel
| | | |
Collapse
|
4
|
Henderson EE, Snyman H. Special section on aquatic animal health and disease. J Vet Diagn Invest 2024; 36:297-298. [PMID: 38616494 PMCID: PMC11110771 DOI: 10.1177/10406387241241331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Affiliation(s)
- Eileen E. Henderson
- California Animal Health and Food Safety Laboratory System, University of California–Davis, San Bernardino branch, CA, USA
| | - Heindrich Snyman
- Animal Health Laboratory–Kemptville, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Aguilar-Santana FA, Schmitter-Soto JJ, Lucano-Ramírez G, Avila-Poveda OH, Arellano-Martínez M. Morphochromatic spectrum through gonad development stages of the razor surgeonfish, Prionurus laticlavius (Valenciennes, 1846) (Actinopterygii: Acanthuriformes). JOURNAL OF FISH BIOLOGY 2024; 104:1433-1444. [PMID: 38350664 DOI: 10.1111/jfb.15685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
Gonad development stages (GDS) are a critical tool that can be easily applied in fisheries to visually discriminate mature from immature organisms and assess their reproductive condition. This study proposes a morphochromatic scale to define gonad development stages for razor surgeonfish (Prionurus laticlavius) based on morphological and structural assessments of the gonad, histologically validated using multivariate dummy matrices modeled through multiple linear regression analyses. Gonads of 271 specimens were photographed prior to preservation to describe their shape, size, color, and turgor for morphochromatic analysis. Later, gonads were processed using standard histological methods. An oocyte growth scale was designed based on oocyte diameter and follicular wall thickness for each stage. In addition, five morphochromatic gonad development stages were histologically validated: immature, developing, spawning capable, regressing, and regenerating. Morphochromatic variations were observed in the last three stages in both sexes. Results show that gonad morphology and structure of P. laticlavius are similar to those of other acanthurids, albeit with some asymmetric and morphological differences, as well as gonad morphochromatic in both sexes. These findings confirm that maturation is species-specific. Also, although not a critical character, gonad colouration was found to play a major role in distinguishing between gonad development stages along with shape, size, vascularity (females), and folds (males). Therefore, gonad colouration should not be entirely overlooked because doing so may lead to errors in determining sexual maturity stages.
Collapse
Affiliation(s)
| | - Juan Jacobo Schmitter-Soto
- Departamento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur (ECOSUR), Chetumal, Mexico
| | - Gabriela Lucano-Ramírez
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara (UDG), Melaque, Mexico
| | - Omar Hernando Avila-Poveda
- Facultad de Ciencias del Mar (FACIMAR), Universidad Autonoma de Sinaloa (UAS), Mazatlan, Mexico
- Programa de Investigadoras e Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologias (CONAHCYT), CDMX, Mexico
| | - Marcial Arellano-Martínez
- Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politécnico Nacional, La Paz, Mexico
| |
Collapse
|
6
|
Vercellini MC, Rearte R, di Cesare L, Ayala MA, Montes MM. Eugenol as anesthetic for Cnesterodon decemmaculatus (Cyprinodontiformes, Poeciliidae). Lab Anim 2024; 58:44-51. [PMID: 37712766 DOI: 10.1177/00236772231192020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Anesthetics are commonly used in fish for surgery and to facilitate capture, handling and transport in aquaculture and experimental procedures. In research, the selection of the anesthetic depends on its properties and on the recovery time. Eugenol has been pointed out as an effective anesthetic for fish, alternative to traditional drugs. Although Cnesterodon decemmaculatus is widely used as a model in ecological bioassays, no anesthetic protocol has been reported for this species. The aim of the present study was to evaluate the induction time (i.e. time to reach anesthetic stage VI) and recovery time in individuals of C. decemmaculatus subjected to eugenol at a fixed concentration, according to sex and pregnancy status. Forty-one fish were divided into three groups: males, pregnant females and non-pregnant females. They were measured for total length, standard length and weight, and the condition factor (K) was calculated. No significant differences in induction and recovery times were found for sex, pregnancy status and K between groups. Results are a contribution toward the development protocol of a standard anesthetic protocol for C. decemmaculatus.
Collapse
Affiliation(s)
- Maria C Vercellini
- CONICET La Plata Ringgold standard institution - CEPAVE CONICET, La Plata, Argentina
| | - Ramiro Rearte
- CONICET La Plata Ringgold standard institution - CEPAVE CONICET, La Plata, Argentina
| | - Luca di Cesare
- CONICET La Plata Ringgold standard institution - CEPAVE CONICET, La Plata, Argentina
| | - Miguel A Ayala
- CONICET La Plata Ringgold standard institution - CEPAVE CONICET, La Plata, Argentina
| | - Martin M Montes
- CONICET La Plata Ringgold standard institution - CEPAVE CONICET, La Plata, Argentina
| |
Collapse
|
7
|
Loiotine Z, Gasco L, Biasato I, Resconi A, Bellezza Oddon S. Effect of larval handling on black soldier fly life history traits and bioconversion efficiency. Front Vet Sci 2024; 11:1330342. [PMID: 38288139 PMCID: PMC10822952 DOI: 10.3389/fvets.2024.1330342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
Introduction The black soldier fly is considered the most promising insect species for mass production; however, information on the effects of handling, which is unavoidable during experimental trials and rearing practices, is still limited. Materials and methods To address this gap, three different manipulation intensities were tested on 100 6-day-old larvae per replica (6 replicates/treatments) fed on Gainesville diet: (1) hard-handled (HH), larvae underwent continuous manipulation until the end of larval stage, (2) soft-handled (SH), larvae were manipulated after the appearance of the first prepupa, (3) no-handled (NH), larvae remained untouched. Every 4 days from the beginning to the end of the larval stage, the manipulations lasted 30 min and occurred under laboratory conditions (20°C). During the sampling operations, at least 30 larvae were randomly extracted, washed, dried, and weight-mimicked. At the end of larval stage, all the boxes remained untouched until the adult fly stage, and the emergency rate and sex ratio were evaluated on dead flies. Data were statistically analyzed using IBM SPSS V20.0.0 software and the considered significance level was p < 0.05. Results The larval stage lasted 8.2 days for both HH and SH (p > 0.05). Despite the HH larvae being the most manipulated, no difference was also observed in final weight (HH, 160 mg; SH, 150 mg; p > 0.05) and survival rate (HH, 96.2%; SH, 94.5%; p > 0.05). The manipulation did not influence the bioconversion capacity of the larvae (bioconversion efficiency corrected for the residue: HH, 14.3%; SH, 12.91%; reduction rate: HH, 58.4%; SH, 55.9%; waste reduction index: HH, 7.28%/day; SH, 7.25%/day; p > 0.05). Finally, the development time from larva to fly (about 20.7; p > 0.05), the emergency rate (NH: 92.8%; SH: 89.5%; HH: 82.7%) and sex ratio (~1.2% to male flies) were not affected by the handling (p > 0.05). Discussion In conclusion, the handling procedures used in the current study did not influence the life history traits of the black soldier fly. However, further studies are needed to evaluate if different experimental protocols on various scales, the colony strain or other handling procedures may suggest a different scenario or confirm the results.
Collapse
Affiliation(s)
| | | | - Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, TO, Italy
| | | | | |
Collapse
|
8
|
Mayne B, Espinoza T, Crook DA, Anderson C, Korbie D, Marshall JC, Kennard MJ, Harding DJ, Butler GL, Roberts B, Whiley J, Marshall S. Accurate, non-destructive, and high-throughput age estimation for Golden perch (Macquaria ambigua spp.) using DNA methylation. Sci Rep 2023; 13:9547. [PMID: 37308782 PMCID: PMC10260977 DOI: 10.1038/s41598-023-36773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/09/2023] [Indexed: 06/14/2023] Open
Abstract
Age structure information of animal populations is fundamental to their conservation and management. In fisheries, age is routinely obtained by counting daily or annual increments in calcified structures (e.g., otoliths) which requires lethal sampling. Recently, DNA methylation has been shown to estimate age using DNA extracted from fin tissue without the need to kill the fish. In this study we used conserved known age-associated sites from the zebrafish (Danio rerio) genome to predict the age of golden perch (Macquaria ambigua), a large-bodied native fish from eastern Australia. Individuals aged using validated otolith techniques from across the species' distribution were used to calibrate three epigenetic clocks. One clock was calibrated using daily (daily clock) and another with annual (annual clock) otolith increment counts, respectively. A third used both daily and annual increments (universal clock). We found a high correlation between the otolith and epigenetic age (Pearson correlation > 0.94) across all clocks. The median absolute error was 2.4 days in the daily clock, 184.6 days in the annual clock, and 74.5 days in the universal clock. Our study demonstrates the emerging utility of epigenetic clocks as non-lethal and high-throughput tools for obtaining age estimates to support the management of fish populations and fisheries.
