1
|
Mazhar MU, Naz S, Khan JZ, Azam S, Ghazanfar S, Tipu MK. Protective potential of Bacillus subtilis (NMCC-path-14) against extraarticular manifestations during acute and sub-acute phase of arthritis using mice model. Biochem Biophys Res Commun 2024; 733:150708. [PMID: 39298918 DOI: 10.1016/j.bbrc.2024.150708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Extra-articular manifestations (EAM), which are associated with rheumatoid arthritis (RA), affect the quality of life of patients and are one of the critical causes of early mortality. This study was aimed at investigating whether Bacillus subtilis NMCC-path-14 (1 × 108 CFU/animal/day) could serve as a valuable therapeutic agent in managing EAM using complete Freund's adjuvant (CFA) induced arthritis during acute and sub-acute phases. Arthritis was induced using intra-dermal administration of CFA in the right hind paw of mice on day 1. Dexamethasone (Dexa) (5 mg/kg/day/animal) was used as a standard treatment. Animals in Dexa and Bacillus subtilis concurrent treatment (BS-CT) received treatments on day 1. The Bacillus subtilis pre-treatment (BS-PT) group received a probiotic dose 7 days before arthritis induction. Parameters like body weight, relative organ weight, colon length, hematology, serum biochemistry, antioxidant capacity, and histopathology of liver, kidney, spleen, colon, stress-related behavioral changes, and cortisol levels were evaluated on days 7 (acute) and 14 (sub-acute). Dexa failed to manage the EAM in arthritic mice and instead exacerbated them. On the other hand, B. subtilis NMCC-path-14 significantly declined EAM with no notable side effects, highlighting its safety and effectiveness. The current data show that B. subtilis NMCC-path-14 may be an alternative option for arthritis treatment that can reduce systemic symptoms associated with arthritis. More studies are required to comprehend the underlying mechanisms of mitigating the EAM by B. subtilis NMCC-path-14.
Collapse
Affiliation(s)
- Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Shahzad Azam
- Department of Pathology, Fazaia Medical College, Air University, Islamabad, Pakistan.
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
2
|
Ilie EI, Popescu L, Luță EA, Biță A, Corbu AR, Mihai DP, Pogan AC, Balaci TD, Mincă A, Duțu LE, Olaru OT, Boscencu R, Gîrd CE. Phytochemical Characterization and Antioxidant Activity Evaluation for Some Plant Extracts in Conjunction with Pharmacological Mechanism Prediction: Insights into Potential Therapeutic Applications in Dyslipidemia and Obesity. Biomedicines 2024; 12:1431. [PMID: 39062004 PMCID: PMC11274650 DOI: 10.3390/biomedicines12071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Lipid metabolism dysregulation can lead to dyslipidemia and obesity, which are major causes of cardiovascular disease and associated mortality worldwide. The purpose of the study was to obtain and characterize six plant extracts (ACE-Allii cepae extractum; RSE-Rosmarini extractum; CHE-Cichorii extractum; CE-Cynarae extractum; AGE-Apii graveolentis extractum; CGE-Crataegi extractum) as promising adjuvant therapies for the prevention and treatment of dyslipidemia and its related metabolic diseases. Phytochemical screening revealed that RSE was the richest extract in total polyphenols (39.62 ± 13.16 g tannic acid/100 g dry extract) and phenolcarboxylic acids (22.05 ± 1.31 g chlorogenic acid/100 g dry extract). Moreover, the spectrophotometric chemical profile highlighted a significant concentration of flavones for CGE (5.32 ± 0.26 g rutoside/100 g dry extract), in contrast to the other extracts. UHPLC-MS quantification detected considerable amounts of phenolic constituents, especially chlorogenic acid in CGE (187.435 ± 1.96 mg/g extract) and rosmarinic acid in RSE (317.100 ± 2.70 mg/g extract). Rosemary and hawthorn extracts showed significantly stronger free radical scavenging activity compared to the other plant extracts (p < 0.05). Pearson correlation analysis and the heatmap correlation matrix indicated significant correlations between phytochemical contents and in vitro antioxidant activities. Computational studies were performed to investigate the potential anti-obesity mechanism of the studied extracts using target prediction, homology modeling, molecular docking, and molecular dynamics approaches. Our study revealed that rosmarinic acid (RA) and chlorogenic acid (CGA) can form stable complexes with the active site of carbonic anhydrase 5A by either interacting with the zinc-bound catalytic water molecule or by directly binding Zn2+. Further studies are warranted to experimentally validate the predicted CA5A inhibitory activities of RA and CGA and to investigate the hypolipidemic and antioxidant activities of the proposed plant extracts in animal models of dyslipidemia and obesity.
