1
|
Bidram M, Ganjalikhany MR. Bioactive peptides from food science to pharmaceutical industries: Their mechanism of action, potential role in cancer treatment and available resources. Heliyon 2024; 10:e40563. [PMID: 39654719 PMCID: PMC11626046 DOI: 10.1016/j.heliyon.2024.e40563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is known as the main cause of mortality in the world, and every year, the rate of incidence and death due to cancer is increasing. Bioactive peptides are one of the novel therapeutic options that are considered a suitable alternative to toxic chemotherapy drugs because they limit side effects with their specific function. In fact, bioactive peptides are short amino acid sequences that obtain diverse physiological functions to maintain human health after being released from parent proteins. This group of biological molecules that can be isolated from different types of natural protein sources has attracted much attention in the field of pharmaceutical and functional foods production. The current article describes the therapeutic benefits of bioactive peptides and specifically and extensively reviews their role in cancer treatment, available sources for discovering anticancer peptides, mechanisms of action, production methods, and existing challenges.
Collapse
Affiliation(s)
- Maryam Bidram
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
2
|
Kaushik N, Falch E, Slizyte R, Kumari A, Khushboo, Hjellnes V, Sharma A, Rajauria G. Valorization of fish processing by-products for protein hydrolysate recovery: Opportunities, challenges and regulatory issues. Food Chem 2024; 459:140244. [PMID: 38991448 DOI: 10.1016/j.foodchem.2024.140244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Protein-rich fish processing by-products, often called rest raw materials (RRM), account for approximately 60% of the total fish biomass. However, a considerable amount of these RRM is utilized for low-value products such as fish meal and silage. A promising and valuable approach for maximizing the utilization of RRM involves the extraction of bioactive fish protein hydrolysate (FPH). This review assesses and compares different hydrolyzation methods to produce FPH. Furthermore, the review highlights the purification strategy, nutritional compositions, and bioactive properties of FPH. Finally, it concludes by outlining the application of FPH in food products together with various safety and regulatory issues related to the commercialization of FPH as a protein ingredient in food. This review paves the way for future applications by highlighting efficient biotechnological methods for valorizing RRM into FPH and addressing safety concerns, enabling the widespread utilization of FPH as a valuable and sustainable source of protein.
Collapse
Affiliation(s)
- Nutan Kaushik
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India.
| | - Eva Falch
- NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Asha Kumari
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India
| | - Khushboo
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India
| | - Veronica Hjellnes
- NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Abhishek Sharma
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India
| | - Gaurav Rajauria
- School of Microbiology, School of Food and Nutritional Sciences, University College Cork, Cork, Ireland; SUSFERM Centre for Sustainable Fermentation and Bioprocessing Systems for Food and the Bioeconomy, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Davoudi M, Gavlighi HA, Javanmardi F, Benjakul S, Nikoo M. Antimicrobial peptides derived from food byproducts: Sources, production, purification, applications, and challenges. Compr Rev Food Sci Food Saf 2024; 23:e13422. [PMID: 39245910 DOI: 10.1111/1541-4337.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
Food wastes can be a valuable reservoir of bioactive substances that can serve as natural preservatives in foods or as functional ingredients with potential health benefits. The antimicrobial properties of protein hydrolysates, especially antimicrobial peptides (AMPs) derived from food byproducts (FBs), have been extensively explored. These protein fragments are defined by their short length, low molecular weight, substantial content of hydrophobic and basic amino acids, and positive net charge. The intricate mechanisms by which these peptides exert their antimicrobial effects on microorganisms and pathogens have been elaborately described. This review also focuses on techniques for producing and purifying AMPs from diverse FBs, including seafood, livestock, poultry, plants, and dairy wastes. According to investigations, incorporating AMPs as additives and alternatives to chemical preservatives in food formulations and packaging materials has been pursued to enhance both consumer health and the shelf life of foods and their products. However, challenges associated with the utilization of AMPs derived from food waste depend on their interaction with the food matrix, acceptability, and commercial viability. Overall, AMPs can serve as alternative safe additives, thereby ensuring the safety and prolonging the storage duration of food products based on specific regulatory approvals as recommended by the respective safety authorities.
Collapse
Affiliation(s)
- Mahshad Davoudi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
Gou F, Gao S, Li B. Lipid-Induced Oxidative Modifications Decrease the Bioactivities of Collagen Hydrolysates from Fish Skin: The Underlying Mechanism Based on the Proteomic Strategy. Foods 2024; 13:583. [PMID: 38397560 PMCID: PMC10888297 DOI: 10.3390/foods13040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Collagen peptides exhibit various bioactivities, including antioxidation and ACE inhibition. However, the bioactivities of collagen peptides decrease gradually due to oxidation deterioration during storage, and this degradation of bioactive peptides is rarely studied. In this study, the oxidative levels and the bioactivities of collagen peptides were investigated during an oxidative-induced storage accelerated by lipids. The results suggested that the oxidation of collagen peptides was divided into three stages. At the early stage, the carbonyl content of collagen peptides increased rapidly (from 2.32 to 3.72 μmol/g peptide), showing a close correlation with their bioactivities (for antioxidation, r = -0.947; for ACE inhibition, r = -0.911). The oxidation level in the middle stage continued but was stable, and the bioactivities decreased. At the later stage, the Schiff base and dityrosine content increased significantly and showed a strong correlation with the bioactivities (antioxidation, r = -0.820, -0.801; ACE inhibition, r = -0.779, -0.865). The amino acid and proteomic analyses showed that Met, Lys, and Arg were susceptible to oxidation and revealed their oxidative modification types. This study provided an insight into the dynamic oxidative modifications of collagen peptides, which were shown to correlate well with the change in bioactivities.
