1
|
Oladipo SD, Luckay RC, Olofinsan KA. Evaluating the antidiabetes and antioxidant activities of halogenated Schiff bases derived from 4-(diethylamino)salicylaldehyde: in vitro antidiabetes, antioxidant and computational investigation. Sci Rep 2024; 14:27073. [PMID: 39511294 PMCID: PMC11543988 DOI: 10.1038/s41598-024-78460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Six Schiff bases with general name 5-(diethylamino)-2-(((halophenyl)imino)methyl)phenol (where halo = 4-fluoro (H1), 2-fluoro (H2), 2-bromo (H3), 4-bromo (H4), 4-chloro (H5) and 3-chloro-4-fluoro (H6)) were prepared by the condensation reaction between 4-(diethylamino)salicylaldehyde and suitable halogenated aromatic amines. The six halogenated Schiff bases were elucidated using different spectroscopic techniques and the structure of H3 and H6 were confirmed using single-crystal X-ray crystallography. The bond lengths of C7-N1, C7-C8 and C8-C9 obtained from structural analysis for both compounds depicted their enol-tautomeric characteristic form. The Hirshfeld analysis revealed that H‧‧‧H intermolecular contacts contributed most towards the Hirshfeld surfaces of both H3 (47.6%) and H6 (39.9%). Quantum chemical calculation studies showed that H1 and H2 have the highest and lowest energy band gap (∆E = 3.80 eV for H1 and ∆E = 3.73 eV for H2), depicting H2 and H1 as the most and least chemically reactive respectively among all the compounds. α-Amylase and α-glucosidase assay were used to evaluate the antidiabetes prowess of the synthesized compounds. All the compounds exhibited lower IC50 values than acarbose (reference drug) in α-amylase assay experiments and H5 with lowest IC50 value of 63.54 μM could be suggested to have the highest α-amylase inhibitory potential among the test samples. For α-glucosidase assay, H1-H6 displayed good antidiabetic potential. However, none of the compounds outshined acarbose with H6 having highest α-glucosidase inhibitory potential when compared to others i.e., IC50 of H6 = 60.89 μM and IC50 of acarbose = 51.42 μM. We measured the antioxidant potential of H1-H6 exploring 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) and ferric reducing ability power (FRAP) assays. The DPPH as well as NO radical scavenging assay showed that all the compounds exhibited excellent antioxidant results with some of the compounds surpassing catechin (reference drug). Compound H5 with IC50 values of 30.32 mM and 31.73 mM outshined catechin with IC50 values of 31.17 mM and 140.62 mM for DPPH and NO assays respectively. All the compounds fell within the threshold of Lipinski's Ro5 projecting them as orally bioavailable and less toxic future therapeutics.
Collapse
Affiliation(s)
- Segun D Oladipo
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
- Department of Chemical Sciences, Olabisi Onabanjo University, P.M.B 2002, Ago-Iwoye, Nigeria.
| | - Robert C Luckay
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Kolawole A Olofinsan
- Department of Biochemistry, Faculty of Natural and Applied Sciences, Nile University of Nigeria, Abuja, Nigeria
| |
Collapse
|
2
|
Norouzi H, Dastan D, Abdullah FO, Al-Qaaneh AM. Recent advances in methods of extraction, pre-concentration, purification, identification, and quantification of kaempferol. J Chromatogr A 2024; 1735:465297. [PMID: 39243588 DOI: 10.1016/j.chroma.2024.465297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
As a naturally widely-occurring dietary, cosmetic, and therapeutic flavonoid, kaempferol has gained much consideration for its nutritional and pharmaceutical properties in recent years. Although there have been performed a high number of studies associated with different aspects of kaempferol's analytical investigations, the lack of a comprehensive summary of the various methods and other plant sources that have been reported for this compound is being felt, especially for many biological applications. This study, aimed to provide a detailed compilation consisting of sources (plant species) and analytical information that was precisely related to the natural flavonoid (kaempferol). There is a trend in analytical research that supports the application of modern eco-friendly instruments and methods. In conclusion, ultrasound-assisted extraction (UAE) is the most general advanced method used widely today for the extraction of kaempferol. During recent years, there is an increasing tendency towards the identification of kaempferol by different methods.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fuad O Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq; Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq.
