1
|
Li Y, Wang Z, Wu J, Zheng J, Liu F, Ou J, Huang C, Ou S. Catalytic elevation effect of methylglyoxal on invertase and characterization of MGO modification products. Food Chem 2024; 460:140749. [PMID: 39142204 DOI: 10.1016/j.foodchem.2024.140749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Reactive carbonyl species can modify digestive enzymes upon intake due to their electrophilic nature. This study evaluated the effects of methylglyoxal (MGO), glyoxal, acrolein, and formaldehyde on invertase, an enzyme presents in digestive tract. Unexpectedly, MGO enhanced, rather than inhibited, invertase activity. Moreover, MGO counteracted the inhibitory effects of the other three carbonyls on invertase activity. Kinetic analyses revealed that 150 mmolLexp.-1 MGO resulted in a 2-fold increase in the Km and a 3.3-fold increase in Vmax, indicating that MGO increased the turnover rate of sucrose while reducing the substrate binding affinity of invertase. Additionally, MGO induced dynamic quenching of fluorescence, reduced free amino groups, increased hydrophobicity, the content of Amadori products, fluorescent and nonfluorescent AGEs, and amyloid fibrils of invertase. The specific modifications responsible for the elevated activity of MGO on invertase require further investigation.
Collapse
Affiliation(s)
- Yixin Li
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Zitong Wang
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Jiaqi Wu
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Fu Liu
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China.
| | - Shiyi Ou
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China.
| |
Collapse
|
2
|
Zhang R, Mu Z, Xu H, Yang N, Bilawal A, Jiang Z, Hou J. Insight into Sequential Extrusion and Cysteine Treatment for Improving Rheological Characteristics and In Vitro Digestibility of Whey Protein Isolate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39535281 DOI: 10.1021/acs.jafc.4c07574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The effects of sequential cold extrusion and cysteine (Cys) treatment on the rheological characteristics and in vitro digestibility of whey protein isolate (WPI) were researched in this work. Cold extrusion and Cys treatment increased the apparent viscosity, shear stress, Péclet number, and viscoelasticity of WPI. Furthermore, the emulsifying activity index enhanced in the order of WPI, Cys-treated WPI (Cys-WPI), cold-extruded WPI (CWPI), and extrusion-Cys treated WPI (Cys-CWPI). The emulsion stability index of Cys-CWPI was increased by 29.69% higher than that of WPI. Besides, the α-glucosidase inhibitory rate and xanthine oxidase inhibitory activity in the digests of Cys-CWPI were markedly increased compared with digests of WPI. The synergism of cold extrusion and Cys provides an effective approach for the application of whey protein-based thickeners and emulsifiers; meanwhile, its digestive products may assist in the development of hypoglycemic and uric acid-lowering foods.
Collapse
Affiliation(s)
- Ruyi Zhang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhishen Mu
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - HeYang Xu
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Nan Yang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Akhunzada Bilawal
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| |
Collapse
|
3
|
Yao W, Hao X, Hu Z, Lian Z, Cao Y, Liu R, Niu X, Xu J, Zhu Q. Mitigation of malondialdehyde-induced protein lipoxidation by epicatechin in whey protein isolate. Food Chem 2024; 456:139954. [PMID: 38852459 DOI: 10.1016/j.foodchem.2024.139954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/12/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Malondialdehyde (MDA) can induce lipoxidation in whey protein isolate (WPI). The physicochemical changes in this reaction with or without the presence of a phenolic compound epicatechin (EC) were characterized in this study. Results suggested the content of MDA was significantly reduced during co-incubation of MDA and EC. The addition of EC dose-dependently alleviated MDA-induced protein carbonylation, Schiff base formation and loss of tryptophan fluorescence. The interruption of MDA-binding to WPI was directly visualized by immunoblotting analysis. Observation of the surface microstructure of WPI showed that MDA-induced protein aggregation was partially restored by EC. Meanwhile, EC was found to promote loss of both protein sulfhydryls and surface hydrophobicity due to possible phenol-protein interactions. These observations suggested the potential of EC in the relief of MDA-mediated protein lipoxidation.