Collapse
Affiliation(s)
| | | | - Bo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.G.); (S.G.)
| |
Collapse
|
5
|
Li Z, Zhang S, Meng W, Zhang J, Zhang D. Screening and Activity Analysis of α-Glucosidase Inhibitory Peptides Derived from Coix Seed Prolamins Using Bioinformatics and Molecular Docking. Foods 2023; 12:3970. [PMID: 37959088 PMCID: PMC10649794 DOI: 10.3390/foods12213970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Hydrolysates of coix seed prolamins (CHPs) have an excellent hypoglycemic effect and can effectively inhibit α-glucosidase, which is the therapeutic target enzyme for type 2 diabetes mellitus. However, its hypoglycemic components and molecular mechanisms remain unclear, and its stability in food processing needs to be explored. In this study, four potential α-glucosidase inhibitory peptides (LFPSNPLA, FPCNPLV, HLPFNPQ, LLPFYPN) were identified and screened from CHPs using LC-MS/MS and virtual screening techniques. The results of molecular docking showed that the four peptides mainly inhibited α-glucosidase activity through hydrogen bonding and hydrophobic interactions, with Pro and Leu in the peptides playing important roles. In addition, CHPs can maintain good activity under high temperatures (40~100 °C) and weakly acidic or weakly alkaline conditions (pH 6.0~8.0). The addition of glucose (at 100 °C) and NaCl increased the inhibitory activity of α-glucosidase in CHPs. The addition of metal ions significantly decreased the inhibitory activity of α-glucosidase by CHPs, and their effects varied in magnitude with Cu2+ having the largest effect followed by Zn2+, Fe3+, K+, Mg2+, and Ca2+. These results further highlight the potential of CHPs as a foodborne hypoglycemic ingredient, providing a theoretical basis for the application of CHPs in the healthy food industry.
Collapse
Affiliation(s)
- Zhiming Li
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (Z.L.); (S.Z.); (W.M.); (J.Z.)
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (Z.L.); (S.Z.); (W.M.); (J.Z.)
| | - Weihong Meng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (Z.L.); (S.Z.); (W.M.); (J.Z.)
| | - Jiayu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (Z.L.); (S.Z.); (W.M.); (J.Z.)
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (Z.L.); (S.Z.); (W.M.); (J.Z.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
| |
Collapse
|
6
|
Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H, Kanetkar P, Kumar V, Al-Zamani ZAS, Bunkar DS. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants' gut microbiota. Front Nutr 2023; 10:1194679. [PMID: 37415910 PMCID: PMC10320619 DOI: 10.3389/fnut.2023.1194679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Human milk is considered the most valuable form of nutrition for infants for their growth, development and function. So far, there are still some cases where feeding human milk is not feasible. As a result, the market for infant formula is widely increasing, and formula feeding become an alternative or substitute for breastfeeding. The nutritional value of the formula can be improved by adding functional bioactive compounds like probiotics, prebiotics, human milk oligosaccharides, vitamins, minerals, taurine, inositol, osteopontin, lactoferrin, gangliosides, carnitine etc. For processing of infant formula, diverse thermal and non-thermal technologies have been employed. Infant formula can be either in powdered form, which requires reconstitution with water or in ready-to-feed liquid form, among which powder form is readily available, shelf-stable and vastly marketed. Infants' gut microbiota is a complex ecosystem and the nutrient composition of infant formula is recognized to have a lasting effect on it. Likewise, the gut microbiota establishment closely parallels with host immune development and growth. Therefore, it must be contemplated as an important factor for consideration while developing formulas. In this review, we have focused on the formulation and manufacturing of safe and nutritious infant formula equivalent to human milk or aligning with the infant's needs and its ultimate impact on infants' gut microbiota.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Satya Prakash Yadav
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Basant Kumar Bhinchhar
- Department of Livestock Production Management, Sri Karan Narendra Agriculture University, Jobner, India
| | - Sheela Kharkwal
- Department of Agriculture Economics, Sri Karan Narendra Agriculture University, Jobner, India
| | - Hency Rose
- Division of Dairy Technology, ICAR—National Dairy Research Institute, Karnal, India
| | - Prajasattak Kanetkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Zakarya Ali Saleh Al-Zamani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
- Department of Food Technology and Science, Faculty of Agriculture and Veterinary Medicine, Ibb University, Ibb, Yemen
| | - Durga Shankar Bunkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Varona E, García-Moreno PJ, Gregersen Echers S, Olsen TH, Marcatili P, Guardiola F, Overgaard MT, Hansen EB, Jacobsen C, Yesiltas B. Antioxidant peptides from alternative sources reduce lipid oxidation in 5% fish oil-in-water emulsions (pH 4) and fish oil-enriched mayonnaise. Food Chem 2023; 426:136498. [PMID: 37295051 DOI: 10.1016/j.foodchem.2023.136498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Bioinformatics tools were used to predict radical scavenging and metal chelating activities of peptides derived from abundant potato, seaweed, microbial, and spinach proteins. The antioxidant activity was evaluated in 5% oil-in-water emulsions (pH4) and best-performing peptides were tested in mayonnaise and compared with EDTA. Emulsion physical stability was intact. The peptide DDDNLVLPEVYDQD showed the highest protection against oxidation in both emulsions by retarding the formation of oxidation products and depletion of tocopherols during storage, but it was less efficient than EDTA when evaluated in mayonnaise. In low-fat emulsions, formation of hydroperoxides was reduced 4-folds after 5 days compared to control. The concentration effect of the peptide was confirmed in mayonnaise at the EDTA equimolar concentration. The second-best performing peptides were NNKWVPCLEFETEHGFVYREHH in emulsion and AGDWLIGDR in mayonnaise. In general, the peptide efficacy was higher in low-fat emulsions. Results demonstrated that peptide negative net charge was important for chelating activity.