Collapse
Affiliation(s)
- Benjamin Mayne
- Environomics Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Indian Ocean Marine Research Centre, Crawley, WA, Australia.
| | - Tom Espinoza
- Department of Regional Development, Manufacturing and Water, Brisbane, QLD, Australia
| | - David A Crook
- Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, NSW, Australia
| | - Chloe Anderson
- Environomics Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Darren Korbie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jonathan C Marshall
- Queensland Department of Environment and Science, Brisbane, QLD, Australia
- Australian Rivers Institute and Griffith School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Mark J Kennard
- Australian Rivers Institute and Griffith School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Doug J Harding
- Department of Regional Development, Manufacturing and Water, Brisbane, QLD, Australia
| | - Gavin L Butler
- NSW Department of Primary Industries (Fisheries), Grafton, NSW, Australia
| | - Brien Roberts
- Fisheries Division, Department of Industry, Tourism and Trade, Darwin, NT, Australia
| | - Josh Whiley
- Australian Rivers Institute and Griffith School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Sharon Marshall
- Department of Regional Development, Manufacturing and Water, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Gaffney LP, Lavery JM, Schiestl M, Trevarthen A, Schukraft J, Miller R, Schnell AK, Fischer B. A theoretical approach to improving interspecies welfare comparisons. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2022.1062458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The number of animals bred, raised, and slaughtered each year is on the rise, resulting in increasing impacts to welfare. Farmed animals are also becoming more diverse, ranging from pigs to bees. The diversity and number of species farmed invite questions about how best to allocate currently limited resources towards safeguarding and improving welfare. This is of the utmost concern to animal welfare funders and effective altruism advocates, who are responsible for targeting the areas most likely to cause harm. For example, is tail docking worse for pigs than beak trimming is for chickens in terms of their pain, suffering, and general experience? Or are the welfare impacts equal? Answering these questions requires making an interspecies welfare comparison; a judgment about how good or bad different species fare relative to one another. Here, we outline and discuss an empirical methodology that aims to improve our ability to make interspecies welfare comparisons by investigating welfare range, which refers to how good or bad animals can fare. Beginning with a theory of welfare, we operationalize that theory by identifying metrics that are defensible proxies for measuring welfare, including cognitive, affective, behavioral, and neuro-biological measures. Differential weights are assigned to those proxies that reflect their evidential value for the determinants of welfare, such as the Delphi structured deliberation method with a panel of experts. The evidence should then be reviewed and its quality scored to ascertain whether particular taxa may possess the proxies in question to construct a taxon-level welfare range profile. Finally, using a Monte Carlo simulation, an overall estimate of comparative welfare range relative to a hypothetical index species can be generated. Interspecies welfare comparisons will help facilitate empirically informed decision-making to streamline the allocation of resources and ultimately better prioritize and improve animal welfare.
Collapse
|
10
|
Sneddon LU, Roques JAC. Pain Recognition in Fish. Vet Clin North Am Exot Anim Pract 2023; 26:1-10. [PMID: 36402476 DOI: 10.1016/j.cvex.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Empirical evidence has demonstrated that fish experience pain, and so to ensure their good welfare, it is vital that we can recognize and assess pain. A range of general, behavioral, and physiologic indicators can be used when assessing pain in fish. Many of these can be used at the tank side and are termed operational welfare indicators, whereas some require further computer or laboratory analysis. Behavioral indicators are valid and have been shown to profoundly differ between nonpainful and painful treatments in fish. However, these are not universal, and species-specific differences exist in behavioral responses to pain.
Collapse
Affiliation(s)
- Lynne U Sneddon
- Department of Biology and Environmental Sciences, University of Gothenburg, Medicineragatan 18A, Gothenburg 413 90, Sweden.
| | - Jonathan A C Roques
- Department of Biology and Environmental Sciences, University of Gothenburg, Medicineragatan 18A, Gothenburg 413 90, Sweden; SWEMARC, the Swedish Mariculture Research Center, University of Gothenburg, 18A, Gothenburg 413 90, Sweden
| |
Collapse
|
11
|
Prentice PM, Houslay TM, Wilson AJ. Exploiting animal personality to reduce chronic stress in captive fish populations. Front Vet Sci 2022; 9:1046205. [PMID: 36590805 PMCID: PMC9794626 DOI: 10.3389/fvets.2022.1046205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic stress is a major source of welfare problems in many captive populations, including fishes. While we have long known that chronic stress effects arise from maladaptive expression of acute stress response pathways, predicting where and when problems will arise is difficult. Here we highlight how insights from animal personality research could be useful in this regard. Since behavior is the first line of organismal defense when challenged by a stressor, assays of shy-bold type personality variation can provide information about individual stress response that is expected to predict susceptibility to chronic stress. Moreover, recent demonstrations that among-individual differences in stress-related physiology and behaviors are underpinned by genetic factors means that selection on behavioral biomarkers could offer a route to genetic improvement of welfare outcomes in captive fish stocks. Here we review the evidence in support of this proposition, identify remaining empirical gaps in our understanding, and set out appropriate criteria to guide development of biomarkers. The article is largely prospective: fundamental research into fish personality shows how behavioral biomarkers could be used to achieve welfare gains in captive fish populations. However, translating potential to actual gains will require an interdisciplinary approach that integrates the expertise and viewpoints of researchers working across animal behavior, genetics, and welfare science.
Collapse
Affiliation(s)
- Pamela M. Prentice
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Thomas M. Houslay
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alastair J. Wilson
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,*Correspondence: Alastair J. Wilson
| |
Collapse
|
12
|
García-Pérez OD, Sanchez-Casas RM, Moreno-Degollado G, Munguía CAG, Villarreal-Cavazos D, Gamboa-Delgado J. Substitution of fish meal with Madagascar cockroach (Gromphadorhina portentosa) meal in diets for juvenile Nile tilapia (Oreochromis niloticus): effects on growth, nutrient assimilation, and nitrogen turnover rates. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1587-1597. [PMID: 36450932 DOI: 10.1007/s10695-022-01153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Among the wide variety of alternative ingredients aimed to substitute fish meal in aquafeeds, insect meals have been recently proposed as novel, nutritionally good dietary components. In the present study, five isoproteic and isoenergetic experimental diets formulated with varying dietary levels of Madagascar cockroach meal substituting fishmeal on a dietary protein basis (0, 25, 50, 75, and 100%) were supplied to.Nile tilapia juveniles (Oreochromis niloticus) for 29 days. Production parameters were compared among treatments, and the relative assimilation of the dietary nitrogen supplied by fishmeal and insect meal was estimated. To this end, nitrogen stable isotope analyses were applied to diets and fish muscle tissue. The isotopic changes elicited by the experimental ingredients were used to estimate the time required to reach isotopic equilibrium, the nitrogen turnover rates, and nitrogen residency times in muscle tissue. The latter were short and ranged from 4.7 to 6.2 d, except in diet containing 100% cockroach meal (7.8 d). No statistical differences were detected in final mean weight, specific growth, and survival rates among treatments. The relative proportions of dietary nitrogen and total dry matter supplied by insect and fish meal to growth were similar to the established dietary proportions after these were corrected for their respective apparent digestibility coefficients. The cockroach meal present in diets containing both main ingredients supplied relatively high proportions of dietary nitrogen (from 16 to 69%) to the biosynthesis of fish muscle tissue.
