1
|
Khawaja G, El-Orfali Y, Shoujaa A, Abou Najem S. Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis-Mechanisms, Evidence, and Therapeutic Potential. Pharmaceuticals (Basel) 2024; 17:963. [PMID: 39065811 PMCID: PMC11279697 DOI: 10.3390/ph17070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by progressive joint inflammation and damage. Oxidative stress plays a critical role in the onset and progression of RA, significantly contributing to the disease's symptoms. The complex nature of RA and the role of oxidative stress make it particularly challenging to treat effectively. This article presents a comprehensive review of RA's development, progression, and the emergence of novel treatments, introducing Galangin (GAL), a natural flavonoid compound sourced from various plants, as a promising candidate. The bioactive properties of GAL, including its anti-inflammatory, antioxidant, and immunomodulatory effects, are discussed in detail. The review elucidates GAL's mechanisms of action, focusing on its interactions with key targets such as inflammatory cytokines (e.g., TNF-α, IL-6), enzymes (e.g., SOD, MMPs), and signaling pathways (e.g., NF-κB, MAPK), which impact inflammatory responses, immune cell activation, and joint damage. The review also addresses the lack of comprehensive understanding of potential treatment options for RA, particularly in relation to the role of GAL as a therapeutic candidate. It highlights the need for further research and clinical studies to ascertain the effectiveness of GAL in RA treatment and to elucidate its mechanisms of action. Overall, this review provides valuable insights into the potential of GAL as a therapeutic option for RA, shedding light on its multifaceted pharmacological properties and mechanisms of action, while suggesting avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
| | - Youmna El-Orfali
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Aya Shoujaa
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
| | - Sonia Abou Najem
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi P.O. Box 25026, United Arab Emirates;
| |
Collapse
|
2
|
Kostić AŽ, Dramićanin AM, Milinčić DD, Pešić MB. Exploring the Botanical Origins of Bee-Collected Pollen: A Comprehensive Historical and Contemporary Analysis. Chem Biodivers 2024; 21:e202400194. [PMID: 38717321 DOI: 10.1002/cbdv.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
Bee-collected pollen is one of the most important bee products. In order to predict its chemical composition and nutritional value botanical origin of pollen plays a crucial role. This review intended to collect all available data published about botanical origin of pollen collected all around the world. Due to enourmous amount of data and variables nonlinear principal component analysis (NLPCA), by applying Categorical Principal Component Analysis (CATPCA), was conducted in order to try to determine any specifity and/or differences among samples. Also, importance of some plant families/genera/species for bees was monitored. Based on CATPCA results families can serve in order to distinct samples from North/South America. Also, some samples from Europe (Turkey and Serbia) were characterized with presence of some specific families. Genera were excellent tool to distinguish samples from different parts of Brazil as well as Australia, Asia and Africa. Due to high and specific biodiversity pollen samples obtained from Sonoran desert (USA) completely were separated during analysis. This review presents the first attempt to summarize and classify a large number of data about botanical sources of bee-collected pollen.
Collapse
Affiliation(s)
- Aleksandar Ž Kostić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade, Serbia
| | - Aleksandra M Dramićanin
- Chair of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | - Danijel D Milinčić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade, Serbia
| | - Mirjana B Pešić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade, Serbia
| |
Collapse
|
3
|
Anjum SI, Ullah A, Gohar F, Raza G, Khan MI, Hameed M, Ali A, Chen CC, Tlak Gajger I. Bee pollen as a food and feed supplement and a therapeutic remedy: recent trends in nanotechnology. Front Nutr 2024; 11:1371672. [PMID: 38899322 PMCID: PMC11186459 DOI: 10.3389/fnut.2024.1371672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Pollen grains are the male reproductive part of the flowering plants. It is collected by forager honey bees and mixed with their salivary secretions, enzymes, and nectar, which form fermented pollen or "bee bread" which is stored in cells of wax honeycombs. Bee pollen (BP) is a valuable apitherapeutic product and is considered a nutritional healthy food appreciated by natural medicine from ancient times. Recently, BP has been considered a beneficial food supplement and a value-added product that contains approximately 250 different bioactive components. It contains numerous beneficial elements such as Mg, Ca, Mn, K, and phenolic compounds. BP possesses strong antioxidant, anti-inflammatory, antimicrobial, antiviral, analgesic, immunostimulant, neuroprotective, anti-cancer, and hepatoprotective properties. It is used for different purposes for the welfare of mankind. Additionally, there is a growing interest in honey bee products harvesting and utilizing for many purposes as a natural remedy and nutritive function. In this review, the impacts of BP on different organisms in different ways by highlighting its apitherapeutic efficacy are described.