Collapse
Affiliation(s)
- Elisa Varona
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark; Faculty of Pharmacy and Food Science, Torribera Food Science Campus, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Pedro J García-Moreno
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark; Department of Chemical Engineering, University of Granada, Spain
| | | | - Tobias H Olsen
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Francesc Guardiola
- Faculty of Pharmacy and Food Science, Torribera Food Science Campus, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Egon B Hansen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Di C, Jia W. Food-derived bioactive peptides as momentous food components: Can functional peptides passed through the PI3K/Akt/mTOR pathway and NF-κB pathway to repair and protect the skeletal muscle injury? Crit Rev Food Sci Nutr 2023; 64:9210-9227. [PMID: 37171059 DOI: 10.1080/10408398.2023.2209192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Muscle injury is defined as an overuse injury or traumatic distraction of a muscle, which is latent in any sport event, from amateur to large events. Based on previous numbers of muscle injuries and time spent to the athletes' recovery, the use of dietary functional factors intervention strategies is essential to enhance the recovery process and health. In recent years, there has been increasing evidence that biologically active peptides played an important role in sports nutrition and muscle injure recovery. Food-derived bioactive peptides were physiologically active peptides mostly derived from proteins following hydrolysis, which could be resorbed in intact form to reduce muscle damage following exercise and induce beneficial adaptions within the connective tissue. However, the complexity of the histoarchitectural considerations for skeletal muscle injuries and the repair mechanism of damaged skeletal muscle were not well known. In the following overview, the potential mechanisms and possible limitations regarding the damaged skeletal muscle metabolism were summarized, which aimed to present an overview of the nutritional strategies and recommendations after a muscular sports injury, emphasizing the use of main bioactive peptides. In addition, this review will provide implications for the studies of dietary bioactive peptides in the future.
Collapse
Affiliation(s)
- Chenna Di
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
9
|
Joshua Ashaolu T, Le TD, Suttikhana I. Stability and bioactivity of peptides in food matrices based on processing conditions. Food Res Int 2023; 168:112786. [PMID: 37120233 DOI: 10.1016/j.foodres.2023.112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Bioactive peptides (BPs) generated from food proteins can serve therapeutic purposes against degenerative and cardiovascular diseases such as inflammation, diabetes, and cancer. There are numerous reports on the in vitro, animal, and human studies of BPs, but not as much information on the stability and bioactivity of these peptides when incorporated in food matrices. The effects of heat and non-heat processing of the food products, and storage on the bioactivity of the BPs, are also lacking. To this end, we describe the production of BPs in this review, followed by the food processing conditions that affect their storage bioactivity in the food matrices. As this area of research is open for industrial innovation, we conclude that novel analytical methods targeting the interactions of BPs with other components in food matrices would be greatly significant while elucidating their overall bioactivity before, during and after processing.
Collapse
|
10
|
Vlahova-Vangelova D, Balev D, Kolev N, Dragoev S. Lipolytic and oxidative changes in acoustically assisted frozen fattened duck liver. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235801010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The delicate structure of the fattened duck liver requires rapid freezing as quickly as possible. Acoustically assisted freezing meets both the requirement for quick freezing and energy efficiency. For the purpose of the experiment, a fattened duck liver “foie gras” was used. The degree of lipolysis (acid value) and primary (peroxide value) and secondary (2-thiobarbituric acid value) products of lipid oxidization were examined at 2 h post mortem. The oxidative changes were evaluated after conventional (CF) and acoustically assisted freezing (AAF) and at the 6-th and 12-th month of storage at -18°C. Both time storage and type of freezing affect the degree of lipolysis. The duck liver after AAF had higher degree of lipolysis at the 12-th month of storage at -18°C. The peroxide value increased almost 2 times in both fattened duck livers (CF and AAF) during the 6 months of storage at -18°C and stabilizes until the 12-th month. A conclusion was made that the acoustically assisted freezing of the fattened duck liver did not promote higher lipid oxidation compared to the conventional type of freezing.
Collapse
|
11
|
C-Terminal Modification on the Immunomodulatory Activity, Antioxidant Activity, and Structure–Activity Relationship of Pulsed Electric Field (PEF)-Treated Pine Nut Peptide. Foods 2022; 11:foods11172649. [PMID: 36076834 PMCID: PMC9455170 DOI: 10.3390/foods11172649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel peptide VNAVL was synthesized by removing the C-terminal histidine on the basis of a bioactive peptide VNAVLH obtained from pine nut (Pinus koraiensis Sieb. et Zucc) protein. The effects of removing histidine on antioxidant activity, immunomodulatory activity, and secondary structure of the PEF-treated peptide were discussed. Compared with VNAVLH, VNAVL only exhibited lower antioxidant activity, but no immunomodulatory activity to release TNF-α, IL-6, and NO by activating RAW 264.7 cells. In addition, both antioxidant and immune activities of VNAVLH were significantly more sensitive to treatment with 40 kV/cm than other field intensities, whereas VNAVL was not sensitive to field strength changes. CD spectra and DSSP analysis verified that both peptides consisted of a β structure and random coil, but the ability of VNAVL to transform the random coil via PEF treatment is weaker than that of VNAVLH. Therefore, PEF treatment might expose the key active site located on the C-terminal histidine by altering the secondary structure of the peptide.