Collapse
Affiliation(s)
- Elena Iuliana Ilie
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Liliana Popescu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Emanuela-Alice Luță
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Andrei Biță
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Petru Rareș 2, 200349 Craiova, Romania;
| | - Alexandru Radu Corbu
- Department of Horticulture & Food Science, University of Craiova, AI Cuza 13, 200585 Craiova, Romania;
| | - Dragoș Paul Mihai
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Ana Corina Pogan
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Teodora Dalila Balaci
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Alexandru Mincă
- Department of Medical Semiology, Discipline of Internal Medicine I and Nephrology, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, Eroii Sanitari 8, 050474 Bucharest, Romania;
| | - Ligia Elena Duțu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Rica Boscencu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| |
Collapse
|
3
|
Mazhar MU, Naz S, Zulfiqar T, Khan JZ, Ghazanfar S, Tipu MK. Immunostimulant, hepatoprotective, and nephroprotective potential of Bacillus subtilis (NMCC-path-14) in comparison to dexamethasone in alleviating CFA-induced arthritis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3275-3299. [PMID: 37930392 DOI: 10.1007/s00210-023-02814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
To investigate and compare efficacy as well as safety of Bacillus subtilis and dexamethasone (Dexa) in complete Freund's adjuvant (CFA)-induced arthritis, we used glucocorticoid monotherapy (Dexa 5 mg/kg/day) and B. subtilis (1 × 108 CFU/animal/day p.o) as pre-treatment and concurrent treatment for a duration of 35 days. Specific emphasis was on chronic aspect of this study since long-term use of Dexa is known to produce undesirable side effects. Treatment with Dexa significantly attenuated the arthritic symptoms but produced severe side effects like weight loss, increased mortality, immunosuppression, and altered histology of liver, kidney, and spleen. Oxidative stress was also elevated by Dexa in these organs which contributed to the damage. Treatment with B. subtilis improved symptoms of arthritis without producing any deleterious side effects as seen with Dexa therapy. Immunohistochemistry (IHC) profile revealed decreased expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, tumor necrosis factor alpha (TNF-α), and increased nuclear factor erythroid 2-related factor 2 (Nrf-2) expression by B. subtilis and Dexa treatment in ankle joint of arthritic mice. Radiological scores were also improved by both treatments. This study concludes that B. subtilis could be an effective alternative for treating arthritis than Dexa since it does not produce life-threatening side effects on prolong treatment.