Collapse
Affiliation(s)
- Oscar Daniel García-Pérez
- Facultad de Medicina Veterinaria Y Zootecnia, Universidad Autónoma de Nuevo León. UANL, Francisco Villa S/N Col, Ex Hacienda El Canadá, General Escobedo, Nuevo León, México
| | - Rosa María Sanchez-Casas
- Facultad de Medicina Veterinaria Y Zootecnia, Universidad Autónoma de Nuevo León. UANL, Francisco Villa S/N Col, Ex Hacienda El Canadá, General Escobedo, Nuevo León, México
| | - Gustavo Moreno-Degollado
- Facultad de Medicina Veterinaria Y Zootecnia, Universidad Autónoma de Nuevo León. UANL, Francisco Villa S/N Col, Ex Hacienda El Canadá, General Escobedo, Nuevo León, México
| | - Carlos Alberto García Munguía
- División de Ciencias de La Vida, Universidad de Guanajuato, Km 9 Carretera Irapuato-Silao. Irapuato, Guanajuato, México
| | - David Villarreal-Cavazos
- Departamento de Ecología, Facultad de Ciencias Biológicas, Programa Maricultura, Universidad Autónoma de Nuevo León.UANL. San Nicolás de los Garza, Nuevo León, México.
| | - Julián Gamboa-Delgado
- Departamento de Ecología, Facultad de Ciencias Biológicas, Programa Maricultura, Universidad Autónoma de Nuevo León.UANL. San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
13
|
Winberg S, Sneddon L. Impact of intraspecific variation in teleost fishes: aggression, dominance status and stress physiology. J Exp Biol 2022; 225:278485. [DOI: 10.1242/jeb.169250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Dominance-based social hierarchies are common among teleost fishes. The rank of an animal greatly affects its behaviour, physiology and development. The outcome of fights for social dominance is affected by heritable factors and previous social experience. Divergent stress-coping styles have been demonstrated in a large number of teleosts, and fish displaying a proactive coping style have an advantage in fights for social dominance. Coping style has heritable components, but it appears to be largely determined by environmental factors, especially social experience. Agonistic behaviour is controlled by the brain's social decision-making network, and its monoaminergic systems play important roles in modifying the activity of this neuronal network. In this Review, we discuss the development of dominance hierarchies, how social rank is signalled through visual and chemical cues, and the neurobiological mechanisms controlling or correlating with agonistic behaviour. We also consider the effects of social interactions on the welfare of fish reared in captivity.
Collapse
Affiliation(s)
- Svante Winberg
- Uppsala University 1 Behavioural Neuroendocrinology, Department of Medical Cell Biology , , 751 23 Uppsala , Sweden
| | - Lynne Sneddon
- University of Gothenburg 2 Department of Biological and Environmental Sciences , , PO Box: 463, 405 31 Gothenburg , Sweden
| |
Collapse
|
14
|
Vanderzwalmen M, Sánchez Lacalle D, Tamilselvan P, McNeill J, Delieuvin D, Behlouli K, Hursthouse A, McLellan I, Alexander ME, Henriquez FL, Snellgrove D, Sloman KA. The Effect of Substrate on Water Quality in Ornamental Fish Tanks. Animals (Basel) 2022; 12:ani12192679. [PMID: 36230419 PMCID: PMC9558538 DOI: 10.3390/ani12192679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Fish kept as pets are almost always held in tanks with substrate such as gravel or sand on the bottom of the tank. This may be added as a form of enrichment to encourage natural fish behaviours, or for aesthetic reasons. However, substrate can also harbour elevated levels of waste products and unwanted bacteria; therefore, whether the use of substrate in home aquaria is advantageous or disadvantageous has not been fully considered. Here, we investigated whether there was a difference in water quality in home aquaria that contained either no substrate (bare tanks), plastic plants as enrichment but no substrate, sand or gravel substrate. Water quality (e.g., temperature, oxygen, pH and ammonia) and the presence of bacteria were measured over a 7-week period. As water quality can also vary with the season, the study was repeated at different times of the year. Addition of both gravel and sand substrate resulted in increased pH and the waste products ammonia and nitrate. Substrate was also associated with a greater presence of bacteria. In conclusion, the use of substrate affected water quality, with further research needed on the use of substrate in home aquaria. Abstract Almost all home aquaria contain substrate, either as intentional enrichment or for aesthetic purposes. For fishes, benefits of structural enrichment have been well considered, particularly in research and aquaculture settings. However, our understanding of the impacts of tank substrate as enrichment is limited. While substrate can induce foraging in some species, a major drawback is the potential of substrate to harbour elevated levels of waste and pathogenic bacteria. Here, we considered whether substrate as a form of environmental enrichment significantly altered water quality and bacterial presence in home aquaria. Water quality (temperature, oxygen, pH, TAN, unionised ammonia, nitrate, Ca2+, Na+, Mg2+ and K+) and bacterial presence (Pseudomonas spp.) were measured over two seven-week periods in stand-alone, tropical, freshwater tanks that simulated home aquaria. The following four enrichment conditions were considered: bare tanks, plastic plants, gravel substrate or sand substrate. The addition of both gravel and sand resulted in increased pH, concentrations of total ammonia nitrogen and nitrate. Substrate was also associated with a greater Pseudomonas presence. Decreased pH alongside an increased concentration of ions were also observed depending on the time of year. In conclusion, enrichment type affected the water quality of home aquaria, with further research needed on the role of the tank biome in fish welfare.
Collapse
Affiliation(s)
- Myriam Vanderzwalmen
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley Campus, Paisley PA1 2BE, UK
| | - Daniel Sánchez Lacalle
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley Campus, Paisley PA1 2BE, UK
| | - Priyadarshini Tamilselvan
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley Campus, Paisley PA1 2BE, UK
| | - Jason McNeill
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley Campus, Paisley PA1 2BE, UK
| | - Dorine Delieuvin
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley Campus, Paisley PA1 2BE, UK
| | - Khadidja Behlouli
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley Campus, Paisley PA1 2BE, UK
| | - Andrew Hursthouse
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley Campus, Paisley PA1 2BE, UK
| | - Iain McLellan
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley Campus, Paisley PA1 2BE, UK
| | - Mhairi E. Alexander
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Lanarkshire Campus, Glasgow G72 0LH, UK
| | - Fiona L. Henriquez
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Lanarkshire Campus, Glasgow G72 0LH, UK
| | - Donna Snellgrove
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Leicestershire LE14 4RT, UK
| | - Katherine A. Sloman
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Lanarkshire Campus, Glasgow G72 0LH, UK
- Correspondence:
| |
Collapse
|
15
|
Kennedy R, Rosell R, Campbell W, Allen M, Del Villar-Guerra D. A comparison of the behaviour and survival of angling vs. trap-sampled Salmo salar smolts. JOURNAL OF FISH BIOLOGY 2022; 101:745-748. [PMID: 35789484 DOI: 10.1111/jfb.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
An experiment was undertaken, using acoustic telemetry, to compare the survival and migratory timing of Salmo salar L. smolts sampled, under optimal conditions, in a traditional fixed Wolf trap against a sample of rod-caught fish captured using a sensitive angling technique. No significant difference was evident in survival with 83% of both samples detected in the river outflow, 67% of the trap and 76% of the rod samples were detected in coastal waters and finally 43% of the trap and 35% of the rod samples were detected on an offshore array c. 50 km from the river outlet. No significant difference was evident in the time taken for trap- and rod-sampled fish to reach either the river outflow, coastal or offshore waters. Angling, if undertaken sensitively, can provide an effective, resource-efficient and ethically justifiable sampling tool for juvenile salmonid age classes.
Collapse
Affiliation(s)
- Richard Kennedy
- Fisheries & Aquatic Ecosystems Branch, Agri-Food and Biosciences Institute, Belfast, UK
- River Bush Salmon Station, Agri-Food and Biosciences Institute, Bushmills, UK
| | - Robert Rosell
- Fisheries & Aquatic Ecosystems Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | - Warren Campbell
- Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, UK
| | - Michelle Allen
- Fisheries & Aquatic Ecosystems Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | | |
Collapse
|
16
|
Acute and Chronic Effects of Fin Amputation on Behavior Performance of Adult Zebrafish in 3D Locomotion Test Assessed with Fractal Dimension and Entropy Analyses and Their Relationship to Fin Regeneration. BIOLOGY 2022; 11:biology11070969. [PMID: 36101350 PMCID: PMC9312171 DOI: 10.3390/biology11070969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023]
Abstract
Simple Summary Fin amputation is a routinely conducted procedure for various experiments, especially in zebrafish. However, no study compares the acute and chronic effects of the amputation of each fin on their behaviors. In addition, although some analgesics have been applied after the fin amputation procedure, the long-term effects of these drugs in have not been evaluated yet. In this study, we found that amputation in the caudal fin resulted in the most pronounced behavior alterations and their behavior was fully recovered before the caudal fin was fully regenerated, indicating that these behavioral changes came from pain elicited from the fin amputation. Finally, while lidocaine treatment could ameliorate the behavioral effects after the amputation procedure, it did not accelerate the behavior recovery process; instead, it caused the fish to display some slight side effects. Abstract The fin is known to play an important role in swimming for many adult fish, including zebrafish. Zebrafish fins consist of paired pectoral and pelvic with unpaired dorsal, anal, and caudal tail fins with specific functions in fish locomotion. However, there was no study comparing the behavior effects caused by the absence of each fin. We amputated each fin of zebrafish and evaluated their behavior performance in the 3D locomotion test using fractal dimension and entropy analyses. Afterward, the behavior recovery after the tail fin amputation was also evaluated, together with the fin regeneration process to study their relationship. Finally, we conducted a further study to confirm whether the observed behavior alterations were from pain elicited by fin amputation procedure or not by using lidocaine, a pain-relieving drug. Amputation in the caudal fin resulted in the most pronounced behavior alterations, especially in their movement complexity. Furthermore, we also found that their behavior was fully recovered before the caudal fin was fully regenerated, indicating that these behavioral changes were not majorly due to a mechanical change in tail length; instead, they may come from pain elicited from the fin amputation, since treatment with lidocaine could ameliorate the behavioral effects after the amputation procedure. However, lidocaine did not accelerate the behavior recovery process; instead, it caused the fishes to display some slight side effects. This study highlights the potential moderate severity of fin amputation in zebrafish and the importance of analgesia usage. However, side effects may occur and need to be considered since fin amputation is routinely conducted for various research, especially genomic screening.