Collapse
|
12
|
Koczoń P, Josefsson H, Michorowska S, Tarnowska K, Kowalska D, Bartyzel BJ, Niemiec T, Lipińska E, Gruczyńska-Sękowska E. The Influence of the Structure of Selected Polymers on Their Properties and Food-Related Applications. Polymers (Basel) 2022; 14:polym14101962. [PMID: 35631843 PMCID: PMC9146511 DOI: 10.3390/polym14101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Every application of a substance results from the macroscopic property of the substance that is related to the substance’s microscopic structure. For example, the forged park gate in your city was produced thanks to the malleability and ductility of metals, which are related to the ability of shifting of layers of metal cations, while fire extinguishing powders use the high boiling point of compounds related to their regular ionic and covalent structures. This also applies to polymers. The purpose of this review is to summarise and present information on selected food-related biopolymers, with special attention on their respective structures, related properties, and resultant applications. Moreover, this paper also highlights how the treatment method used affects the structure, properties, and, hence, applications of some polysaccharides. Despite a strong focus on food-related biopolymers, this review is addressed to a broad community of both material engineers and food researchers.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | | | - Sylwia Michorowska
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Katarzyna Tarnowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | - Dorota Kowalska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | - Bartłomiej J. Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Tomasz Niemiec
- Animals Nutrition Department, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
- Correspondence:
| |
Collapse
|
13
|
Shukla P, Chopada K, Sakure A, Hati S. Current Trends and Applications of Food-derived Antihypertensive
Peptides for the Management of Cardiovascular Disease. Protein Pept Lett 2022; 29:408-428. [DOI: 10.2174/0929866529666220106100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/26/2021] [Accepted: 11/20/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Food derived Antihypertensive peptides is considered as a natural supplement for controlling the hypertension. Food protein not only serve as a macronutrient but also act as raw material for biosynthesis of physiologically active peptides. Food sources like milk and milk products, animal protein such as meat, chicken, fish, eggs and plant derived proteins from soy, rice, wheat, mushroom, pumpkins contain high amount of antihypertensive peptides. The food derived antihypertensive peptides has ability to supress the action of rennin and Angiotesin converting enzyme (ACE) which is mainly involved in regulation of blood pressure by RAS. The biosynthesis of endothelial nitric oxide synthase is also improved by ACE inhibitory peptides which increase the production of nitric oxide in vascular walls and encourage vasodilation. Interaction between the angiotensin II and its receptor is also inhibited by the peptides which help to reduce hypertension. This review will explore the novel sources and applications of food derived peptides for the management of hypertension.
Collapse
Affiliation(s)
- Pratik Shukla
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| | - Keval Chopada
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| | - Amar Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand- 388110, Gujarat,
India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| |
Collapse
|
14
|
Aguilar-Toalá JE, Quintanar-Guerrero D, Liceaga AM, Zambrano-Zaragoza ML. Encapsulation of bioactive peptides: a strategy to improve the stability, protect the nutraceutical bioactivity and support their food applications. RSC Adv 2022; 12:6449-6458. [PMID: 35424621 PMCID: PMC8982217 DOI: 10.1039/d1ra08590e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
In recent decades, bioactive peptides have become an emerging field of interest in the scientific community as well as the food, pharmaceutical, and cosmetics industries. A growing body of research indicates that consumption of bioactive peptides may play a vital role in health through their broad spectrum of bioactivity such as antioxidant, antihypertensive, antimicrobial, anti-inflammatory, immunomodulatory, and anti-proliferative activities. In addition, bioactive peptides can be used as food preservatives due to their antimicrobial and antioxidant activities. However, some factors limit their nutraceutical and commercial applications, including easy chemical degradation (e.g., pH, enzymatic), food matrix interaction, low water-solubility, hygroscopicity, and potential bitter taste. Bearing that in mind, the encapsulation of bioactive peptides in different materials can help overcome these challenges. Studies have demonstrated that encapsulation of bioactive peptides increases their bioactivity, improves their stability, sensory properties, increases solubility, and decreases hygroscopicity. However, there is limited scientific evidence about the bioavailability and food matrix interactions of encapsulated peptides. Besides, the diverse colloidal systems used to encapsulate bioactive peptides have shown stability and good encapsulation efficiency. This review provides an overview of current advances in the encapsulation of bioactive peptides, considering the technology, developments, and innovations in the last lustrum.
Collapse
Affiliation(s)
- J E Aguilar-Toalá
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos-UIM, FES-Cuautitlán, Universidad Nacional Autónoma de México Cuautitlán Izcalli Estado de México 54714 Mexico
| | - D Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México Av. 1o de Mayo s/n Cuautitlán Izcalli Estado de México 54714 Mexico
| | - A M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University 745 Agriculture Mall Dr West Lafayette IN 47907 USA
| | - M L Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos-UIM, FES-Cuautitlán, Universidad Nacional Autónoma de México Cuautitlán Izcalli Estado de México 54714 Mexico
| |
Collapse
|
15
|
Shi YJ, Zhao XH. Impact of the Plastein Reaction of Casein Hydrolysates in the Presence of Exogenous Amino Acids on Their Anti-Inflammatory Effect in the Lipopolysaccharide-Stimulated Macrophages. Foods 2022; 11:196. [PMID: 35053927 PMCID: PMC8775256 DOI: 10.3390/foods11020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, papain-generated casein hydrolysates (CH) with a degree of hydrolysis of 13.7% were subjected to a papain-mediated plastein reaction in the absence or presence of one of the exogenous amino acids-Gly, Pro, and Hyp-to prepare four plastein modifiers, or mixed with one of three amino acids to prepare three mixtures. The assay results confirmed that the reaction reduced free NH2 for the modifiers and caused amino acid incorporation and peptide condensation. When RAW264.7 macrophages were exposed to the CH, modifiers, and mixtures, these samples promoted macrophage growth and phagocytosis in a dose-dependent manner. In addition, the CH shared similar activity in the cells as the mixtures, while the modifiers (especially the PCH-Hyp prepared with Hyp addition) exerted higher potential than CH, the mixtures, and PCH (the modifier prepared without amino acid addition). The plastein reaction thus enhanced CH bioactivity in the cells. When RAW264.7 macrophages were stimulated with lipopolysaccharide (LPS), the inflammatory cells produced more lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) formation, and caused more four inflammatory mediators (NO, PGE2, TNF-α, and IL-6) and two anti-inflammatory mediators (TGF-β1 and IL-10). However, the PCH-Hyp, PCH, and CH at dose levels of 100 μg/mL could combat against the LPS-induced inflammation. Overall, the PCH-Hyp was more active than the CH and PCH in reducing LDH release, ROS formation, and the secretion of these inflammatory mediators, or in increasing the secretion of the anti-inflammatory mediators. The qPCR and Western blot analysis results further confirmed that these samples had anti-inflammatory effects on the stimulated cells by suppressing the LPS-induced activation of the NF-κB signaling pathway, via regulating the mRNA/miRNA expression of iNOS, IL-6, TNF-α, IL-1β, COX-2, TLR4, IL-10, TGF-β1, miR-181a, miR-30d, miR-155, and miR-148, as well as the protein expression of MyD88, p-IKKα, p-IκBα, p-NF-κB p65, and iNOS, involved in this signaling pathway. In addition, the immunofluorescence assay results revealed that these samples could block the LPS-mediated nuclear translocation of the p65 protein and displayed the same function as the NF-κB inhibitor BAY 11-7082. It was concluded that CH could be endowed with higher anti-inflammatory activity to the macrophages by performing a plastein reaction, particularly that in the presence of exogenous Hyp.