Collapse
Affiliation(s)
- Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tayyaba Zulfiqar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
4
|
Zamanian MY, Soltani A, Khodarahmi Z, Alameri AA, Alwan AMR, Ramírez-Coronel AA, Obaid RF, Abosaooda M, Heidari M, Golmohammadi M, Anoush M. Targeting Nrf2 signaling pathway by quercetin in the prevention and treatment of neurological disorders: An overview and update on new developments. Fundam Clin Pharmacol 2023; 37:1050-1064. [PMID: 37259891 DOI: 10.1111/fcp.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Neurological disorders (NLDs) are widely acknowledged as a significant public health concern worldwide. Stroke, Alzheimer's disease (AD), and traumatic brain injury (TBI) are three of these disorders that have sparked major study attention. Neurological dysfunction, protein buildup, oxidation and neuronal injury, and aberrant mitochondria are all prevalent neuropathological hallmarks of these disorders. The signaling cascade of nuclear factor erythroid 2 related factor 2 (Nrf2) shares all of them as a common target. Several studies have found that overexpression of Nrf2 is a promising treatment method in NLDs. Effective treatment of these disorders continues to be a universal concern regardless of various medicines. In order to treat a variety of neurological problems, organic remedies may provide an alternative treatment. It has been demonstrated that polyphenols like quercetin (Que) offer considerable capabilities for treating NLDs. One of Que's greatest key targets, Nrf2, has the capacity to control the production of a number of cytoprotective enzymes that exhibit neuroprotective, detoxifying, and antioxidative effects. Additionally, Que enhanced the expression of Nrf2 and inhibited alterations in the shape and death of neurons in the hippocampus. OBJECTIVE In this review, we have focused on Que's medicinal prospects as a neuroprotective drug. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS The findings of this research demonstrate that (1) Que protected the blood-brain barrier via stimulating Nrf2 in animal stroke, which alleviated ischemic reperfusion and motor dysfunction. (2) By triggering the Nrf2 pathway, Que reduced the neuroinflammation and oxidative damage brought on by TBI in the cortex. (3) In an experimental model of AD, Que enhanced cognitive function by decreasing A1-4, antioxidant activity, and Nrf2 levels in the brain. CONCLUSION We discuss recent research on Que-mediated Nrf2 expression in the management of several NLDs in this paper.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Khodarahmi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Athemar M R Alwan
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Doctorate in Psychology, University of Palermo, Buenos Aires, Argentina
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Munther Abosaooda
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Anoush
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Wen C, Song D, Zhuang L, Liu G, Liang L, Zhang J, Liu X, Li Y, Xu X. Isolation and identification of polyphenol monomers from celery leaves and their structure-antioxidant activity relationship. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Müller SG, Heck SO, Marques LS, Zborowski VA, Nogueira CW. p-Chloro-diphenyl diselenide modulates Nrf2/Keap1 signaling and counteracts renal oxidative stress in mice exposed to dexamethasone repeated administrations. Can J Physiol Pharmacol 2022; 100:500-508. [PMID: 35395160 DOI: 10.1139/cjpp-2021-0573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dexamethasone is a synthetic glucocorticoid that has been associated with oxidative stress in central and peripheral tissues. p-Chloro-diphenyl diselenide (p-ClPhSe)2 is an antioxidant organoselenium compound. The present study aimed to evaluate whether Nrf2/Keap-1 signaling contributes to the (p-ClPhSe)2 antioxidant effects in the kidney of mice exposed to dexamethasone. Adult Swiss mice received dexamethasone (i.p) at a dose of 2 mg/kg or its vehicle for 21 days. After, mice were treated with (p-ClPhSe)2 (i.g)(1, 5, or 10 mg/kg) for 7 days. Samples of kidneys were collected for biochemical assays. (p-ClPhSe)2 at dose of 1 mg/kg reversed the renal reactive oxygen species (ROS) and carbonyl protein (CP) levels increased by dexamethasone. (p-ClPhSe)2 at doses of 5 and 10 mg/kg was effective against the increase of TBARS (thiobarbituric acid reactive substances), ROS, and CP as well as the decrease of δ-aminolevulinic acid dehydratase (δ-ALA-D) activity and non-protein SH (NPSH) levels induced by dexamethasone. At 5 mg/kg, (p-ClPhSe)2 reduced the renal levels of 4-OH-2-HNE and HO-1 as well as modulated the Nrf2/Keap-1 signaling in mice exposed to dexamethasone. The present findings revealed that (p-ClPhSe)2 antioxidant effects were associated with the modulation of Nrf2/Keap-1 signaling pathway in the kidney of mice exposed to dexamethasone.