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt 19117 Jordan
| |
Collapse
|
3
|
Singh H, Singh M, Nag S, Mohanto S, Jain K, Shrivastav A, Mishra AK, Pallavi J, Bhunia A, Subramaniyan V, Kumar A, Mishra A. Isolation and characterization of secondary metabolites from Bryophylum pinnatum (Lam.) Oken and assessment of wound healing efficacy using animal model. SOUTH AFRICAN JOURNAL OF BOTANY 2024; 169:531-542. [DOI: 10.1016/j.sajb.2024.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
4
|
Tumpa NI, Chowdhury MHU, Asma AA. Deciphering the antimicrobial, antibiofilm and membrane stabilizing synergism of Mikania scandens (L.) Willd. leaves and stems substantiation through in vitro and in silico studies. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00797. [PMID: 37124472 PMCID: PMC10131130 DOI: 10.1016/j.btre.2023.e00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023]
Abstract
Considering the traditional application of Mikania scandens (L.) Willd. against wounds and itching. Leaves (MSL) and stems (MSS) were sequentially extracted using solvents petroleum-ether, carbon-tetrachloride, chloroform, ethyl-acetate and ethanol. Disk-diffusion assay revealed the ethyl acetate MSL and MSS extracts were the prominent against ten bacteria, five carbapenem-resistant bacteria and one fungal strains. Subsequent quantitative antimicrobial analysis specified MSL extractives more potent over MSS with lower 1500 and 3500µg/ml MIC and MBC value in both gram-negative and positive bacteria. These sturdiest ethyl-acetate MSL extractives antimicrobial efficiency also fostered fungicidal activity having lower 100µg/ml MFC. Whereat, almost homologous 160-180 min timing noted liken to standard ciprofloxacin susceptibility in both strains, 75% biofilm inhibition at 2×MIC concentration along with 92±0.2% membrane stabilizing activities over synthetic counterparts prospected in preceding standard extractives. Computational molecular docking of MSL compounds supported this findings therefore forego this valuable synergistic insight as antimicrobial agents to efficiently eradicate human infections.
Collapse
Affiliation(s)
- Nadia Islam Tumpa
- Department of Microbiology, University of Chittagong, Chattogram-4331, Bangladesh
| | - Md. Helal Uddin Chowdhury
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chattogram-4331, Bangladesh
- Corresponding author at: Research Assistant, Ethnobotany and Pharmacognosy Lab, Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram, 4331, Bangladesh.
| | - Ankhy Alamgir Asma
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chattogram-4331, Bangladesh
| |
Collapse
|
5
|
Tomou EM, Papakyriakopoulou P, Skaltsa H, Valsami G, Kadoglou NPE. Bio-Actives from Natural Products with Potential Cardioprotective Properties: Isolation, Identification, and Pharmacological Actions of Apigenin, Quercetin, and Silibinin. Molecules 2023; 28:molecules28052387. [PMID: 36903630 PMCID: PMC10005323 DOI: 10.3390/molecules28052387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. As a result, pharmaceutical and non-pharmaceutical interventions modifying risk factors for CVDs are a top priority of scientific research. Non-pharmaceutical therapeutical approaches, including herbal supplements, have gained growing interest from researchers as part of the therapeutic strategies for primary or secondary prevention of CVDs. Several experimental studies have supported the potential effects of apigenin, quercetin, and silibinin as beneficial supplements in cohorts at risk of CVDs. Accordingly, this comprehensive review focused critically on the cardioprotective effects/mechanisms of the abovementioned three bio-active compounds from natural products. For this purpose, we have included in vitro, preclinical, and clinical studies associated with atherosclerosis and a wide variety of cardiovascular risk factors (hypertension, diabetes, dyslipidemia, obesity, cardiac injury, and metabolic syndrome). In addition, we attempted to summarize and categorize the laboratory methods for their isolation and identification from plant extracts. This review unveiled many uncertainties which are still unexplored, such as the extrapolation of experimental results to clinical practice, mainly due to the small clinical studies, heterogeneous doses, divergent constituents, and the absence of pharmacodynamic/pharmacokinetic analyses.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Helen Skaltsa
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | | |
Collapse
|
6
|