Collapse
Affiliation(s)
- Yun-Jiao Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China;
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China;
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
16
|
Peptides Isolated from Yak Milk Residue Exert Antioxidant Effects through Nrf2 Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:9426314. [PMID: 35003522 PMCID: PMC8741346 DOI: 10.1155/2021/9426314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Food-derived bioactive peptides are considered as the important sources of natural bioactive ingredients. Approximately 3094 peptides were identified by nESI-LC–MS/MS in the hydrolyzed yak milk residue. Peptide KALNEINQF (T10) is the strongest antioxidant peptide. The damage model of H2O2-induced human umbilical vein endothelial cells (HUVECs) was used to evaluate the antioxidant effect. After treatment with 25, 50, or 100 μg/mL T10 peptide, T10 obviously decreased H2O2-induced damage and increased the cell survival. Comparing with the H2O2-induced damage group, superoxide dismutase (SOD) activities were significantly increased 1.03, 1.1, and 1.33 times, and glutathione reductase (GR) activities were significantly increased 1.11, 1.30, and 1.43 times, respectively. Malondialdehyde (MDA) also reduced 1.41, 1.54, and 1.72 times, respectively. T10 inhibited H2O2-induced apoptosis in HUVECs, and protein expressions of the apoptosis-related genes bcl-2 and bax were increased and decreased by 1.95 and 1.44 times, respectively, suggesting T10 decreases apoptosis of the mitochondria-dependent pathway. Comparing with the H2O2-induced damage group, the RNA expressions of Nrf2, HO-1, and NQO1 were significantly increased by 2.00, 2.11, and 1.94 times; the protein expressions of p-Nrf2, HO-1, and NQO1 were significantly increased by 2.67, 1.73, and 1.04 times; and Keap1 was downregulated by 3.9 and 1.32 times, respectively. T10 also regulated the Nrf2 pathway and expressions of related genes (Keap1, HO-1, and NQO1), and blocking the Nrf2 pathway in the model decreased the protective effect of T10. Taken together, T10 peptide isolated from yak milk residue has a protective effect against H2O2-induced damage in HUVECs and the molecular mechanisms are involved in the regulation of Nrf2 signaling pathway and cell apoptosis.
Collapse
|
17
|
Zhang S, Luo L, Sun X, Ma A. Bioactive Peptides: A Promising Alternative to Chemical Preservatives for Food Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12369-12384. [PMID: 34649436 DOI: 10.1021/acs.jafc.1c04020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioactive peptides used for food preservation can prolong the shelf life through bacteriostasis and antioxidation. On the one hand, bioactive peptides can inhibit lipid oxidation by scavenging free radicals, interacting with metal ions, and inhibiting lipid peroxidation. On the other hand, bioactive peptides can fundamentally inhibit the growth and reproduction of microorganisms by destroying their cell membranes or targeting intracellular components. Besides, bioactive peptides are biocompatible and biodegradable in vivo. Therefore, they are regarded as a promising alternative to chemical preservatives. However, bioactive peptides are easily affected by the external environment in practical application, which hinders their commercialization. Currently, the studies to overcome the weakness focus on encapsulation and chemical synthesis. Bioactive peptides have been applied to the preservation of various foods in experimental research, with good results. In the future, with the deepening understanding of their safety and structure-activity relationship, there may be more bioactive peptides as food preservatives.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lu Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
18
|
Sánchez-López F, Robles-Olvera VJ, Hidalgo-Morales M, Tsopmo A. Angiotensin-I converting enzyme inhibitory activity of Amaranthus hypochondriacus seed protein hydrolysates produced with lactic bacteria and their peptidomic profiles. Food Chem 2021; 363:130320. [PMID: 34146770 DOI: 10.1016/j.foodchem.2021.130320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022]
Abstract
The aim of this work was to determine the in vitro antihypertensive activities of lactobacillus (L. plantarum and L. helveticus) prepared amaranth protein hydrolysates, to determine the contribution of zinc, and to identify peptides. Depending on the bacteria species and the duration of the hydrolysis, up to 45.9% inhibition of angiotensin converting enzyme (ACE) was obtained. Size separation of the most active hydrolysates to yield < 1, <3-1, <3, <10-3 and < 10 kDa fractions enhanced ACE inhibition by 2-fold. A mixed mechanism of inhibition is proposed due to low correlation of ACE and zinc chelation. Thirty-six peptides were identified in the fractions using tandem mass spectrometry. A bioinformatic analysis showed the presence of encrypted fragments such as GVSEE or VNVDDPSK with known ACE-inhibitory properties. In conclusion, lactic acid bacteria proteases released peptides from amaranth proteins with ACE-inhibitory properties that were related to the presence of peptides with known or predicted ACE-inhibitor motifs.