Collapse
Affiliation(s)
- Wenhua Yao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xingya Hao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhangjie Hu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenghao Lian
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Cao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Rong Liu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Niu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- Jiaxing Key Laboratory for Research and Application of Green and Low-carbon Advanced Materials, School of Advanced Materials & Engineering, Jiaxing Nanhu University, 572 South Yuexiu Road, Jiaxing 314001, China.
| | - Qin Zhu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
4
|
Chen J, Jin J, Liu Y, Zhao M, Qi Z, Shi W, Li Y, Lu S, Dong J, Wang Q. Assessing the structural and foaming property changes in egg yolk proteins due to malondialdehyde: Experimental and molecular docking studies. Food Chem 2024; 452:139529. [PMID: 38703740 DOI: 10.1016/j.foodchem.2024.139529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
This study evaluated the effects of varying levels of malondialdehyde (MDA) on the structural and foaming properties of the egg yolk proteins (EYPs), and the interaction between them was explored by molecular docking. The results showed that oxidative modification due to MDA increased the carbonyl content of EYPs by 4.49 times. Simultaneously, the total sulfhydryl content was reduced by 21.47%, and the solubility of EYPs was significantly decreased (p < 0.05). Continuous oxidation disorders the previously ordered structure of EYPs. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that some proteins underwent crosslinking and aggregation with increased MDA oxidation, aligning with changes in particle size and zeta-potential. Moderate oxidation (<1 mmol/L) enhanced the foaming capacity and foam stability of EYPs. Additionally, molecular docking results uncovered favorable interactions between MDA and specific EYPs, primarily through hydrogen bonding. This research offers valuable insights into managing the functional and quality changes of yolk products during processing.
Collapse
Affiliation(s)
- Jingya Chen
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jiaxin Jin
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yu Liu
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Mengbin Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zeliang Qi
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenjing Shi
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yangyang Li
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Shiling Lu
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qingling Wang
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
5
|
Bao M, Jia X, Cheng Y, Zheng J, Liu Z, Lü X, Shan Y. Structure and in vitro digestion characteristics of skim goat milk protein during processing: effects of fat separation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6521-6530. [PMID: 37226631 DOI: 10.1002/jsfa.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/25/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Although nonfat milk has been used worldwide in the industrial dairy process, little is known about the effects of fat separation during the manufacturing process on skim milk's structural and digestive properties. This study investigated the effects of the manufacturing process on the structure and in vitro digestion properties of skim goat milk, particularly emphasizing fat separation. RESULTS Changes in the surface charge and hydrophobicity of milk proteins caused by fat separation resulted in oxidation and aggregation in the subsequent homogenization, heat and spray-drying processing, which affected its digestibility. Compared with separation by dish separator (DS), skim milk after tubular centrifugal separation (CS) showed a higher initial and final digestibility. The CS samples also had a lower surface hydrophobicity level and higher free sulfhydryl content, ζ-potential, and average particle size (P < 0.05). Goat milk protein after CS was more readily oxidized and aggregated during the subsequent homogenization and heat treatment, as evidenced by the higher carbonyl content and particle size. Centrifugal separation also converted more β-sheets to α-helices, thus promoting the aggregation of oxidized skim milk protein. CONCLUSION The skim milk after CS and DS demonstrated different structural and digestive properties. Skim goat milk products after CS were more susceptible to oxidant-induced protein structural changes, resulting in higher protein digestibility. These findings provide insights into the mechanism involved in the control of gastric digestion of skim milk during manufacturing process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miaomiao Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Xuyu Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Yujia Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Jiaqi Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Zhendong Liu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling, PR China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling, PR China
| |
Collapse
|
6
|
Lian Z, Han J, Cao Y, Yao W, Niu X, Xu M, Xu J, Zhu Q. Epicatechin Inhibited Lipid Oxidation and Protein Lipoxidation in a Fish Oil-Fortified Dairy Mimicking System. Foods 2023; 12:foods12071559. [PMID: 37048380 PMCID: PMC10094342 DOI: 10.3390/foods12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
In this study, a typical tea polyphenol epicatechin (EC) was investigated for its impact on the oxidative stability of whey protein isolate (WPI) in a fish oil-fortified emulsion. The oil-in-water emulsion system consisted of fish oil (1%, w/w), WPI (6 mg/mL), and EC (0.1, 1, and 2 mM), and the oxidation reaction was catalyzed by Fenton's reagent at 25 °C for 24 h. The results showed EC exhibited a dose-dependent activity in the reduction of lipid oxidation (TBARS) and protein carbonylation. A Western blot analysis demonstrated that protein lipoxidation was inhibited by EC via interrupting the covalent binding of lipid secondary oxidation products, MDA, onto proteins. In addition, protein lipoxidation induced a loss of tryptophan fluorescence, and protein hydrolysis was partially recovered by EC. The findings of this study provide an in-depth understanding of the performance of phenolic antioxidants in relieving lipid oxidation and subsequent protein lipoxidation in oil-containing dairy products.