Collapse
Affiliation(s)
- Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
- Department of Plant Protection, Ministry of National Food Security and Research, Karachi, Pakistan
| | - Faryal Gohar
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ghulam Raza
- Department of Biological Sciences, University of Baltistan, Skardu, Pakistan
| | - Muhammad Ilyas Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mehwish Hameed
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
Şahin S, Eyüboğlu S, Karkar B, Ata GD. Development of bioactive films loaded with extract and polysaccharide of Pinus brutia bark. J Food Sci 2024; 89:3649-3665. [PMID: 38706382 DOI: 10.1111/1750-3841.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Society's interest in natural and clean products in many areas, such as food and cosmetics, has increased considerably. It has led to the development of new techniques in the packaging of products so that the wastes from the preferred products can be recycled. In this context, Pinus brutia bark was preferred within the scope of the study to transform natural wastes into functional components and use them as packaging material. P. brutia bark (PBB) samples were collected from Bursa, Turkey. PBB samples were ultrasonically extracted using various solvents (acetone, butanol, ethanol, ethyl acetate, hexane, methanol, petroleum ether, and water) and a solvent-acidic hydrolysis system. The phenolic content profile of PBB samples was determined using high-performance liquid chromatography with diode-array detection, and total flavonoid content, antioxidant capacity, and total phenolic content were determined. Chitosan-polyvinyl alcohol (CS-PVA) films loaded with polysaccharides and containing methanolic extract were developed. The physical, chemical, and mechanical properties of the films were characterized. It is known that the thickness of the films determines the mechanical properties required to maintain the integrity of the packaging during storage and transport. From the results of the study, it was concluded that the elongation at break value was higher in CS-PVA-PBB-M films (111.08% ± 10.46%), Young's modulus (31.74 ± 21.37 N/mm2), and tensile strength (3.01 ± 0.50 N/mm2) values were higher in CS-PVA films. In this case, it was concluded that adding proanthocyanidin to edible films gives flexibility to the films.
Collapse
Affiliation(s)
- Saliha Şahin
- Department of Chemistry, Faculty of Science and Arts, Bursa Uludag University, Bursa, Türkiye
| | - Serenay Eyüboğlu
- Department of Chemistry, Faculty of Science and Arts, Bursa Uludag University, Bursa, Türkiye
| | - Büşra Karkar
- Department of Chemistry, Faculty of Science and Arts, Bursa Uludag University, Bursa, Türkiye
| | - Gül Dinç Ata
- Department of Restorative Dentistry, Section of Clinical Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Türkiye
| |
Collapse
|
5
|
Characterization of carotenoid profile and α-tocopherol content in Andean bee pollen influenced by harvest time and particle size. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Lawag IL, Yoo O, Lim LY, Hammer K, Locher C. Optimisation of Bee Pollen Extraction to Maximise Extractable Antioxidant Constituents. Antioxidants (Basel) 2021; 10:1113. [PMID: 34356345 PMCID: PMC8301099 DOI: 10.3390/antiox10071113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/14/2023] Open
Abstract
This paper presents the findings of a comprehensive review on common bee pollen processing methods which can impact extraction efficiency and lead to differences in measured total phenolic content (TPC) and radical scavenging activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) data. This hampers the comparative analysis of bee pollen from different floral sources and geographical locations. Based on the review, an in-depth investigation was carried out to identify the most efficient process to maximise the extraction of components for measurement of TPC, DPPH and FRAP antioxidant activity for two bee pollen samples from western Australia (Jarrah and Marri pollen). Optimisation by Design of Experiment with Multilevel Factorial Analysis (Categorical) modelling was performed. The independent variables included pollen pulverisation, the extraction solvent (70% aqueous ethanol, ethanol, methanol and water) and the extraction process (agitation, maceration, reflux and sonication). The data demonstrate that non-pulverised bee pollen extracted with 70% aqueous ethanol using the agitation extraction method constitute the optimal conditions to maximise the extraction of phenolics and antioxidant principles in these bee pollen samples.