Collapse
|
17
|
Estimating Discard Mortality in Commercial Fisheries without Fish Dying: A 3R Challenge. Animals (Basel) 2022; 12:ani12060782. [PMID: 35327179 PMCID: PMC8944425 DOI: 10.3390/ani12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Due to the implementation of a landing obligation in fisheries in the European Union (EU), with an exemption for species with “high survival”, discard survival studies (henceforth DSSs) have become one of the most politically prioritized fisheries research areas in European fisheries. In contrast to most fisheries science research areas, DSSs are embedded by the EUs animal research welfare directive. This is a challenge, and there has not been any focus on how to implement animal welfare (AW) regulations experimentally in DSSs. This paper focuses on AW regulations in relation to conducting DSSs, but the outreach is much broader. We investigate experimental procedures by bringing in relevant examples, using the output results, and relating this information to relevant AW guidelines and regulations by focusing on implementing 3R principles. Abstract Globally, it is estimated that around 10% of the fish that are caught are discarded. This is considered to be a wasteful human marine activity since these fish are often dead or dying. To reduce the high discard rates of commercial fisheries, the European Union (E.U.) has enacted a landing obligation that includes the ability to exempt “species for which scientific evidence demonstrates high survival rates”. Therefore, discard survival studies (henceforth DSSs) have become one of the most politically prioritized fisheries research areas in European fisheries. International expert groups have produced guidance reports to promote best practices and to harmonize the methodologies. Nevertheless, there has not been any focus on how to implement animal welfare (AW) regulations experimentally. Discard survival studies are “frontrunners” in fisheries science research areas that are embedded by animal research welfare requirements and are expected to be more restrictive in the future because of an increased public focus on fish welfare. This paper focuses on AW regulations in relation to conducting DSSs, but the outreach is much broader. We investigate experimental procedures by bringing in relevant examples, using output results, and relating this information to relevant AW guidelines and regulations by focusing on implementing 3R principles.
Collapse
|
18
|
Nargesi EA, Falahatkar B, Żarski D. Artificial reproduction of Caspian roach, Rutilus caspicus following stimulating ovulation with Ovaprim, Ovopel, and their combinations under controlled conditions. Anim Reprod Sci 2022; 238:106932. [DOI: 10.1016/j.anireprosci.2022.106932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/18/2022]
|
19
|
Canedo A, Saiki P, Santos AL, Carneiro KDS, Souza AMD, Qualhato G, Brito RDS, Mello-Andrade F, Rocha TL. Zebrafish (Danio rerio) meets bioethics: the 10Rs ethical principles in research. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v22e-70884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract Zebrafish (Danio rerio) is a tropical fish species widely used in research, worldwide. The development of genetically modified animals and the increasing number of zebrafish breeding facilities due to their emerging use in several research fields, opened room for new ethical challenges for research carried out with this species. It is necessary to raise the scientific community’s awareness of the ethical standards and laws in force, on animal research. Thus, the aim of the current study is to describe 10 Rs ethical principles by using zebrafish as model system in research. The classical 3 Rs concerning animal welfare, namely replacement, reduction and refinement; and the added 7 Rs related to scientific (registration, reporting, robustness, reproducibility and relevance) and conduct principles (responsibility, and respect) in zebrafish research are herein presented and critically discussed. The use of these 10 Rs by researchers, institutions and the Animal Ethics Committee is recommended to support regulations, decision-making about and the promotion of zebrafish health and welfare in research.
Collapse
|
20
|
An Overview of Zebrafish Modeling Methods in Drug Discovery and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:145-169. [PMID: 34961915 DOI: 10.1007/5584_2021_684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animal studies are recognized as a significant step forward in the bridging between drug discovery and clinical applications. Animal models, due to their relative genetic, molecular, physiological, and even anatomical similarities to humans, can provide a suitable platform for unraveling the mechanisms underlying human diseases and discovering new therapeutic approaches as well. Recently, zebrafish has attracted attention as a valuable experimental and pharmacological model in drug discovery and development studies due to its prominent characteristics such as the high degree of genetic similarity with humans, genetic manipulability, and prominent clinical features. Since advancing a theory to a valid and reliable observation requires the manipulation of animals, it is, therefore, essential to use efficient modeling methods appropriate to the different aspects of experimental conditions. In this context, applying several various approaches such as using chemicals, pathogens, and genetic manipulation approaches allows zebrafish development into a preferable model that mimics some human disease pathophysiology. Thus, such modeling approaches not only can provide a framework for a comprehensive understanding of the human disease mechanisms that have a counterpart in zebrafish but also can pave the way for discovering new drugs that are accompanied by higher amelioration effects on different human diseases.
Collapse
|
21
|
Félix L, Correia R, Sequeira R, Ribeiro C, Monteiro S, Antunes L, Silva J, Venâncio C, Valentim A. MS-222 and Propofol Sedation during and after the Simulated Transport of Nile tilapia ( Oreochromis niloticus). BIOLOGY 2021; 10:1309. [PMID: 34943224 PMCID: PMC8698739 DOI: 10.3390/biology10121309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023]
Abstract
The use of anesthetics has been suggested as a strategy to hamper live fish transport-induced stress. Still, there is insufficient data available on the use of alternative anesthetics to MS-222. This study investigated the use of propofol to mitigate stress in Nile tilapia (Oreochromis niloticus, 143.8 ± 20.9 g and 20.4 ± 0.9 cm) during a 6 h simulated transport. Individuals (n = 7) were divided into three groups: control, 40 mg L-1 MS-222, and 0.8 mg L-1 propofol. A naïve group non-transported was also considered. During the 6 h transport and 24 h after, the response to external stimuli, opercular movements, water quality parameters, behavior, blood hematology and other physiological values, the histopathology of the gills, the quality of the fillet, and oxidative-stress changes in gills, muscle, brain, and liver were evaluated. Propofol increased swimming activity of fish but decreased opercular movements and responses to external stimuli, indicating oscillations of the sedation depth. Water pH and glucose levels increased, while hematocrit (HCT) and lactate decreased in propofol groups at 6 h. At this time-point, MS-222 also induced a decrease in the HCT and lactate levels while increasing cortisol levels. Despite these effects, the stress-related behaviors lessened with anesthetics compared to the control group. After the recovery period, physiological responses normalized in animals from both anesthetic groups, but the control still had high cortisol levels. Overall, propofol is a good alternative for the transportation of this species, showing efficient sedation without compromising health or fillet quality. However, further pharmacodynamics and pharmacokinetics knowledge is required to support its use in aquaculture settings.
Collapse
Affiliation(s)
- Luís Félix
- Instituto de Investigação e Inovação em Saúde (i3s), Universidade of Porto, 4200-135 Porto, Portugal
- Laboratory Animal Science, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.M.); (L.A.); (C.V.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Rita Correia
- School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.C.); (J.S.)
| | - Rita Sequeira
- School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.S.); (C.R.)
| | - Cristiana Ribeiro
- School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.S.); (C.R.)
| | - Sandra Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.M.); (L.A.); (C.V.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.S.); (C.R.)
| | - Luís Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.M.); (L.A.); (C.V.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.C.); (J.S.)
| | - José Silva
- School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.C.); (J.S.)
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.M.); (L.A.); (C.V.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.C.); (J.S.)