Collapse
Affiliation(s)
| | - Suelen Osório Heck
- Universidade Federal de Santa Maria Centro de Ciencias Naturais e Exatas, 425921, Santa Maria, Rio Grande do Sul, Brazil;
| | - Luiza Souza Marques
- Universidade Federal de Santa Maria Centro de Ciencias Naturais e Exatas, 425921, Santa Maria, Rio Grande do Sul, Brazil;
| | - Vanessa Angonesi Zborowski
- Universidade Federal de Santa Maria Centro de Ciencias Naturais e Exatas, 425921, Santa Maria, Rio Grande do Sul, Brazil;
| | - Cristina Wayne Nogueira
- Universidade Federal de Santa Maria, 28118, Av. Roraima 1000, Santa Maria, Brazil, 97105-900;
| |
Collapse
|
7
|
Arsenov D, Župunski M, Pajević S, Borišev M, Nikolić N, Mimica-Dukić N. Health assessment of medicinal herbs, celery and parsley related to cadmium soil pollution-potentially toxic elements (PTEs) accumulation, tolerance capacity and antioxidative response. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2927-2943. [PMID: 33439422 DOI: 10.1007/s10653-020-00805-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Celery and parsley are recognized as medicinal herbs and nutraceutical vegetables due to their valuable pharmacological properties and numerous health benefits. However, in recent years, soil loadings with various PTEs have become a serious concern across the world, leading to plants pollution, which can consequently diminish their quality and safety for human consumption. Therefore, we attempted to quantify quality and safety of celery and parsley grown in Cd polluted soil. We examined the presence of PTEs: As, Cu, Fe, Mn, Ni, Cu and Cd in soil and selected herbs, as well as their physiological responses to different Cd exposures (control-without Cd addition, 3 and 6 µg/g Cd of dry soil). Following elevation of Cd in plants, both species showed increasing trend of As, Pb and Cu in plants, which overcome safe limits, with exception for Cu. Further, celery showed strong phytoextraction ability (99.9 µg/g Cd of dry weight) with high potential to tolerate Cd due to the efficient antioxidative machinery. Besides that herbs pollution was evident on the basis of target hazard quotients (HQ), hazard index (HI) and cancerogenic risk (CR), revealing that chronic consumption of contaminated herbs can consequently endanger human health. HI was greater than 1, while CR exceeded safe limits in treated plants, with exception for As. In the point of view of toxicology and food safety, growing of medicinal plants should be strictly regulated and distinguished based on the purpose of growing, and further herbs usage.
Collapse
Affiliation(s)
- Danijela Arsenov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, Serbia.
| | - Milan Župunski
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, Serbia
| | - Slobodanka Pajević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, Serbia
| | - Milan Borišev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, Serbia
| | - Nataša Nikolić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, Serbia
| | - Neda Mimica-Dukić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia
| |
Collapse
|
8
|
Ding X, Jia LL, Xing GM, Tao JP, Sun S, Tan GF, Li S, Liu JX, Duan AQ, Wang H, Xiong AS. The Accumulation of Lutein and β-Carotene and Transcript Profiling of Genes Related to Carotenoids Biosynthesis in Yellow Celery. Mol Biotechnol 2021; 63:638-649. [PMID: 33973142 DOI: 10.1007/s12033-021-00332-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Carotenoids are the general term of natural pigments. The formation of plant color is probably related to the components of carotenoids. As the yellow variety of celery, it is rich in the composition and content of carotenoids. However, the transcript profiling and roles of the genes related to carotenoids biosynthesis in yellow celery remain unclear. In this study, three yellow celery cultivars at different growth stages were used to analyze the content and composition of carotenoids and transcriptional changes of carotenoid biosynthesis-related genes. The lutein and β-carotene were detected in yellow celery cultivar, while α-carotene and lycopene were not detected. The contents of lutein and β-carotene were higher in leaf blades than in petioles. During the growth and development, the contents of lutein and β-carotene gradually decreased in celery. Compared with the other two cultivars, the contents of lutein and β-carotene were the highest in 'Huangtaiji' of 65 days after sowing (DAS) and 85 DAS and 'Liuhehuangxinqin' of 105 DAS, respectively. The expression levels of AgLCYB and AgPSY2 genes were significantly correlated with lutein and β-carotene contents. This work provided a reference for the further study on carotenoid metabolisms in yellow celery and also made sense on the way of cultivating yellow celery with high carotenoids content.