Collapse
Affiliation(s)
- Fabiola Sánchez-López
- Tecnológico Nacional de México-Instituto Tecnológico de Veracruz-UNIDA, M.A. de Quevedo #2779, Col. Formando Hogar, Veracruz 91897, Mexico
| | - Víctor J Robles-Olvera
- Tecnológico Nacional de México-Instituto Tecnológico de Veracruz-UNIDA, M.A. de Quevedo #2779, Col. Formando Hogar, Veracruz 91897, Mexico
| | - Madeleine Hidalgo-Morales
- Tecnológico Nacional de México-Instituto Tecnológico de Veracruz-UNIDA, M.A. de Quevedo #2779, Col. Formando Hogar, Veracruz 91897, Mexico
| | - Apollinaire Tsopmo
- Food Science Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
19
|
Hunsakul K, Laokuldilok T, Prinyawiwatkul W, Utama‐ang N. Effects of thermal processing on antioxidant activities, amino acid composition and protein molecular weight distributions of jasmine rice bran protein hydrolysate. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kanrawee Hunsakul
- Division of Product Development Technology Faculty of Agro‐Industry Chiang Mai University Chiang Mai50100Thailand
| | - Thunnop Laokuldilok
- Division of Marine Product Technology Faculty of Agro‐Industry Chiang Mai University Chiang Mai50100Thailand
- Cluster of High value product of Thai rice for health Chiang Mai University Chiang Mai50100Thailand
- Research Center for Development of Local Lanna Rice and Rice Product Chiang Mai University Chiang Mai50200Thailand
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Agricultural Center Louisiana State University Baton Rouge LA70803USA
| | - Niramon Utama‐ang
- Division of Product Development Technology Faculty of Agro‐Industry Chiang Mai University Chiang Mai50100Thailand
- Cluster of High value product of Thai rice for health Chiang Mai University Chiang Mai50100Thailand
- Research Center for Development of Local Lanna Rice and Rice Product Chiang Mai University Chiang Mai50200Thailand
| |
Collapse
|
20
|
Wu J. A Novel Angiotensin Converting Enzyme 2 (ACE2) Activating Peptide: A Reflection of 10 Years of Research on a Small Peptide Ile-Arg-Trp (IRW). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14402-14408. [PMID: 33251800 DOI: 10.1021/acs.jafc.0c05544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
IRW (Ile-Arg-Trp) was identified as an inhibitor of angiotensin converting enzyme (ACE) from egg white protein ovotransferrin through an integrated in silico digestion and quantitative structure and activity relationship prediction in 2011. Oral administration of IRW to spontaneously hypertensive rats (SHRs) can significantly reduce blood pressure, via upregulation of ACE2, but not through the inhibition of ACE. ACE2 converts Ang II into Ang (1-7), thus lowering blood pressure via Mas receptor (MasR); coinfusion of Mas receptor antagonist A779 and IRW in SHRs abolished blood pressure-lowering effect of IRW, supporting a key role of ACE2/Ang (1-7)/MasR axis. Our ongoing study further established new roles of IRW as an antioxidant, an anti-inflammatory agent, an insulin sensitizer, and a bone cell anabolic. Future studies are warranted to understand the unique structure features of this peptide, its mechanisms of action at various targets, its bioavailability and metabolism, and its possible roles toward COVID-19.
Collapse
Affiliation(s)
- Jianping Wu
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
21
|
Sun X, Udenigwe CC. Chemistry and Biofunctional Significance of Bioactive Peptide Interactions with Food and Gut Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12972-12977. [PMID: 31994880 DOI: 10.1021/acs.jafc.9b07559] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Food-derived bioactive peptides (BAPs) have gained significant interest as functional agents for developing food products with health benefits. To elucidate the underlying bioactivity mechanisms, current research investigates mostly the structure-activity relationship of native peptides. However, peptide structures are highly susceptible to chemical modifications, which can subsequently influence their physiological behaviors and bioactivities. This paper highlights the peptide structure modifications occurring with major food components during processing and the digestive environment of the gut as well as associated changes in peptide properties and biofunctions. Given the modification propensity of peptides, focus should be shifted toward characterizing the nature, biofunctions, gut activity, bioavailability, and safety of the modified peptides toward achieving pragmatic food applications of BAPs.
Collapse
Affiliation(s)
- Xiaohong Sun
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
22
|
Toldrá F, Gallego M, Reig M, Aristoy MC, Mora L. Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12842-12855. [PMID: 32157886 DOI: 10.1021/acs.jafc.9b08297] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a wide variety of peptides released from food proteins that are able to exert a relevant benefit for human health, such as angiotensin-converting enzyme inhibition, antioxidant, anti-inflammatory, hypoglucemic, or antithrombotic activity, among others. This manuscript is reviewing the recent advances on enzymatic mechanisms for the hydrolysis of proteins from foods of animal origin, including the types of enzymes and mechanisms of action involved, the strategies followed for the isolation and identification of bioactive peptides through advanced proteomic tools, and the assessment of bioactivity and its beneficial effects. Specific applications in fermented and/or ripened foods where a significant number of bioactive peptides have been reported with relevant in vivo physiological effects on laboratory rats and humans as well as the hydrolysis of animal food proteins for the production of bioactive peptides are also reviewed.
Collapse
Affiliation(s)
- Fidel Toldrá
- Instituto de Agroquímica y Tecnologı́a de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain
| | - Marta Gallego
- Instituto de Agroquímica y Tecnologı́a de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain
| | - Milagro Reig
- Instituto de Ingenierı́a de Alimentos para el Desarrollo, Universitat Politècnica de Valencia, 46022 Valencia, Valencia, Spain
| | - María-Concepción Aristoy
- Instituto de Agroquímica y Tecnologı́a de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain
| | - Leticia Mora
- Instituto de Agroquímica y Tecnologı́a de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain
| |
Collapse
|
23
|
Amigo L, Hernández-Ledesma B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020; 25:E4479. [PMID: 33003506 PMCID: PMC7582556 DOI: 10.3390/molecules25194479] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.