Collapse
Affiliation(s)
- Zhenghao Lian
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiahui Han
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Cao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenhua Yao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Niu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingfeng Xu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- Jiaxing Key Laboratory of Preparation and Application of Advanced Materials for Energy Conservation and Emission Reduction, School of Advanced Materials & Engineering, Jiaxing Nanhu University, 572 South Yuexiu Road, Jiaxing 314001, China
| | - Qin Zhu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Liao Y, Sun Y, Peng X, Qi B, Li Y. Effects of tannic acid on the physical stability, interfacial properties, and protein/lipid co-oxidation characteristics of oil body emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Markers and Mechanisms of Deterioration Reactions in Dairy Products. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-023-09331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Li F, Wu X, Liang Y, Wu W. Potential implications of oxidative modification on dietary protein nutritional value: A review. Compr Rev Food Sci Food Saf 2023; 22:714-751. [PMID: 36527316 DOI: 10.1111/1541-4337.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
During food processing and storage, proteins are sensitive to oxidative modification, changing the structural characteristics and functional properties. Recently, the impact of dietary protein oxidation on body health has drawn increasing attention. However, few reviews summarized and highlighted the impact of oxidative modification on the nutritional value of dietary proteins and related mechanisms. Therefore, this review seeks to give an updated discussion of the effects of oxidative modification on the structural characteristics and nutritional value of dietary proteins, and elucidate the interaction with gut microbiota, intestinal tissues, and organs. Additionally, the specific mechanisms related to pathological conditions are also characterized. Dietary protein oxidation during food processing and storage change protein structure, which further influences the in vitro digestion properties of proteins. In vivo research demonstrates that oxidized dietary proteins threaten body health via complicated pathways and affect the intestinal microenvironment via gut microbiota, metabolites, and intestinal morphology. This review highlights the influence of oxidative modification on the nutritional value of dietary proteins based on organs and the intestinal tract, and illustrates the necessity of appropriate experimental design for comprehensively exploring the health consequences of oxidized dietary proteins.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| |
Collapse
|
10
|
Renzone G, Arena S, Scaloni A. Cross-linking reactions in food proteins and proteomic approaches for their detection. MASS SPECTROMETRY REVIEWS 2022; 41:861-898. [PMID: 34250627 DOI: 10.1002/mas.21717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Various protein cross-linking reactions leading to molecular polymerization and covalent aggregates have been described in processed foods. They are an undesired side effect of processes designed to reduce bacterial load, extend shelf life, and modify technological properties, as well as being an expected result of treatments designed to modify raw material texture and function. Although the formation of these products is known to affect the sensory and technological properties of foods, the corresponding cross-linking reactions and resulting protein polymers have not yet undergone detailed molecular characterization. This is essential for describing how their generation can be related to food processing conditions and quality parameters. Due to the complex structure of cross-linked species, bottom-up proteomic procedures developed to characterize various amino acid modifications associated with food processing conditions currently offer a limited molecular description of bridged peptide structures. Recent progress in cross-linking mass spectrometry for the topological characterization of protein complexes has facilitated the development of various proteomic methods and bioinformatic tools for unveiling bridged species, which can now also be used for the detailed molecular characterization of polymeric cross-linked products in processed foods. We here examine their benefits and limitations in terms of evaluating cross-linked food proteins and propose future scenarios for application in foodomics. They offer potential for understanding the protein cross-linking formation mechanisms in processed foods, and how the inherent beneficial properties of treated foodstuffs can be preserved or enhanced.
Collapse
Affiliation(s)
- Giovanni Renzone
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Simona Arena
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| |
Collapse
|
11
|
Effect of Malondialdehyde on the Digestibility of Beef Myofibrillar Protein: Potential Mechanisms from Structure to Modification Site. Foods 2022; 11:foods11152176. [PMID: 35892761 PMCID: PMC9330876 DOI: 10.3390/foods11152176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lipid oxidation and protein oxidation occur side by side in meat. Here, the effect of malondialdehyde (MDA), the major product of lipid oxidation, on the digestibility of beef myofibrillar proteins (MP) was studied. MP samples were incubated with 0, 0.1, 0.3, 0.5, and 0.7 mM MDA at 4 °C for 12 h and then subjected to in vitro gastrointestinal digestion. The result showed that MDA remarkably reduced the digestibility of MP (p < 0.05). MDA treatments significantly increased carbonyl and Schiff base contents in MP (p < 0.05). The microstructure observed by atomic force microscopy showed that MDA treatments resulted in the aggregation of MP. Non-reducing and reducing electrophoresis suggested the aggregation was mainly caused by covalent bonds including disulfide bond and carbonyl−amine bond. Proteomics analysis proved that the myosin tail was the main target of MDA attack, meanwhile, lysine residues were the major modification sites. Taken together, the above results imply that MDA induces protein oxidation, aggregation, and blockage of hydrolysis sites, consequently leading to the decrease in both gastric and gastrointestinal digestibility of MP.