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana Valentim
- Instituto de Investigação e Inovação em Saúde (i3s), Universidade of Porto, 4200-135 Porto, Portugal
- Laboratory Animal Science, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.M.); (L.A.); (C.V.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
22
|
Dos Santos CR, Arcanjo GS, de Souza Santos LV, Koch K, Amaral MCS. Aquatic concentration and risk assessment of pharmaceutically active compounds in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118049. [PMID: 34479163 DOI: 10.1016/j.envpol.2021.118049] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutically active compounds are increasingly detected in raw and treated wastewater, surface water, and drinking water worldwide. These compounds can cause adverse effects to the ecosystem even at low concentrations and, to assess these impacts, toxicity tests are essential. However, the toxicity data are scarce for many PhACs, and when available, they are dispersed in the literature. The values of pharmaceuticals concentration in the environment and toxicity data are essential for measuring their environmental and human health risks. Thus this review verified the concentrations of pharmaceuticals in the aquatic environment and the toxicity related to them. The risk assessment was also carried out. Diclofenac, naproxen, erythromycin, roxithromycin, and 17β-estradiol presented a high environment risk and 17α-ethinylestradiol presented a high human health risk. This shows the potential of these pharmaceuticals to cause adverse effects to the ecosystem and humans and establishes the necessity of their removal through advanced technologies.
Collapse
Affiliation(s)
- Carolina Rodrigues Dos Santos
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901, Belo Horizonte, MG, Brazil
| | - Gemima Santos Arcanjo
- Department of Environmental Engineering, Universidade Federal da Bahia, 40210-630, Salvador, BA, Brazil; Department of Civil Engineering, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lucilaine Valéria de Souza Santos
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30.535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 385748, Garching, Germany
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
23
|
Printzi A, Kourkouta C, Fragkoulis S, Dimitriadi A, Geladakis G, Orfanakis M, Mazurais D, Zambonino-Infante JL, Koumoundouros G. Balancing between Artemia and microdiet usage for normal skeletal development in zebrafish (Danio rerio). JOURNAL OF FISH DISEASES 2021; 44:1689-1696. [PMID: 34275148 DOI: 10.1111/jfd.13487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Targeting in zebrafish fast growth, high survival rates and improved reproductive performance has led over the last years in variable feeding regimes between different facilities. Despite its significance on fish function and welfare, normal skeletal development has rarely been evaluated in establishing the best feeding practices for zebrafish. The aim of this study was to establish a protocol for normal skeletal development, growth and survival of zebrafish larvae through live feed-to-microdiet transition at an appropriate rate. Four feeding regimes including feeding exclusively on Artemia nauplii (A) or dry microdiet (D), and feeding on both Artemia and microdiet at two different transition rates (slow (B) or fast (C)) were applied from 5 to 24 dpf (days post-fertilization). Results demonstrated a significant effect of feeding regimes on the incidence of skeletal abnormalities (gill cover, fins and vertebral column, p < .05) in zebrafish larvae. The A and B experimental groups presented the highest (88 ± 3 and 84 ± 17%, respectively), but the C and D the lowest (18 ± 14 and 11 ± 2%, respectively), rates of normal fish (fish without any abnormality). Similarly, growth rate was comparatively elevated in A and B groups. No significant differences were observed in fish survival between A, B and C groups. However, D group presented a significantly lower survival rate. To our knowledge, this is the first study to show that the live feed-to-microdiet transition rate influences larval growth, survival and abnormality rates in a non-homogenous pattern.
Collapse
Affiliation(s)
- Alice Printzi
- Biology Department, University of Crete, Heraklion, Greece
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, Plouzané, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Josi D, Frommen JG. Through a glass darkly? Divergent reactions of eight Lake Tanganyika cichlid species towards their mirror image in their natural environment. Ethology 2021. [DOI: 10.1111/eth.13207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dario Josi
- Department of Natural Sciences Ecology and Environment Research Centre Conservation, Ecology, Evolution and Behaviour Research Group Manchester Metropolitan University Manchester UK
- Institute of Ecology and Evolution Division of Behavioural Ecology University of Bern Hinterkappelen Switzerland
| | - Joachim G. Frommen
- Department of Natural Sciences Ecology and Environment Research Centre Conservation, Ecology, Evolution and Behaviour Research Group Manchester Metropolitan University Manchester UK
- Institute of Ecology and Evolution Division of Behavioural Ecology University of Bern Hinterkappelen Switzerland
| |
Collapse
|
25
|
Grimard C, Mangold-Döring A, Alharbi H, Weber L, Hogan N, Jones PD, Giesy JP, Hecker M, Brinkmann M. Toxicokinetic Models for Bioconcentration of Organic Contaminants in Two Life Stages of White Sturgeon ( Acipenser transmontanus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11590-11600. [PMID: 34383468 DOI: 10.1021/acs.est.0c06867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The white sturgeon (Acipenser transmontanus) is an endangered ancient fish species that is known to be particularly sensitive to certain environmental contaminants, partly because of the uptake and subsequent toxicity of lipophilic pollutants prone to bioconcentration as a result of their high lipid content. To better understand the bioconcentration of organic contaminants in this species, toxicokinetic (TK) models were developed for the embryo-larval and subadult life stages. The embryo-larval model was designed as a one-compartment model and validated using whole-body measurements of benzo[a]pyrene (B[a]P) metabolites from a waterborne exposure to B[a]P. A physiologically based TK (PBTK) model was used for the subadult model. The predictive power of the subadult model was validated with an experimental data set of four chemicals. Results showed that the TK models could accurately predict the bioconcentration of organic contaminants for both life stages of white sturgeon within 1 order of magnitude of measured values. These models provide a tool to better understand the impact of environmental contaminants on the health and the survival of endangered white sturgeon populations.
Collapse
Affiliation(s)
- Chelsea Grimard
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Annika Mangold-Döring
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen 52074, Germany
| | - Hattan Alharbi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
- Department of Environmental Sciences, Baylor University, Waco, Texas 76706, United States
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5, Canada
| |
Collapse
|
26
|
Jones NAR, Webster MM, Salvanes AGV. Physical enrichment research for captive fish: Time to focus on the DETAILS. JOURNAL OF FISH BIOLOGY 2021; 99:704-725. [PMID: 33942889 DOI: 10.1111/jfb.14773] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Growing research effort has shown that physical enrichment (PE) can improve fish welfare and research validity. However, the inclusion of PE does not always result in positive effects and conflicting findings have highlighted the many nuances involved. Effects are known to depend on species and life stage tested, but effects may also vary with differences in the specific items used as enrichment between and within studies. Reporting fine-scale characteristics of items used as enrichment in studies may help to reveal these factors. We conducted a survey of PE-focused studies published in the last 5 years to examine the current state of methodological reporting. The survey results suggest that some aspects of enrichment are not adequately detailed. For example, the amount and dimensions of objects used as enrichment were frequently omitted. Similarly, the ecological relevance, or other justification, for enrichment items was frequently not made explicit. Focusing on ecologically relevant aspects of PE and increasing the level of detail reported in studies may benefit future work and we propose a framework with the acronym DETAILS (Dimensions, Ecological rationale, Timing of enrichment, Amount, Inputs, Lighting and Social environment). We outline the potential importance of each of the elements of this framework with the hope it may aid in the level of reporting and standardization across studies, ultimately aiding the search for more beneficial types of PE and the development of our understanding and ability to improve the welfare of captive fish and promote more biologically relevant behaviour.
Collapse
Affiliation(s)
- Nick A R Jones
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Mike M Webster
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
27
|
Perry WB. Life in captivity: future research in physical enrichment for fish. JOURNAL OF FISH BIOLOGY 2021; 99:703. [PMID: 34542916 DOI: 10.1111/jfb.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
28
|
Ceballos-Francisco D, García-Carrillo N, Cuesta A, Esteban MÁ. Ultrasonography study of the skin wound healing process in gilthead seabream (Sparus aurata). JOURNAL OF FISH DISEASES 2021; 44:1091-1100. [PMID: 33760262 DOI: 10.1111/jfd.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This work aimed to carry out an in vivo study of the skin healing process in gilthead seabream (Sparus aurata) after being experimentally wounded. Firstly, the structure of normal skin was studied by real-time ultrasonography (Vevo Lab, VisualSonics) and light microscopy. Besides this, experimental wounds were made on the left flank of each fish with a circular biopsy punch (8 mm diameter) below the lateral line. The healing process was assessed on live fish at 0, 6, 11 and 23 days post-wounding using the real-time ultrasonography in B-mode and Power Doppler mode (Vevo 3100 FUJIFILM, VisualSonics). Through the ultrasonography images, both the skin structure and the evolution of the changes that wounds originated in the surrounding tissues were studied in vivo over time. Concomitantly, the pattern of neovascularization in the wounded area was followed during the healing process and it was demonstrated that, although the neovascularization started very early after the skin damage, it was increased in wounded areas from day 11 post-wounding onwards. The results obtained proved the utility and power of using ultrasounds in fish to evaluate in vivo complex biological processes in real time, which are difficult to study by other methodologies. The present data shed some light on the reparation of external injuries in aquatic vertebrates.