Liu H, Pei Z, Li W. Hypoglycemic and antioxidative activity evaluation of phenolic compounds derived from walnut diaphragm produced in Xinjiang. J Food Biochem 2022; 46:e14403. [PMID: 36121702 DOI: 10.1111/jfbc.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023]
Abstract
Walnut diaphragm is defined as a dry wood septum located between the walnut shell and kernel. In this work, seven phenolic compounds from walnut diaphragm were purified and characterized, and their antioxidant activities and mechanisms of hypoglycemia were investigated. Compounds 1-7 were tested for DPPH, ABTS scavenging ability, and FRAP assay to evaluate the antioxidant activity. α-Amylase inhibition assay was introduced to assess the hypoglycemic activity, and the mechanism was investigated by kinetic analysis, CD spectrum, and molecular docking. Compound 6 showed the strongest antioxidant ability, while compound 1 exhibited the strongest inhibition of α-amylase by changing the secondary structure of α-amylase in a mixed competitive inhibition mode. Molecular docking test predicted that the tetrahydropyran part in compound 1 may contribute to its hypoglycemic effect. This study furnishes a new theoretical reference for the utilization and development of walnut diaphragm into a health food with antioxidant and hypoglycemic properties. PRACTICAL APPLICATIONS: The finding of this research may serve as a basis for the subsequent development of walnut diaphragm into instant tea-based health food or added to other food carriers to achieve auxiliary antioxidant and hypoglycemic effects. This study revealed that polyphenolic components were the material basis for the antioxidant and hypoglycemic effects of walnut diaphragm, which could be identified as landmark chemical components for controlling quality standards in the development of walnut diaphragm, thus accelerating the research process of quality standards for walnut diaphragm-related products. Furthermore, the studies on the mechanism of hypoglycemic activity supply more credible data to support the development of walnut diaphragm into a safe and consumer-friendly health food. With abundant resources and clear efficacy, walnut diaphragm has great development prospect and application value.
Collapse
Affiliation(s)
- Hongcui Liu
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuo Pei
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Li
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Cele N, Awolade P, Seboletswe P, Olofinsan K, Islam MS, Singh P. α-Glucosidase and α-Amylase Inhibitory Potentials of Quinoline-1,3,4-oxadiazole Conjugates Bearing 1,2,3-Triazole with Antioxidant Activity, Kinetic Studies, and Computational Validation. Pharmaceuticals (Basel) 2022; 15:ph15081035. [PMID: 36015183 PMCID: PMC9414972 DOI: 10.3390/ph15081035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Diabetes mellitus (DM) is a multifaceted metabolic disorder that remains a major threat to global health security. Sadly, the clinical relevance of available drugs is burdened with an upsurge in adverse effects; hence, inhibiting the carbohydrate-hydrolyzing enzymes α-glucosidase and α-amylase while preventing oxidative stress is deemed a practicable strategy for regulating postprandial glucose levels in DM patients. We report herein the α-glucosidase and α-amylase inhibition and antioxidant profile of quinoline hybrids 4a–t and 12a–t bearing 1,3,4-oxadiazole and 1,2,3-triazole cores, respectively. Overall, compound 4i with a bromopentyl sidechain exhibited the strongest α-glucosidase inhibition (IC50 = 15.85 µM) relative to reference drug acarbose (IC50 = 17.85 µM) and the best antioxidant profile in FRAP, DPPH, and NO scavenging assays. Compounds 4a and 12g also emerged as the most potent NO scavengers (IC50 = 2.67 and 3.01 µM, respectively) compared to gallic acid (IC50 = 728.68 µM), while notable α-glucosidase inhibition was observed for p-fluorobenzyl compound 4k (IC50 = 23.69 µM) and phenyl-1,2,3-triazolyl compound 12k (IC50 = 22.47 µM). Moreover, kinetic studies established the mode of α-glucosidase inhibition as non-competitive, thus classifying the quinoline hybrids as allosteric inhibitors. Molecular docking and molecular dynamics simulations then provided insights into the protein–ligand interaction profile and the stable complexation of promising hybrids at the allosteric site of α-glucosidase. These results showcase these compounds as worthy scaffolds for developing more potent α-glucosidase inhibitors with antioxidant activity for effective DM management.