Collapse
Affiliation(s)
- Ivan Lozada Lawag
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Agriculture North M085, Perth, WA 6009, Australia; (I.L.L.); (K.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Curnow Building M315, Perth, WA 6009, Australia; (O.Y.); (L.Y.L.)
| | - Okhee Yoo
- Division of Pharmacy, School of Allied Health, University of Western Australia, Curnow Building M315, Perth, WA 6009, Australia; (O.Y.); (L.Y.L.)
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Curnow Building M315, Perth, WA 6009, Australia; (O.Y.); (L.Y.L.)
| | - Katherine Hammer
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Agriculture North M085, Perth, WA 6009, Australia; (I.L.L.); (K.H.)
- M Block QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Monash Ave, Perth, WA 6009, Australia
| | - Cornelia Locher
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Agriculture North M085, Perth, WA 6009, Australia; (I.L.L.); (K.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Curnow Building M315, Perth, WA 6009, Australia; (O.Y.); (L.Y.L.)
| |
Collapse
|
7
|
Alzahrani AM, Rajendran P. Pinocembrin attenuates benzo(a)pyrene-induced CYP1A1 expression through multiple pathways: An in vitro and in vivo study. J Biochem Mol Toxicol 2021; 35:e22695. [PMID: 33393179 DOI: 10.1002/jbt.22695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022]
Abstract
Benzo(a)pyrene [B(a)P], which is a carcinogen, is a substance most typically known in cigarette smoke and considered as an important intermediary of lung cancer. The enzyme CYP1A1 is crucial for the metabolic conversion of B(a)P into the intermediates that induce carcinogenesis. Stimulation of the aryl hydrocarbon receptor, which is regulated by B(a)P, is thought to induce numerous signaling cascades. Interruption in the mitogen-activated protein kinase (MAPK) pathway causes changes in cellular processes and may alter the AhR pathway. The aim of this investigation is to examine the potential ability of a flavonoid pinocembrin (PCB) to alleviate B(a)P toxicity and analyze the underlying molecular mechanisms. We found that PCB inhibited DNA adduct formation by attenuating CYP1A1 expression through the suppression of the AhR/Src/ERK pathways. PCB mitigated the B(a)P-stimulated DNA damage, inhibited Src and ERK1/2 expression, decreased CYP1A1 expression, and reduced the B(a)P-induced stimulation of NF-κB and MAPK signaling in lung epithelial cells. Finally, the activity of CYP1A1 and Src in lung tissues from mice supplemented with PCB was noticeably decreased and lower than that in lung tissues from mice supplemented with B(a)P alone. Collectively, these data suggest that PCB may alleviate the toxic effects of PAHs, which are important environmental pollutants.