Collapse
Affiliation(s)
- Diana Ceballos-Francisco
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Nuria García-Carrillo
- Integrated Center for Biomedical Research (CEIB), Health Sciences Campus, University of Murcia, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
29
|
Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front Microbiol 2021; 12:630695. [PMID: 33935991 PMCID: PMC8083986 DOI: 10.3389/fmicb.2021.630695] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The world is facing a significant increase in infections caused by drug-resistant infectious agents. In response, various strategies have been recently explored to treat them, including the development of bacteriocins. Bacteriocins are a group of antimicrobial peptides produced by bacteria, capable of controlling clinically relevant susceptible and drug-resistant bacteria. Bacteriocins have been studied to be able to modify and improve their physicochemical properties, pharmacological effects, and biosafety. This manuscript focuses on the research being developed on the biosafety of bacteriocins, which is a topic that has not been addressed extensively in previous reviews. This work discusses the studies that have tested the effect of bacteriocins against pathogens and assess their toxicity using in vivo models, including murine and other alternative animal models. Thus, this work concludes the urgency to increase and advance the in vivo models that both assess the efficacy of bacteriocins as antimicrobial agents and evaluate possible toxicity and side effects, which are key factors to determine their success as potential therapeutic agents in the fight against infections caused by multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Diego Francisco Benítez-Chao
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| |
Collapse
|
30
|
Lin YJ, Rabaoui L, Maneja RH, Pulikkoden ARK, Premlal P, Nazeer Z, Qurban MA, Abdulkader K, Prihartato PK, Qasem AM, Fita N, Roa-Ureta RH. Strengths and weaknesses in the long-term sustainability of two sympatric seabreams (Argyrops spinifer and Rhabdosargus haffara, Sparidae). JOURNAL OF FISH BIOLOGY 2021; 98:1329-1341. [PMID: 33443303 DOI: 10.1111/jfb.14666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Argyrops spinifer and Rhabdosargus haffara are two sympatric seabream species making important contributions to fisheries landings in the western Arabian/Persian Gulf. We identified the strengths and weaknesses in the long-term sustainability of A. spinifer and R. haffara stocks by integrating multiple sources of data, including fisheries catch and effort statistics, life history traits, scientific trawl surveys and historical length frequency distribution. Four strengths were identified in A. spinifer: wide distribution of juveniles, positive association to the network of de facto fishing exclusion areas created by hundreds of oil-gas facilities, early maturation and the existence of large and old individuals. A. spinifer suffers from two potential weaknesses: slow growth rate and higher exploitation pressure on the small-sized individuals. R. haffara, on the other hand, has a strength of having a short life span and a fast growth rate, characteristics that make it robust to unfavourable conditions. R. haffara suffers from two weaknesses: the lack of association to the oil and gas facilities, and the preference for nearshore shallow waters with stronger negative anthropogenic impacts. Identified strengths and weaknesses of these two sparids provided a preliminary assessment about their long-term sustainability, as well as a roadmap about how to develop different management strategies to meet specific objectives.
Collapse
Affiliation(s)
- Yu-Jia Lin
- Marine Studies Section, Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Lotfi Rabaoui
- Marine Studies Section, Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Rommel H Maneja
- Marine Studies Section, Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Abdu Rahiman Kambrath Pulikkoden
- Marine Studies Section, Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Panickan Premlal
- Marine Studies Section, Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Zahid Nazeer
- Marine Studies Section, Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Mohammad A Qurban
- Marine Studies Section, Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
- College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Khaled Abdulkader
- Environmental Protection Department, Saudi Aramco, Dhahran, Kingdom of Saudi Arabia
| | - Perdana K Prihartato
- Environmental Protection Department, Saudi Aramco, Dhahran, Kingdom of Saudi Arabia
| | - Ali M Qasem
- Environmental Protection Department, Saudi Aramco, Dhahran, Kingdom of Saudi Arabia
| | - Nabil Fita
- Fisheries Department, Ministry of Environment, Water and Agriculture, Qatif, Kingdom of Saudi Arabia
| | - Ruben H Roa-Ureta
- Centre of Marine Science (CCMAR), University of Algarve, Faro, Portugal
| |
Collapse
|
31
|
Ohnesorge N, Heinl C, Lewejohann L. Current Methods to Investigate Nociception and Pain in Zebrafish. Front Neurosci 2021; 15:632634. [PMID: 33897350 PMCID: PMC8061727 DOI: 10.3389/fnins.2021.632634] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pain is an unpleasant, negative emotion and its debilitating effects are complex to manage. Mammalian models have long dominated research on nociception and pain, but there is increasing evidence for comparable processes in fish. The need to improve existing pain models for drug research and the obligation for 3R refinement of fish procedures facilitated the development of numerous new assays of nociception and pain in fish. The zebrafish is already a well-established animal model in many other research areas like toxicity testing, as model for diseases or regeneration and has great potential in pain research, too. Methods of electrophysiology, molecular biology, analysis of reflexive or non-reflexive behavior and fluorescent imaging are routinely applied but it is the combination of these tools what makes the zebrafish model so powerful. Simultaneously, observing complex behavior in free-swimming larvae, as well as their neuronal activity at the cellular level, opens new avenues for pain research. This review aims to supply a toolbox for researchers by summarizing current methods to study nociception and pain in zebrafish. We identify treatments with the best algogenic potential, be it chemical, thermal or electric stimuli and discuss options of analgesia to counter effects of nociception and pain by opioids, non-steroidal anti-inflammatory drugs (NSAIDs) or local anesthetics. In addition, we critically evaluate these practices, identify gaps of knowledge and outline potential future developments.
Collapse
Affiliation(s)
- Nils Ohnesorge
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Céline Heinl
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
32
|
Housing, Husbandry and Welfare of a "Classic" Fish Model, the Paradise Fish ( Macropodus opercularis). Animals (Basel) 2021; 11:ani11030786. [PMID: 33799915 PMCID: PMC8000575 DOI: 10.3390/ani11030786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Paradise fish (Macropodus opercularis) has been a favored subject of behavioral research during the last decades of the 20th century. Lately, however, with a massively expanding genetic toolkit and a well annotated, fully sequenced genome, zebrafish (Danio rerio) became a central model of recent behavioral research. But, as the zebrafish behavioral repertoire is less complex than that of the paradise fish, the focus on zebrafish is a compromise. With the advent of novel methodologies, we think it is time to bring back paradise fish and develop it into a modern model of behavioral and evolutionary developmental biology (evo-devo) studies. The first step is to define the housing and husbandry conditions that can make a paradise fish a relevant and trustworthy model. Here, we define the relevant welfare parameters for keeping a healthy population of paradise fish and provide a detailed description of our recent experience in raising and successfully breeding this species under laboratory conditions. Abstract Thanks to its small size, external fertilization and fecundity, over the past four decades, zebrafish (Danio rerio) has become the dominant fish model species in biological and biomedical research. Multiple lines of evidence, however, suggest that the reliance on only a handful of genetic model organisms is problematic, as their unique evolutionary histories makes them less than ideal to study biological questions unrelated to their historically contingent adaptations. Therefore, a need has emerged to develop novel model species, better suited for studying particular problems. The paradise fish (Macropodus opercularis) has a much more complex behavioral repertoire than zebrafish and has been a favored model animal in ethological research during the last decades of the previous century. We believe that with currently available, easily adaptable genetic toolkits, this species could be easily developed into a popular model of behavioral genetics. Despite its earlier popularity, however, the description of a detailed housing and husbandry protocol for this species is still missing from scientific literature. We present here a detailed description of how to raise and breed paradise fish successfully under laboratory conditions, and also discuss some of the challenges we faced while creating a stable breeding population for this species in our facility.