Collapse
Affiliation(s)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Research in Food Sciences (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
24
|
León Madrazo A, Segura Campos MR. Review of antimicrobial peptides as promoters of food safety: Limitations and possibilities within the food industry. J Food Saf 2020. [DOI: 10.1111/jfs.12854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anaí León Madrazo
- Facultad de Ingeniería Química Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| | | |
Collapse
|
25
|
Sánchez-López F, Robles-Olvera VJ, Hidalgo-Morales M, Tsopmo A. Characterization of Amaranthus hypochondriacus seed protein fractions, and their antioxidant activity after hydrolysis with lactic acid bacteria. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Pan M, Liu K, Yang J, Liu S, Wang S, Wang S. Advances on Food-Derived Peptidic Antioxidants-A Review. Antioxidants (Basel) 2020; 9:E799. [PMID: 32867173 PMCID: PMC7554705 DOI: 10.3390/antiox9090799] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
The oxidation process is considered to be the main reason behind human aging, human degenerative diseases and food quality degradation. Food-derived peptidic antioxidants (PAs) have wide sources and great activity, and have broad application prospects in removing excess reactive oxygen species in the body, anti-aging and preventing and treating diseases related to oxidative stress. On the other hand, PAs are expected to inhibit the lipid peroxidation of foods and increase the stability of the food system in the food industry. However, the production pathways and action mechanism of food-derived PAs are diverse, which makes it is difficult to evaluate the performance of PAs which is why the commercial application of PAs is still in its infancy. This article focuses on reviewing the preparation, purification, and characterization methods of food-derived PAs, and expounds the latest progress in performance evaluation and potential applications, in order to provide an effective reference for subsequent related research of PAs.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
27
|
Barati M, Jabbari M, Nickho H, Esparvarinha M, Javadi Mamaghani A, Majdi H, Fathollahi A, Davoodi SH. Regulatory T Cells in Bioactive Peptides-Induced Oral Tolerance; a Two-Edged Sword Related to the Risk of Chronic Diseases: A Systematic Review. Nutr Cancer 2020; 73:956-967. [PMID: 32648489 DOI: 10.1080/01635581.2020.1784442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This systematic review assesses the literature regarding beneficial and potential detrimental effects of bioactive peptides (BPs), focusing on evidence of regulatory T cells (T-regs) mediated oral tolerance (OT), collagen hydrolysate (CH) supplementation in osteoarthritis (OA) and the association of T-regs with chronic disease. The systematic search was done for articles published from inception to April 2019 using the PubMed and Scopus databases. About 3081 papers were identified by three different search strategies and screened against inclusion criteria which resulted in the inclusion of 22 articles. From the included articles, 12 papers were related to treatment of different disease in vivo by oral administration of BPs, six articles evaluated the effects of CH supplementation, as a rich source of BPs, on OA pain-relief and four observational studies assessed the association of circulating T-regs and risk of cancer and cardiovascular disease (CVD). The evidence obtained from first search strategy, indicated that oral administration of BPs improve clinical manifestations of animal models of allergy, arthritis, atherosclerosis, ulcerative colitis and allograft rejection by T-regs expansion; while, observational studies showed that although higher levels of circulating T-regs reduced risk of CVD and allergy, but, increased risk of solid cancers.
Collapse
Affiliation(s)
- Meisam Barati
- Student Research Committee, Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jabbari
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Esparvarinha
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Javadi Mamaghani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hasan Majdi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Anwar Fathollahi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Clinical Nutrition and Dietetic, National Institute and Faculty of Nutrition and Food Technology, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Harnedy‐Rothwell PA, McLaughlin CM, Crowe W, Allsopp PJ, McSorley EM, Devaney M, Whooley J, McGovern B, Parthsarathy V, O'Harte FP, FitzGerald RJ. Stability to thermal treatment of dipeptidyl peptidase‐IV inhibitory activity of a boarfish (
Capros aper
) protein hydrolysate when incorporated into tomato‐based products. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Chris M. McLaughlin
- School of Biomedical Sciences Ulster University Cromore Road Coleraine Co. Derry UK
| | - William Crowe
- School of Biomedical Sciences Ulster University Cromore Road Coleraine Co. Derry UK
| | - Philip J. Allsopp
- School of Biomedical Sciences Ulster University Cromore Road Coleraine Co. Derry UK
| | - Emeir M. McSorley
- School of Biomedical Sciences Ulster University Cromore Road Coleraine Co. Derry UK
| | - Martin Devaney
- Department of Hospitality & Tourism Management Ulster University York Street Belfast Co. Antrim UK
| | - Jason Whooley
- Bio‐Marine Ingredients Ireland Ltd. Lough Egish Food Park Castleblaney Co. Monaghan Ireland
| | - Brian McGovern
- Bio‐Marine Ingredients Ireland Ltd. Lough Egish Food Park Castleblaney Co. Monaghan Ireland
| | - Vadivel Parthsarathy
- School of Biomedical Sciences Ulster University Cromore Road Coleraine Co. Derry UK
| | - Finbarr P.M. O'Harte
- School of Biomedical Sciences Ulster University Cromore Road Coleraine Co. Derry UK
| | - Richard J. FitzGerald
- Department of Biological Sciences University of Limerick Castletroy Limerick Ireland
| |
Collapse
|
29
|
Shittu A, Esfandi R, Tsopmo A. Chromium and arsenic speciation analysis in meats by HPLC-ICP-MS in the presence of hydrolyzed oat proteins with radical scavenging activities. Heliyon 2020; 6:e03654. [PMID: 32258493 PMCID: PMC7113437 DOI: 10.1016/j.heliyon.2020.e03654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Transition metals play an important role in a wide variety of biological processes, but their functions are dependent on the quantity and the type of species present. Specific forms of arsenic (As) and chromium (Cr) are associated with oxidative stress, cellular damage and inflammation. The aim of this research was to test in a food system whether, in the presence of hydrolyzed oat proteins, arsenic or chromium will exist predominantly in a specific oxidative state, and to evaluate the potential implication of promoting or decreasing oxidative stress. Eight hydrolyzed proteins with different degrees of radical scavenging activities were produced by combining two extraction methods and four proteases. The addition of hydrolysates to ground chicken meat decreased lipid hydroperoxides by up to 50% when stored at 4 °C but had no effect at -20 °C. The ratio of pentavalent arsenic (As(V)) to arsenobetaine (AsB) in meat was about 2:1 but in the presence of the hydrolysates, meanwhile, the amount of AsB detected was 3-fold higher depending on the storage condition. This was due to better extraction of AsB in the presence of hydrolysates rather than to the conversion of other species. Data on chromium showed that Cr(VI) contents decreased from 14.3 ± 0.1 to 6.3 ± 0.5 μg/g while concentrations of Cr(III) increased from 2.8 ± 0. 2 to 8.6 ± 0.7 μg/g. In summary, the addition of hydrolyzed oat proteins to chicken meat enhanced the extraction of AsB, and had little effect on arsenic speciation during storage meanwhile, there was a reduction of Cr(VI) to Cr(III) which was in part due to the relative content of thiol groups. Additionally, there was a reduction of lipid oxidation in meats that contained the oat protein hydrolysates.