Collapse
Affiliation(s)
- Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
8
|
The botanical origin and antioxidant, anti-BACE1 and antiproliferative properties of bee pollen from different regions of South Korea. BMC Complement Med Ther 2020; 20:236. [PMID: 32711521 PMCID: PMC7382056 DOI: 10.1186/s12906-020-03023-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/09/2020] [Indexed: 01/22/2023] Open
Abstract
Background Bee pollen (BP) has been used as a traditional medicine and food diet additive due to its nutritional and biological properties. The potential biological properties of bee pollen vary greatly with the botanical and geographical origin of the pollen grains. This study was conducted to characterize the botanical origin and assess the antioxidant effects of ethanol extracts of 18 different bee pollen (EBP) samples from 16 locations in South Korea and their inhibitory activities on human β-amyloid precursor cleavage enzyme (BACE1), acetylcholinesterase (AChE), human intestinal bacteria, and 5 cancer cell lines. Methods The botanical origin and classification of each BP sample was evaluated using palynological analysis by observing microscope slides. We measured the biological properties, including antioxidant capacity, inhibitory activities against human BACE1, and AChE, and antiproliferative activities toward five cancer cell lines, of the 18 EBPs. In addition, the growth inhibitory activities on four harmful intestinal bacteria, six lactic acid-producing bacteria, two nonpathogenic bacteria, and an acidulating bacterium were also assessed. Results Four samples (BP3, BP4, BP13 and BP15) were found to be monofloral and presented four dominant pollen types: Quercus palustris, Actinidia arguta, Robinia pseudoacacia, and Amygdalus persica. One sample (BP12) was found to be bifloral, and the remaining samples were considered to be heterofloral. Sixteen samples showed potent antioxidant activities with EC50 from 292.0 to 673.9 μg mL− 1. Fourteen samples presented potent inhibitory activity against human BACE1 with EC50 from 236.0 to 881.1 μg mL− 1. All samples showed antiproliferative activity toward the cancer cell lines PC-3, MCF-7, A549, NCI-H727 and AGS with IC50 from 2.7 to 14.4 mg mL− 1, 0.9 to 12.7 mg mL− 1, 5.0 to > 25 mg mL− 1, 2.7 to 17.7 mg mL− 1, and 2.4 to 8.7 mg mL− 1, respectively. In addition, total phenol and flavonoid contents had no direct correlation with antioxidant, anti-human BACE1, or antiproliferative activities. Conclusion Fundamentally, Korean bee pollen-derived preparations could be considered a nutritional addition to food to prevent various diseases related to free radicals, neurodegenerative problems, and cancers. The botanical and geographical origins of pollen grains could help to establish quality control standards for bee pollen consumption and industrial production.
Collapse
|
9
|
Safflospermidines from the bee pollen of Helianthus annuus L. exhibit a higher in vitro antityrosinase activity than kojic acid. Heliyon 2020; 6:e03638. [PMID: 32215336 PMCID: PMC7090343 DOI: 10.1016/j.heliyon.2020.e03638] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background Ozone deterioration in the atmosphere has become a severe problem causing overexposure of ultraviolet light, which results in humans in melanin overproduction and can lead to many diseases, such as skin cancer and melasma, as well as undesirable esthetic appearances, such as freckles and hyperpigmentation. Although many compounds inhibit melanin overproduction, some of them are cytotoxic, unstable, and can cause skin irritation. Thus, searching for new natural compounds with antityrosinase activity and less/no side effects is still required. Here, bee pollen derived from sunflower (Helianthus annuus L.) was evaluated. Materials and methods Sunflower bee pollen (SBP) was collected from Apis mellifera bees in Lopburi province, Thailand in 2017, extracted by methanol and sequentially partitioned with hexane and dichloromethane (DCM). The in vitro antityrosinase activity was evaluated using mushroom tyrosinase and the half maximal inhibitory concentration (IC50) is reported. The antioxidation activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and reported as the half maximal effective concentration. Two pure compounds with antityrosinase activity were isolated by silica gel 60 column chromatography (SG60CC) and high performance liquid chromatography (HPLC), and their chemical structure deduced by Nuclear Magnetic Resonance (NMR) analysis. Results The DCM partitioned extract of SBP (DCMSBP) had an antityrosinase activity (IC50, 159.4 μg/mL) and was fractionated by SG60CC, providing five fractions (DCMSBP1-5). The DCMSBP5 fraction was the most active (IC50 = 18.8 μg/mL) and further fractionation by HPLC gave two active fractions, revealed by NMR analysis to be safflospermidine A and B. Interestingly, both safflospermidine A and B had a higher antityrosinase activity (IC50 of 13.8 and 31.8 μM, respectively) than kojic acid (IC50 of 44.0 μM). However, fraction DCMSBP5 had no significant antioxidation activity, while fractions DCMSBP1-4 showed a lower antioxidation activity than ascorbic acid. Conclusion Safflospermidine A and B are potential natural tyrosinase inhibitors.
Collapse
|