Collapse
|
33
|
Berlinghieri F, Panizzon P, Penry-Williams IL, Brown C. Laterality and fish welfare - A review. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Identification of Individual Zebrafish ( Danio rerio): A Refined Protocol for VIE Tagging Whilst Considering Animal Welfare and the Principles of the 3Rs. Animals (Basel) 2021; 11:ani11030616. [PMID: 33652779 PMCID: PMC7996851 DOI: 10.3390/ani11030616] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
In aquatic ecology, studies have commonly employed a tagging technique known as visible implant elastomer (VIE). This method has not been widely adopted by the zebrafish research community and also lacks refinement with regard to animal welfare. The current paper introduces a new VIE tagging protocol, with the aim of improving existing tagging techniques by placing particular emphasis on the Three Rs. To improve animal welfare and fish survival, we added the use of an analgesic compound (lidocaine) through the marking procedure, followed by after-treatment with antiseptics (melaleuca, aloe vera, and PVP-I as active ingredients) to improve tissue regeneration and healing. The newly improved protocol has been quantitatively evaluated on different populations and age groups of zebrafish. This study will be useful to the scientific zebrafish community and to the wider field including biologist and aquarists, especially in consideration of animal welfare, where tagging techniques are considered as a potential noxious stimulus for fish.
Collapse
|
35
|
VanderWright WJ, Bigman JS, Elcombe CF, Dulvy NK. Gill slits provide a window into the respiratory physiology of sharks. CONSERVATION PHYSIOLOGY 2020; 8:coaa102. [PMID: 33304587 PMCID: PMC7720089 DOI: 10.1093/conphys/coaa102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Metabolically important traits, such as gill surface area and metabolic rate, underpin life histories, population dynamics and extinction risk, as they govern the availability of energy for growth, survival and reproduction. Estimating both gill surface area and metabolic rate can be challenging, especially when working with large-bodied, threatened species. Ideally, these traits, and respiratory physiology in general, could be inferred from external morphology using a faster, non-lethal method. Gill slit height is quick to measure on live organisms and is anatomically connected to the gill arch. Here, we relate gill slit height and gill surface area for five Carcharhiniform sharks. We compared both total and parabranchial gill surface area to mean and individual gill slit height in physical specimens. We also compared empirical measurements of relative gill slit height (i.e. in proportion to total length) to those estimated from field guide illustrations to examine the potential of using anatomical drawings to measure gill slit height. We find strong positive relationships between gill slit height and gill surface area at two scales: (i) for total gill surface area and mean gill slit height across species and (ii) for parabranchial gill surface area and individual gill slit height within and across species. We also find that gill slit height is a consistent proportion of the fork length of physical specimens. Consequently, relative gill slit height measured from field guide illustrations proved to be surprisingly comparable to those measured from physical specimens. While the generality of our findings needs to be evaluated across a wider range of taxonomy and ecological lifestyles, they offer the opportunity that we might only need to go to the library and measure field guide illustrations to yield a non-lethal, first-order approximation of the respiratory physiology of sharks.
Collapse
Affiliation(s)
- Wade J VanderWright
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Jennifer S Bigman
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Cayley F Elcombe
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
36
|
Srinivasan MV. Vision, perception, navigation and 'cognition' in honeybees and applications to aerial robotics. Biochem Biophys Res Commun 2020; 564:4-17. [PMID: 33220922 DOI: 10.1016/j.bbrc.2020.09.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023]
Abstract
This review summarizes research carried out in the author's laboratory investigating the ways in which honeybees use vision to guide their flight and navigate in their environment, and describes how these principles have been used to design, build and test biologically-inspired systems for the guidance and navigation of unmanned aerial vehicles. It also outlines studies investigating the capacities of honeybees in the areas of visual perception, pattern recognition, and 'cognition'.
Collapse
Affiliation(s)
- Mandyam V Srinivasan
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
37
|
Ceballos-Francisco D, Carrillo NG, Pardo-Fernández FJ, Cuesta A, Esteban MÁ. Radiological characterization of gilthead seabream (Sparus aurata) by X-ray computed tomography. JOURNAL OF FISH BIOLOGY 2020; 97:1440-1447. [PMID: 32840010 DOI: 10.1111/jfb.14510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
In recent years, the increasing use of fish as new animal models in scientific research and the growth of fish farming (mainly for human consumption) have highlighted the need for advanced technology to deepen our knowledge of fish biology. Hence, the present study was carried out to radiologically analyse the whole body of gilthead seabream (Sparus aurata) specimens using X-ray computed tomography (CT). Images were acquired in an Albira SPECT/PET/CT tri-modal preclinical-scanner. Segmentation, measurements and three-dimensional reconstruction were made using the Carestream Molecular imaging Albira CT system in conjunction with Pmod, AMIDE and Amira software packages. The results showed that the density values of gilthead seabream are in the range -700 to +2500 HU for the whole body. We also determined the density ranges that topographically coincide with the swim bladder, soft tissues, fat, skin and skeleton. This work describes, validates and demonstrates the application of a fully automated image analysis technique to study and quantify fish body composition, whether segmented or as a whole. In addition, the basis for applying this image technique in other in vivo studies is established.
Collapse
Affiliation(s)
- Diana Ceballos-Francisco
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Nuria G Carrillo
- Preclinical Imaging Unit, Laboratory Animal Service, Core Facilities University of Murcia, Murcia, Spain
| | | | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - María Á Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
38
|
Skin swabbing is a refined technique to collect DNA from model fish species. Sci Rep 2020; 10:18212. [PMID: 33097784 PMCID: PMC7584585 DOI: 10.1038/s41598-020-75304-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
Model fish species such as sticklebacks and zebrafish are frequently used in studies that require DNA to be collected from live animals. This is typically achieved by fin clipping, a procedure that is simple and reliable to perform but that can harm fish. An alternative procedure to sample DNA involves swabbing the skin to collect mucus and epithelial cells. Although swabbing appears to be less invasive than fin clipping, it still requires fish to be netted, held in air and handled—procedures that can cause stress. In this study we combine behavioural and physiological analyses to investigate changes in gene expression, behaviour and welfare after fin clipping and swabbing. Swabbing led to a smaller change in cortisol release and behaviour on the first day of analysis compared to fin clipping. It also led to less variability in data suggesting that fewer animals need to be measured after using this technique. However, swabbing triggered some longer term changes in zebrafish behaviour suggesting a delayed response to sample collection. Skin swabbing does not require the use of anaesthetics and triggers fewer changes in behaviour and physiology than fin clipping. It is therefore a more refined technique for DNA collection with the potential to improve fish health and welfare.
Collapse
|
39
|
Greene W, Mylniczenko ND, Storms T, Burns CM, Lewbart GA, Byrd L, Papich MG. Pharmacokinetics of Ketoprofen in Nile Tilapia ( Oreochromis niloticus) and Rainbow Trout ( Oncorhynchus mykiss). Front Vet Sci 2020; 7:585324. [PMID: 33134366 PMCID: PMC7579418 DOI: 10.3389/fvets.2020.585324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to document the pharmacokinetics of ketoprofen following 3 mg/kg intramuscular (IM) and intravenous (IV) injections in rainbow trout (Oncorhynchus mykiss) and 8 mg/kg intramuscular (IM) injection in Nile tilapia (Oreochromis niloticus). Plasma was collected laterally from the tail vein for drug analysis at various time intervals up to 72 h following the injection of ketoprofen. In trout, area under the curve (AUC) levels were 115.24 μg hr/mL for IM and 135.69 μg hr/mL for IV groups with a half-life of 4.40 and 3.91 h, respectively. In both trout and tilapia, there were detectable ketoprofen concentrations in most fish for 24 h post-injection. In tilapia, there was a large difference between the R- and S-enantiomers, suggesting either chiral inversion from R- to S-enantiomer or more rapid clearance of the R-enantiomer. AUC values of the S- and R-enantiomers were 510 and 194 μg hr/Ml, respectively, corresponding to a faster clearance for the R-enantiomer. This study shows that there were very high plasma concentrations of ketoprofen in trout and tilapia with no adverse effects observed. Future studies on the efficacy, frequency of dosing, analgesia, adverse effects, and route of administration are warranted.