Collapse
Affiliation(s)
- Xu Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Li-Li Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Guo-Ming Xing
- Collaborative Innovation Center for Improving Quality and Increase Profits of Protected Vegetables in Shanxi, Shanxi Agricultural University, Taigu, China
| | - Jian-Ping Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Sheng Sun
- Collaborative Innovation Center for Improving Quality and Increase Profits of Protected Vegetables in Shanxi, Shanxi Agricultural University, Taigu, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Sen Li
- Collaborative Innovation Center for Improving Quality and Increase Profits of Protected Vegetables in Shanxi, Shanxi Agricultural University, Taigu, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Hao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
9
|
Liu J, Cheng C, Zhang Z, Yang S, Zhang X. Optimization of celery leaf tea processing and the volatile components analysis. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Junchen Liu
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Chenxia Cheng
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Zhiwei Zhang
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Shaolan Yang
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Xinfu Zhang
- College of Horticulture Qingdao Agricultural University Qingdao City China
| |
Collapse
|
10
|
Jang YH, Park JR, Kim KM. Antimicrobial Activity of Chrysoeriol 7 and Chochlioquinone 9, White-Backed Planthopper-Resistant Compounds, Against Rice Pathogenic Strains. BIOLOGY 2020; 9:biology9110382. [PMID: 33171821 PMCID: PMC7695191 DOI: 10.3390/biology9110382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
As environmental damage caused by chemical pesticides appears worldwide, eco-friendly agriculture is increasing, and finding eco-friendly pesticide materials has become very important. Chrysoeriol and cochlioquinone, two flavonoids, act as an antibacterial and antioxidant, and increase the resistance of rice to the white-backed planthopper (WBPH). In this experiment, chrysoeriol 7 (C7) and cochlioquinone 9 (C9) were extracted from rice inoculated with the WBPH using MeOH, and cultivars with high extraction efficiency were selected. In addition, the antimicrobial activity of C7 and C9 against various pathogens causing disease in rice was tested. The results show that C7 has antifungal activity against Fusarium graminearum and Pythium graminicola, and C9 show antifungal activity against Cladosporium herbarum, Cladosporium cladosporioides, Gibberella zeae, Fusarium graminearum and Pythium graminicola. When both substances were treated at a concentration of 1000 ppm, they showed high inhibition rates of 62.3% and 36.2% against P.graminicola, respectively. After that, a phylogenetic tree was created to clarify the relationship between the microorganisms whose growth was inhibited and divided into three groups. This result can contribute to the study of biopesticide materials that can control pests and pathogens.
Collapse
Affiliation(s)
| | | | - Kyung-Min Kim
- Correspondence: ; Tel.: +82-539-505-711; Fax: +82-539-586-880
| |
Collapse
|
11
|
Effect of Quercetin on PC12 Alzheimer's Disease Cell Model Induced by A β 25-35 and Its Mechanism Based on Sirtuin1/Nrf2/HO-1 Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8210578. [PMID: 32420373 PMCID: PMC7201675 DOI: 10.1155/2020/8210578] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Objective This study is aimed at studying the effect of quercetin on the Alzheimer disease cell model induced by Aβ25-35 in PC12 cells and its mechanism of action. Methods The AD cell model was established by Aβ25-35. Quercetin was used at different concentrations (0, 10, 20, 40, and 80 μmol/L). The morphology of cells was observed, and the effect on cell survival rate was detected by the MTT method. Cell proliferation was detected by the SRB method. The contents of LDH, SOD, MDA, GSH-Px, AChE, CAT, and T-AOC were detected by kits. The expression of sirtuin1/Nrf2/HO-1 was detected by RT-qPCR and Western blot. Results PC12 cells in the control group grew quickly and adhered well to the wall, most of which had extended long axons and easily grew into clusters. In the model group, cells were significantly damaged and the number of cells was significantly reduced. It was found that PC12 cells were swollen, rounded, protruding, and retracting, with reduced adherent function and floating phenomenon. Quercetin could increase the survival rate and proliferation rate of PC12 cells; reduce the levels of LDH, AChE, MDA, and HO-1 protein; and increase the levels of SOD, GSH-Px, CAT, T-AOC, sirtuin1, and Nrf2 protein. Conclusion Quercetin can increase the survival rate of PC12 injured by Aβ25-35, promote cell proliferation, and antagonize the toxicity of Aβ; it also has certain neuroprotective effects. Therefore, quercetin is expected to become a drug for the treatment of AD.