Collapse
|
12
|
Xin L, Zhang Y, Duan W, Ai M, Song H, Huang Q, Lu J. Effect of malondialdehyde oxidation on structure and physicochemical properties of amandin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Luo Xin
- Production and Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang Xinjiang 843300 China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
- School of Public Health The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang 550000 China
| | - Yufeng Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Wenshan Duan
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Mingyan Ai
- Production and Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang Xinjiang 843300 China
| | - Hongbo Song
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Qun Huang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
- School of Public Health The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang 550000 China
| | - Jiankang Lu
- Production and Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang Xinjiang 843300 China
| |
Collapse
|
13
|
Li W, Wu Y, Li C, Zhu L. Effect of (E,E)‐2,4‐decadienal on Side‐Chain Modification, Conformation Change, and Aggregation of Bovine Serum Albumin. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenjuan Li
- College of Life Science Anqing Normal University Anqing Anhui 246133 P. R. China
- School of Food Engineering Anhui Science and Technology University Chuzhou Anhui 233100 P. R. China
- Key Laboratory of Biodiversity and Ecology Conservation of Southwest Anhui Anqing Anhui 246133 P. R. China
| | - Yan Wu
- College of Life Science Anqing Normal University Anqing Anhui 246133 P. R. China
- Key Laboratory of Biodiversity and Ecology Conservation of Southwest Anhui Anqing Anhui 246133 P. R. China
| | - Conghu Li
- College of Life Science Anqing Normal University Anqing Anhui 246133 P. R. China
- Key Laboratory of Biodiversity and Ecology Conservation of Southwest Anhui Anqing Anhui 246133 P. R. China
| | - Liangliang Zhu
- College of Life Science Anqing Normal University Anqing Anhui 246133 P. R. China
- Key Laboratory of Biodiversity and Ecology Conservation of Southwest Anhui Anqing Anhui 246133 P. R. China
| |
Collapse
|
14
|
Abstract
Protein oxidation is a topic of indisputable scientific interest given the impact of oxidized proteins on food quality and safety. Carbonylation is regarded as one of the most notable post-translational modifications in proteins and yet, this reaction and its consequences are poorly understood. From a mechanistic perspective, primary protein carbonyls (i.e. α-aminoadipic and γ-glutamic semialdehydes) have been linked to radical-mediated oxidative stress, but recent studies emphasize the role alternative carbonylation pathways linked to the Maillard reaction. Secondary protein carbonyls are introduced in proteins via covalent linkage of lipid carbonyls (i.e. protein-bound malondialdehyde). The high reactivity of protein carbonyls in foods and other biological systems indicates the intricate chemistry of these species and urges further research to provide insight into these molecular mechanisms and pathways. In particular, protein carbonyls are involved in the formation of aberrant and dysfunctional protein aggregates, undergo further oxidation to yield carboxylic acids of biological relevance and establish interactions with other biomolecules such as oxidizing lipids and phytochemicals. From a methodological perspective, the routine dinitrophenylhydrazine (DNPH) method is criticized not only for the lack of accuracy and consistency but also authors typically perform a poor interpretation of DNPH results, which leads to misleading conclusions. From a practical perspective, the biological relevance of protein carbonyls in the field of food science and nutrition is still a topic of debate. Though the implication of carbonylation on impaired protein functionality and poor protein digestibility is generally recognized, the underlying mechanism of such connections requires further clarification. From a medical perspective, protein carbonyls are highlighted as markers of protein oxidation, oxidative stress and disease. Yet, the specific role of specific protein carbonyls in the onset of particular biological impairments needs further investigations. Recent studies indicates that regardless of the origin (in vivo or dietary) protein carbonyls may act as signalling molecules which activate not only the endogenous antioxidant defences but also implicate the immune system. The present paper concisely reviews the most recent advances in this topic to identify, when applicable, potential fields of interest for future studies.