Collapse
Affiliation(s)
- Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Pule Seboletswe
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Kolawole Olofinsan
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville, Durban 4000, South Africa
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville, Durban 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
- Correspondence: or
| |
Collapse
|
8
|
Islam M, Olofinsan K, Erukainure O, Brian B. Harpephyllum caffrum stimulates glucose uptake, abates redox imbalance and modulates purinergic and glucogenic enzyme activities in oxidative hepatic injury. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.333209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Islam M, Olofinsan K, Erukainure O, Msomi N. Senna petersiana inhibits key digestive enzymes and modulates dysfunctional enzyme activities in oxidative pancreatic injury. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Olofinsan KA, Salau VF, Erukainure OL, Islam MS. Ocimum tenuiflorum mitigates iron-induced testicular toxicity via modulation of redox imbalance, cholinergic and purinergic dysfunctions, and glucose metabolizing enzymes activities. Andrologia 2021; 53:e14179. [PMID: 34228819 DOI: 10.1111/and.14179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a primary culprit in the pathophysiology of infertility conditions in males. This study investigated the effects of Ocimum tenuiflorum on redox imbalance, cholinergic and purinergic dysfunctions and glucose dysmetabolism in oxidative-mediated testicular toxicity using in vitro, ex vivo and in silico models. Induction of oxidative testicular injury was carried out by incubating normal testicular tissue with 0.1 mM FeSO4 and treated by co-incubating with different concentrations of O. tenuiflorum infusion for 30 min at 37°C. O. tenuiflorum displayed significant ferric reducing power activity while scavenging DPPH and hydroxyl (OH˙) free radicals in vitro. Oxidative testicular injury significantly reduced the glutathione level and superoxide dismutase and catalase activities with concomitant elevation of malondialdehyde and nitric oxide levels and acetylcholinesterase, ATPase, fructose-1,6-bisphosphatase and glycogen phosphorylase (GlyP) activities. Incubation with the infusion significantly reversed these levels and activities. The phytochemical constituent of the infusion was detected by gas chromatography-mass spectroscopy analysis and revealed favourable binding energies when docked with some of the studied proteins. These results suggest O. tenuiflorum exerts a protective effect against Fe2+ induced testicular toxicity via mitigation of redox imbalance while modulating metabolic dysfunctions linked to male infertility.
Collapse
Affiliation(s)
| | - Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Biochemistry, Veritas University, Bwari, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
Katrucha EM, Lopes J, Paim M, dos Santos JC, Siebert DA, Micke GA, Vitali L, Alberton MD, Tenfen A. Phenolic profile by HPLC-ESI-MS/MS and enzymatic inhibitory effect of Bryophyllum delagoense. Nat Prod Res 2020; 35:4824-4827. [DOI: 10.1080/14786419.2020.1729147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Edenize Maria Katrucha
- Curso de Graduação em Farmácia, Sociedade de Educacional Santa Catariana, UniSociesc, Jaraguá do Sul, SC, Brazil
| | - Jéssica Lopes
- Curso de Graduação em Farmácia, Sociedade de Educacional Santa Catariana, UniSociesc, Jaraguá do Sul, SC, Brazil
| | - Milena Paim
- Curso de Graduação em Farmácia, Fundação Universidade Regional de Blumenau, FURB, Blumenau, SC, Brazil
| | - Júlia Candiani dos Santos
- Curso de Graduação em Farmácia, Sociedade de Educacional Santa Catariana, UniSociesc, Jaraguá do Sul, SC, Brazil
| | - Diogo Alexandre Siebert