Collapse
Affiliation(s)
- Adenike Shittu
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Ramak Esfandi
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
30
|
Ashaolu TJ. Antioxidative peptides derived from plants for human nutrition: their production, mechanisms and applications. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03479-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
A biotechnological approach for the production of branched chain amino acid containing bioactive peptides to improve human health: A review. Food Res Int 2020; 131:109002. [PMID: 32247480 DOI: 10.1016/j.foodres.2020.109002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/21/2019] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
Improper nutrition provokes many types of chronic diseases and health problems, which consequently are associated with particularly high costs of treatments. Nowadays, consumer's interest in healthy eating is shifting towards specific foods or food ingredients. As a consequence, bioactive peptides as a promising source of health promoting food additives are currently an intensely debated topic in research. Process design is still on its early stages and is significantly influenced by important preliminary decisions. Thus, parameters like peptide bioactivity within the product, selection of the protein source, enzyme selection for hydrolysis, peptide enrichment method, as well as stability of the peptides within the food matrix and bioavailability are sensitive decision points, which have to be purposefully coordinated, as they are directly linked to amino acid content and structure properties of the peptides. Branched chain amino acids (BCAA) are essential components for humans, possessing various important physiologic functions within the body. Incorporated within peptide sequences, they may induce dual functions, when used as nutraceuticals in functional food, thus preserving the foodstuff and prevent several widespread diseases. Furthermore, there is evidence that consuming this peptide-class can be a nutritional support for elderly people or improve human health to prevent diseases caused by incorrect nutrition. Based on the knowledge about the role of BCAA within various peptide functions, discussed in the review, special attention is given to different approaches for systematic selection of the protein source and enzymes used in hydrolysis, as well as suitable peptide enrichment methods, thereby showing current trends in research.
Collapse
|
32
|
Sun X, Acquah C, Aluko RE, Udenigwe CC. Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103680] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
33
|
Esfandi R, Walters ME, Tsopmo A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 2019; 5:e01538. [PMID: 31183417 PMCID: PMC6495149 DOI: 10.1016/j.heliyon.2019.e01538] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/05/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023] Open
Abstract
Cereals like wheat, rice, corn, barley, rye, oat, and millet are staple foods in many regions around the world and contribute to more than half of human energy requirements. Scientific publications contain evidence showing that apart from energy, the regular consumption of whole grains is useful for the prevention of many chronic diseases associated with oxidative stress. Biological activities have mostly been attributed to the presence of glucans and polyphenols. In recent years however, food proteins have been investigated as sources of peptides that can exert biological functions, promote health and prevent oxidative stress. This review focuses on the role of hydrolyzed proteins and peptides with antioxidant properties in various models and their mechanisms which include hydrogen or electron transfer, metal chelating, and regulation of enzymes involved in the oxidation-reduction process.
Collapse
Affiliation(s)
- Ramak Esfandi
- Food Science and Nutrition Program, Department of Chemistry, Carleton Uinversity, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| | - Mallory E. Walters
- Food Science and Nutrition Program, Department of Chemistry, Carleton Uinversity, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton Uinversity, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| |
Collapse
|
34
|
Chakrabarti S, Guha S, Majumder K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients 2018; 10:E1738. [PMID: 30424533 PMCID: PMC6265732 DOI: 10.3390/nu10111738] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023] Open
Abstract
Recent scientific evidence suggests that food proteins not only serve as nutrients, but can also modulate the body's physiological functions. These physiological functions are primarily regulated by some peptides that are encrypted in the native protein sequences. These bioactive peptides can exert health beneficial properties and thus are considered as a lead compound for the development of nutraceuticals or functional foods. In the past few decades, a wide range of food-derived bioactive peptide sequences have been identified, with multiple health beneficial activities. However, the commercial application of these bioactive peptides has been delayed because of the absence of appropriate and scalable production methods, proper exploration of the mechanisms of action, high gastro-intestinal digestibility, variable absorption rate, and the lack of well-designed clinical trials to provide the substantial evidence for potential health claims. This review article discusses the current techniques, challenges of the current bioactive peptide production techniques, the oral use and gastrointestinal bioavailability of these food-derived bioactive peptides, and the overall regulatory environment.
Collapse
Affiliation(s)
- Subhadeep Chakrabarti
- Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | - Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA.
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA.
| |
Collapse
|