Collapse
|
15
|
Xu M, Lian Z, Chen X, Yao X, Lu C, Niu X, Xu M, Zhu Q. Effects of resveratrol on lipid and protein co-oxidation in fish oil-enriched whey protein isolate emulsions. Food Chem 2021; 365:130525. [PMID: 34265642 DOI: 10.1016/j.foodchem.2021.130525] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/07/2021] [Accepted: 07/02/2021] [Indexed: 12/30/2022]
Abstract
In this study, the impact of resveratrol (RES) on co-oxidation of lipid and protein in a fish oil-fortified whey protein isolate (WPI) emulsion was investigated. Oil-in-water (O/W) emulsions containing 1% fish oil, 6 mg/mL of WPI and RES (0.08 ~ 2 mM) were oxidatively stressed using a Fenton system at 25 °C for 24 h. The incorporation of RES significantly suppressed lipid oxidation (TBARS) and protein carbonylation. Oxidation-induced decrease on protein sulfhydryl content and surface hydrophobicity were partially attenuated by RES, but protein tryptophan fluorescence was further decreased with the increased concentration of RES. Visualization of protein patterns and MDA-bound protein suggested that RES is capable of inhibiting protein modification induced by secondary products of lipid oxidation. Significant decrease in protein digestibility under oxidizing condition was also mitigated by RES. Our study contributes to the exploration of complicated interactions between oxidized lipids and proteins when phenolic compounds are present.
Collapse
Affiliation(s)
- Mingfeng Xu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Zhenghao Lian
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xiaoqiao Chen
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xing Yao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Cairu Lu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xiaoying Niu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Maojun Xu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Qin Zhu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
16
|
Zhang Y, Dong L, Zhang J, Shi J, Wang Y, Wang S. Adverse Effects of Thermal Food Processing on the Structural, Nutritional, and Biological Properties of Proteins. Annu Rev Food Sci Technol 2021; 12:259-286. [PMID: 33770470 DOI: 10.1146/annurev-food-062320-012215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thermal processing is one of the most important processing methods in the food industry. However, many studies have revealed that thermal processing can have detrimental effects on the nutritional and functional properties of foods because of the complex interactions among food components. Proteins are essential nutrients for humans, and changes in the structure and nutritional properties of proteins can substantially impact the biological effects of foods. This review focuses on the interactions among proteins, sugars, and lipids during thermal food processing and the effects of these interactions on the structure, nutritional value, and biological effects of proteins. In particular, the negative effects of modified proteins on human health and strategies for mitigating these detrimental effects from two perspectives, namely, reducing the formation of modified proteins during thermal processing and dietary intervention in vivo, are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Jinhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Jiaqi Shi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Yaya Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| |
Collapse
|
17
|
Vandemoortele A, Babat P, Yakubu M, De Meulenaer B. Behavior of Malondialdehyde and Its Whey Protein Adducts during In Vitro Simulated Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11846-11854. [PMID: 32985186 DOI: 10.1021/acs.jafc.0c03947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The behavior of malondialdehyde and its whey protein adducts in aqueous buffer and fully hydrogenated coconut oil-in-water emulsions stabilized by Tween 20 or by whey protein was studied during in vitro gastrointestinal digestion. The malondialdehyde levels during in vitro digestion depended upon the kind of sample, the location of the whey protein, and the extent of adduct formation before digestion. During gastric digestion, degradation of acid-labile malondialdehyde-whey protein adducts as well as formation of new malondialdehyde adducts with hydrolyzed whey protein was suggested to occur, in addition to the earlier described equilibria with respect to the aldol self-condensation of malondialdehyde and its hydrolytic cleavage. After in vitro digestion, both malondialdehyde and its adducts were present in the digest with malondialdehyde recoveries varying between 55 and 86% depending upon the model system studied. To conclude, the reactivity of malondialdehyde toward (hydrolyzed) proteins does not stop at the point of ingestion.
Collapse
Affiliation(s)
- Angelique Vandemoortele
- NutriFOODchem Unit, Department of Food Technology, Safety and Health (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Pinar Babat
- NutriFOODchem Unit, Department of Food Technology, Safety and Health (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Mariam Yakubu
- NutriFOODchem Unit, Department of Food Technology, Safety and Health (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Bruno De Meulenaer
- NutriFOODchem Unit, Department of Food Technology, Safety and Health (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|