- Curso de Pós-Graduação em Química, Universidade Federal de Santa Catarina – UFSC, Florianópolis, SC, Brazil
| | - Gustavo Amadeu Micke
- Curso de Pós-Graduação em Química, Universidade Federal de Santa Catarina – UFSC, Florianópolis, SC, Brazil
| | - Luciano Vitali
- Curso de Pós-Graduação em Química, Universidade Federal de Santa Catarina – UFSC, Florianópolis, SC, Brazil
| | - Michele Debiasi Alberton
- Curso de Graduação em Farmácia, Fundação Universidade Regional de Blumenau, FURB, Blumenau, SC, Brazil
| | - Adrielli Tenfen
- Curso de Graduação em Farmácia, Sociedade de Educacional Santa Catariana, UniSociesc, Jaraguá do Sul, SC, Brazil
| |
Collapse
|
12
|
Alegbe EO, Teralı K, Olofinsan KA, Surgun S, Ogbaga CC, Ajiboye TO. Antidiabetic activity-guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes. J Food Biochem 2019; 43:e12927. [PMID: 31353728 DOI: 10.1111/jfbc.12927] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/11/2019] [Accepted: 05/12/2019] [Indexed: 12/16/2022]
Abstract
We isolated and identified gallic and protocatechuic acids as the antidiabetic principles in Hibiscus sabdariffa using solvent extraction, column chromatographic fractionation, and nuclear magnetic resonance (NMR) spectroscopy. Ethylacetate fraction of the aqueous extract of H. sabdariffa inhibited α-amylase and α-glucosidase with IC50 of 411.73 and 433.93 μg/ml, respectively. Furthermore, fractions I and II obtained from column chromatography inhibited α-amylase with IC50 of 27.03 and 20.12 μg/ml, and α-glucosidase with IC50 of 24.30 and 22.29 μg/ml, respectively. In addition, the principles reduced the serum glucose and lipid peroxide levels of diabetic rats and with an improvement in the rat lipid profiles and antioxidant defenses. Fractions I and II were identified as protocatechuic acid and gallic acid, respectively, using 1 H and 13 C NMR. Protein-ligand docking showed that these compounds form multiple favorable interactions with the active-site residues of the two glycosidases. Overall, protocatechuic and gallic acids emerge as natural antidiabetic agents. PRACTICAL APPLICATIONS: Hibiscus sabdariffa (Zoborodo) is a refreshment drink for ceremonial gatherings in Nigeria. Also, its pharmacological use includes diabetes, hypertension, hyperlipidemia, metabolic syndrome, and hepatoprotection. The consumption of this food drink could improve diabetes, hypertension, dyslipidemia, metabolic syndrome, and liver disease. Furthermore, the inhibition of α-amylase and α-glucosidase could prevent diabetic complications associated with postprandial glucose. Developing the extract of H. sabdariffa calyx as food supplement could be used in managing diabetes and its associated complications such as dyslipidemia, hypertension, and metabolic syndrome.
Collapse
Affiliation(s)
- Emmanuel Ohifueme Alegbe
- Faculty of Natural and Applied Sciences, Department of Chemistry, Nile University of Nigeria, Abuja, Nigeria
| | - Kerem Teralı
- Faculty of Medicine, Department of Medical Biochemistry, Near East University, Nicosia, Cyprus
| | - Kolawole Ayodapo Olofinsan
- Faculty of Natural and Applied Sciences, Department of Biochemistry, Nile University of Nigeria, Abuja, Nigeria
| | - Serdar Surgun
- Faculty of Natural and Applied Sciences, Department of Chemistry, Nile University of Nigeria, Abuja, Nigeria
| | - Chukwuma Collins Ogbaga
- Faculty of Natural and Applied Sciences, Department of Biological Sciences, Nile University of Nigeria, Abuja, Nigeria.,Faculty of Natural and Applied Sciences, Department of Microbiology and Biotechnology, Nile University of Nigeria, Abuja, Nigeria
| | - Taofeek Olakunle Ajiboye
- Antioxidants, Redox Biology and Toxicology Research Group, Department of Medical Biochemistry, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| |
Collapse
|