Collapse
|
12
|
Wang Z, Cai L, Li H, Liang M, Zhang Y, Wu Q, Yang L. Rice protein stimulates endogenous antioxidant response attributed to methionine availability in growing rats. J Food Biochem 2020; 44:e13180. [PMID: 32163604 DOI: 10.1111/jfbc.13180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Methionine sulfoxide reductase (Msr) and glutathione (GSH) are two endogenous antioxidant systems for depressing oxidative stress. The aim of this study is to investigate the role of methionine in involving the stimulation of endogenous antioxidant capacity of rice protein (RP). Seven-week-old male Wistar rats (body weight 180-200 g) were fed with commercial pellets (as control), methionine, and RP for 2 weeks. Compared with control, GSH synthesis and expressions of MsrA, MsrB2, and MsrB3 were stimulated by methionine and RP. After 2 weeks of feeding, Nrf2 was activated by RP and methionine, whereas the expressions of Keap1 and Cul3 were depressed. The ARE-driven antioxidant expressions (GCLC, GCLM, GS, HO-1, NQO1, CAT, SOD, GR, GST, GPx) were upregulated by methionine and RP. Results suggest that the endogenous antioxidant response induced by RP is primarily attributed to the methionine availability, in which the stimulation of Msr and GSH antioxidant system via Nrf2-ARE pathway. PRACTICAL APPLICATIONS: Rice protein is a major plant protein, which is rich in sulfur-containing amino acids and widely consumed in the world. This paper emphasizes that the amino acid plays a key role in inducing the antioxidant activity of rice protein. The present study provides an insight that the methionine availability of rice protein will be a useful target for health promoting by activating endogenous antioxidant response against ROS-induced oxidative damage.
Collapse
Affiliation(s)
- Zhengxuan Wang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Liang Cai
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Hui Li
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Mingcai Liang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yan Zhang
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin, China
| | - Qiong Wu
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin, China
| | - Lin Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
13
|
Li Y, Zhang Y, Zhang X, Lu W, Liu X, Hu M, Wang D. Aucubin exerts anti-osteoporotic effects by promoting osteoblast differentiation. Aging (Albany NY) 2020; 12:2226-2245. [PMID: 32023550 PMCID: PMC7041723 DOI: 10.18632/aging.102742] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a metabolic disease characterized by reduced osteoblast differentiation and proliferation. Oxidative stress plays a role in the pathogenesis of osteoporosis. Aucubin (AU), an iridoid glycoside, was previously shown to promote osteoblast differentiation. We investigated the effects of AU on MG63 human osteoblast-like cells treated with dexamethasone (Dex) or hydrogen peroxide (H2O2) to induce oxidative damage. AU protected MG63 cells against apoptosis, and promoted increased expression of cytokines associated with osteoblast differentiation, including collagen I, osteocalcin (OCN), osteopontin (OPN), and osterix. In Dex- and H2O2-treated MG63 cells, AU also enhanced the expression of anti-oxidative stress-associated factors in the nuclear respiratory factor 2 signaling pathway, including superoxide dismutases 1 and 2, heme oxygenases 1 and 2, and catalase. In vivo, using a Dex-induced mouse model of osteoporosis, AU promoted increased cortical bone thickness, increased bone density, and tighter trabecular bone. Additionally, it stimulated an increase in the expression of collagen I, OCN, OPN, osterix, and phosphorylated Akt and Smads in bone tissue. Finally, AU stimulated the expression of cytokines associated with osteoblast differentiation in bone tissue and serum. Our data indicate AU may have therapeutic efficacy in osteoporosis.