Collapse
Affiliation(s)
- Whitney Greene
- Mote Marine Laboratory and Aquarium, Sarasota, FL, United States
| | | | | | - Charlene M Burns
- Mote Marine Laboratory and Aquarium, Sarasota, FL, United States
| | - Gregory A Lewbart
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Lynne Byrd
- Mote Marine Laboratory and Aquarium, Sarasota, FL, United States
| | - Mark G Papich
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
40
|
Bédard P, Gauvin S, Ferland K, Caneparo C, Pellerin È, Chabaud S, Bolduc S. Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel) 2020; 7:E115. [PMID: 32957528 PMCID: PMC7552665 DOI: 10.3390/bioengineering7030115] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Animal testing has long been used in science to study complex biological phenomena that cannot be investigated using two-dimensional cell cultures in plastic dishes. With time, it appeared that more differences could exist between animal models and even more when translated to human patients. Innovative models became essential to develop more accurate knowledge. Tissue engineering provides some of those models, but it mostly relies on the use of prefabricated scaffolds on which cells are seeded. The self-assembly protocol has recently produced organ-specific human-derived three-dimensional models without the need for exogenous material. This strategy will help to achieve the 3R principles.
Collapse
Affiliation(s)
- Patrick Bédard
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Sara Gauvin
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Karel Ferland
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Ève Pellerin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
41
|
Zemanova MA. Towards more compassionate wildlife research through the 3Rs principles: moving from invasive to non-invasive methods. WILDLIFE BIOLOGY 2020. [DOI: 10.2981/wlb.00607] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Miriam A. Zemanova
- M. A. Zemanova (https://orcid.org/0000-0002-5002-3388) ✉ , Dept of Philosophy, Univ. of Basel, Steinengraben 5, CH-4051 Basel, Switzerland
| |
Collapse
|
42
|
Message R, Greenhough B. "But It's Just a Fish": Understanding the Challenges of Applying the 3Rs in Laboratory Aquariums in the UK. Animals (Basel) 2019; 9:E1075. [PMID: 31816968 PMCID: PMC6940918 DOI: 10.3390/ani9121075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/26/2023] Open
Abstract
Adopting a social science perspective and qualitative methodology on the problem of laboratory fish welfare, this paper examines some underlying social factors and drivers that influence thinking, priorities and implementation of fish welfare initiatives and the 3Rs (Replacement, Reduction and Refinement) for fish. Drawing on original qualitative interviews with stakeholders, animal technologists and scientists who work with fish-especially zebrafish-to illustrate the case, this paper explores some key social factors influencing the take up of the 3Rs in this context. Our findings suggest the relevance of factors including ambient cultural perceptions of fish, disagreements about the evidence on fish pain and suffering, the discourse of regulators, and the experiences of scientists and animal technologists who develop and put the 3Rs into practice. The discussion is focused on the UK context, although the main themes will be pertinent around the world.
Collapse
Affiliation(s)
- Reuben Message
- School of Geography and the Environment, University of Oxford, Oxford OX1 2JD, UK;
| | | |
Collapse
|
43
|
Abstract
In order to survive, animals must avoid injury and be able to detect potentially damaging stimuli via nociceptive mechanisms. If the injury is accompanied by a negative affective component, future behaviour should be altered and one can conclude the animal experienced the discomfort associated with pain. Fishes are the most successful vertebrate group when considering the number of species that have filled a variety of aquatic niches. The empirical evidence for nociception in fishes from the underlying molecular biology, neurobiology and anatomy of nociceptors through to whole animal behavioural responses is reviewed to demonstrate the evolutionary conservation of nociception and pain from invertebrates to vertebrates. Studies in fish have shown that the biology of the nociceptive system is strikingly similar to that found in mammals. Further, potentially painful events result in behavioural and physiological changes such as reduced activity, guarding behaviour, suspension of normal behaviour, increased ventilation rate and abnormal behaviours which are all prevented by the use of pain-relieving drugs. Fish also perform competing tasks less well when treated with a putative painful stimulus. Therefore, there is ample evidence to demonstrate that it is highly likely that fish experience pain and that pain-related behavioural changes are conserved across vertebrates. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
|
44
|
Burbano-L DA, Porfiri M. Data-driven modeling of zebrafish behavioral response to acute caffeine administration. J Theor Biol 2019; 485:110054. [PMID: 31634449 DOI: 10.1016/j.jtbi.2019.110054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Over the last thirty years, we have witnessed a dramatic rise in the use of zebrafish in preclinical research. Every year, more than 5000 technical papers are published about zebrafish, many of them seeking to explain the underpinnings of anxiety through animal testing. In-silico experiments could significantly contribute to zebrafish research and welfare, by offering new means to support the 3Rs principles of replacement, reduction, and refinement. Here, we propose a data-driven modeling framework to predict the anxiety-related behavioral response of zebrafish to acute caffeine administration. The modeling framework unfolds along a two-time-scale dichotomy to capture freezing behavior along a slow temporal scale and burst-and-coast locomotion at a fast time-scale. Anchored in the theory of Markov chains and stochastic differential equations, we demonstrate a parsimonious, yet robust, modeling framework to accurately simulate experimental observations of zebrafish treated at different caffeine concentrations. Our results complement recent modeling efforts, laying the foundations for conducting in-silico experiments in zebrafish behavioral pharmacology.
Collapse
Affiliation(s)
- Daniel A Burbano-L
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York, USA
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York, USA; Department of Biomedical Engineering and Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, New York, USA.
| |
Collapse
|
45
|
Dobbinson KE, Skarratt PA, Morrell LJ. Computerized stimuli for studying oddity effects. Behav Ecol 2019. [DOI: 10.1093/beheco/arz174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Visually hunting predators must overcome the challenges that prey groups present. One such challenge is the confusion effect where an overburdened visual system means predators are unable to successfully target prey. A strategy to overcome confusion is the targeting of distinct, or odd, individuals (the oddity effect). In live prey experiments, manipulation of group member phenotypes can be challenging and prey may differ on more than the single feature one intends to define as odd. The use of highly controllable computerized stimuli to study predator–prey interactions is increasingly popular in the field of behavioral ecology. However, to our knowledge, the validity of computerized stimuli to study the oddity effect has not been established. Predator choice experiments were conducted using naive stickleback predators to ascertain whether the oddity effect could be demonstrated in the absence of live prey. We found evidence for both the oddity effect and preferential targeting of group edges and low-density regions, as would be predicted if predators targeted prey individuals to minimize confusion. The oddity effect was evident at a low threshold, above which dots were no longer perceived as odd and no longer attacked more often than expected by chance. We conclude that computerized stimuli are an improved, practical method for studying oddity effects while further validating the use of similar methods for studying other aspects of visual predation. In addition to higher control of “prey” appearance, the replacement of live prey animals with digital stimuli is ethically beneficial and reusing code improves experimental efficiency.
Collapse
Affiliation(s)
- Khia E Dobbinson
- School of Biological and Marine Sciences, University of Hull, Hull, UK
| | | | - Lesley J Morrell
- School of Biological and Marine Sciences, University of Hull, Hull, UK
| |
Collapse
|
46
|
Thomson JS, Al-Temeemy AA, Isted H, Spencer JW, Sneddon LU. Assessment of behaviour in groups of zebrafish (Danio rerio) using an intelligent software monitoring tool, the chromatic fish analyser. J Neurosci Methods 2019; 328:108433. [PMID: 31520651 DOI: 10.1016/j.jneumeth.2019.108433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Zebrafish (Danio rerio) are an increasingly popular model species within a variety of biomedical and neurobiological contexts. Researchers are required to prevent any negative states, such as pain, when using experimental animals to optimise fish welfare but analysis tools for zebrafish are lacking. NEW METHOD The chromatic fish analyser (CFA) is a computer-based monitoring system that has the potential to identify changes in fish behaviour via spatial chromatic analysis of video images. The CFA was used to monitor the behaviour of groups of six fish, where none, one, three or six fish were given a fin clip. Additionally a drug with pain-relieving properties, lidocaine, was administered to determine if this ameliorated any alterations in behaviour. The CFA measured hue horizontally and vertically reflecting the position of the fish in their tank. Saturation (indicates clustering distribution) and lightness were measured to reflect overall zebrafish activity. RESULTS Changes in vertical hue demonstrated that all fin clipped animals were closer to the bottom of the tank relative to pre-treatment; this was not observed in control groups, and was alleviated in those treated with lidocaine. Saturation (clustering) and lightness alterations indicated fin clipped groups reduced activity after receiving the fin clip. Lidocaine was effective in preventing the behavioural changes when 1 or 3 fish were clipped. CONCLUSIONS The CFA proved powerful enough to identify significant changes in behaviour taken directly from video images. With further development this monitoring tool represents a step forward in detecting behavioural changes in groups of zebrafish indicating welfare.
Collapse
Affiliation(s)
- Jack S Thomson
- School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
| | - Ali A Al-Temeemy
- Department of Laser and Optoelectronics Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq; Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | - Helen Isted
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Joseph W Spencer
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | - Lynne U Sneddon
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|