Collapse
Affiliation(s)
- Yutong Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xinrui Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenqian Lu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Ingallina C, Capitani D, Mannina L, Carradori S, Locatelli M, Di Sotto A, Di Giacomo S, Toniolo C, Pasqua G, Valletta A, Simonetti G, Parroni A, Beccaccioli M, Vinci G, Rapa M, Giusti AM, Fraschetti C, Filippi A, Maccelli A, Crestoni ME, Fornarini S, Sobolev AP. Phytochemical and biological characterization of Italian "sedano bianco di Sperlonga" Protected Geographical Indication celery ecotype: A multimethodological approach. Food Chem 2019; 309:125649. [PMID: 31718835 DOI: 10.1016/j.foodchem.2019.125649] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
Celery is a widely used vegetable known for its peculiar sensorial and nutritional properties. Here, the white celery (Apium graveolens L.) "sedano bianco di Sperlonga" PGI ecotype was investigated to obtain the metabolic profile of its edible parts (blade leaves and petioles) also related to quality, freshness and biological properties. A multi-methodological approach, including NMR, MS, HPLC-PDA, GC-MS and spectrophotometric analyses, was proposed to analyse celery extracts. Sugars, polyalcohols, amino acids, organic acids, phenols, sterols, fatty acids, phthalides, chlorophylls, tannins and flavonoids were detected in different concentrations in blade leaf and petiole extracts, indicating celery parts as nutraceutical sources. The presence of some phenols in celery extracts was here reported for the first time. Low contents of biogenic amines and mycotoxins confirmed celery quality and freshness. Regarding the biological properties, ethanolic celery extracts inhibited the oxidative-mediated DNA damage induced by tert-butylhydroperoxide and scavenged DPPH and ABTS radicals.
Collapse
Affiliation(s)
- Cinzia Ingallina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Donatella Capitani
- Istituto per i Sistemi Biologici, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, 00015 Monterotondo (Rome), Italy.
| | - Luisa Mannina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy; Istituto per i Sistemi Biologici, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, 00015 Monterotondo (Rome), Italy.
| | - Simone Carradori
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy.
| | - Marcello Locatelli
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy.
| | - Antonella Di Sotto
- Dipartimento di Fisiologia e Farmacologia "V. Ersparmer", Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Silvia Di Giacomo
- Dipartimento di Fisiologia e Farmacologia "V. Ersparmer", Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Chiara Toniolo
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Gabriella Pasqua
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Alessio Valletta
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Giovanna Simonetti
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Alessia Parroni
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Marzia Beccaccioli
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Giuliana Vinci
- Dipartimento di Management, Laboratorio di Merceologia, Sapienza Università di Roma, Via del Castro Laurenziano 9, 00161 Rome, Italy.
| | - Mattia Rapa
- Dipartimento di Management, Laboratorio di Merceologia, Sapienza Università di Roma, Via del Castro Laurenziano 9, 00161 Rome, Italy.
| | - Anna Maria Giusti
- Dipartimento di Medicina Sperimentale Sapienza, Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Caterina Fraschetti
- Istituto per i Sistemi Biologici, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, 00015 Monterotondo (Rome), Italy.
| | - Antonello Filippi
- Istituto per i Sistemi Biologici, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, 00015 Monterotondo (Rome), Italy.
| | - Alessandro Maccelli
- Istituto per i Sistemi Biologici, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, 00015 Monterotondo (Rome), Italy.
| | - Maria Elisa Crestoni
- Istituto per i Sistemi Biologici, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, 00015 Monterotondo (Rome), Italy.
| | - Simonetta Fornarini
- Istituto per i Sistemi Biologici, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, 00015 Monterotondo (Rome), Italy.
| | - Anatoly P Sobolev
- Istituto per i Sistemi Biologici, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, 00015 Monterotondo (Rome), Italy.
| |
Collapse
|