1
|
Wang C, Chen J, Tian W, Han Y, Xu X, Ren T, Tian C, Chen C. Natto: A medicinal and edible food with health function. CHINESE HERBAL MEDICINES 2023; 15:349-359. [PMID: 37538862 PMCID: PMC10394349 DOI: 10.1016/j.chmed.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/29/2022] [Accepted: 02/28/2023] [Indexed: 08/05/2023] Open
Abstract
Natto is a soybean product fermented by natto bacteria. It is rich in a variety of amino acids, vitamins, proteins and active enzymes. It has a number of biological activities, such as thrombolysis, prevention of osteoporosis, antibacterial, anticancer, antioxidant and so on. It is widely used in medicine, health-care food, biocatalysis and other fields. Natto is rich in many pharmacological active substances and has significant medicinal research value. This paper summarizes the pharmacological activities and applications of natto in and outside China, so as to provide references for further research and development of natto.
Collapse
Affiliation(s)
- Chunfang Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Jinpeng Chen
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Wenguo Tian
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Yanqi Han
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Xu Xu
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Tao Ren
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Chengwang Tian
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Changqing Chen
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| |
Collapse
|
2
|
Sheng Y, Yang J, Wang C, Sun X, Yan L. Microbial nattokinase: from synthesis to potential application. Food Funct 2023; 14:2568-2585. [PMID: 36857725 DOI: 10.1039/d2fo03389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nattokinase (NK) is an alkaline serine protease with strong thrombolytic activity produced by Bacillus spp. or Pseudomonas spp. It is a potential therapeutic agent for thrombotic diseases because of its safety, economy, and lack of side effects. Herein, a comprehensive summary and analysis of the reports surrounding NK were presented, and the physical-chemical properties and producers of NK were first described. The process and mechanism of NK synthesis were summarized, but these are vague and not specific enough. Further results may be achieved if detection techniques such as multi-omics are used to explore the process of NK synthesis. The purification of NK has problems such as a complicated operation and low recovery rate, which were found when summarizing the techniques to improve the quality of finished products. If multiple simple and efficient precipitation methods and purification materials are combined to purify NK, it may be possible to solve the current challenges. Additionally, the application potential of NK in biomedicine was reviewed, but functional foods with NK are challenging for acceptance in daily life due to their unpleasant odor. Accordingly, multi-strain combination fermentation or food flavoring agents can improve the odor of fermented foods and increase people's acceptance of them. Finally, the possible future directions focused on NK studies were proposed and provided suggestions for subsequent researchers.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Jiani Yang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Xindi Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
3
|
Elbakry MMM, Mansour SZ, Helal H, Ahmed ESA. Nattokinase attenuates bisphenol A or gamma irradiation-mediated hepatic and neural toxicity by activation of Nrf2 and suppression of inflammatory mediators in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75086-75100. [PMID: 35648353 PMCID: PMC9550699 DOI: 10.1007/s11356-022-21126-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 05/05/2023]
Abstract
Nattokinase (NK), a protease enzyme produced by Bacillus subtilis, has various biological effects such as lipid-lowering activity, antihypertensive, antiplatelet/anticoagulant, and neuroprotective effects. Exposure to environmental toxicants such as bisphenol A (BPA) or γ-radiation (IR) causes multi-organ toxicity through several mechanisms such as impairment of oxidative status, signaling pathways, and hepatic and neuronal functions as well as disruption of the inflammatory responses. Therefore, this study is designed to evaluate the ameliorative effect of NK against BPA- or IR-induced liver and brain damage in rats. Serum ammonia level and liver function tests were measured in addition to brain oxidative stress markers, amyloid-beta, tau protein, and neuroinflammatory mediators. Moreover, relative quantification of brain nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) genes, as well as apoptotic markers in brain tissue, was carried out in addition to histopathological examination. The results showed that NK improved liver functions, impaired oxidative status, the cholinergic deficits, and minified the misfolded proteins aggregates. Furthermore, NK alleviated the neuroinflammation via modulating NF-κB/Nrf2/HO-1 pathway and glial cell activation in addition to their antiapoptotic effect. Collectively, the current results revealed the protective effect of NK against hepatic and neurotoxicity derived from BPA or IR.
Collapse
Affiliation(s)
- Mustafa M M Elbakry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt
| | - Hamed Helal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| |
Collapse
|
4
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
5
|
Parveen A, Devika R. Fibrinolytic Enzyme - An Overview. Curr Pharm Biotechnol 2022; 23:1336-1345. [PMID: 34983344 DOI: 10.2174/1389201023666220104143113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases, like coronary heart disease or artery disorders (arteriosclerosis, including artery solidification), heart failure (myocardial infarction), arrhythmias, congestive heart condition, stroke, elevated vital signs (hypertension), rheumatic heart disorder, and other circulatory system dysfunctions are the most common causes of death worldwide. Cardiovascular disorders are treated with stenting, coronary bypass surgery grafting, anticoagulants, antiplatelet agents, and other pharmacological and surgical procedures; however, these have limitations due to their adverse effects. Fibrinolytic agents degrade fibrin through enzymatic and biochemical processes. There are various enzymes that are currently used as a treatment for CVDs, like Streptokinase, Nattokinase, Staphylokinase, Urokinase, etc. These enzymes are derived from various sources like bacteria, fungi, algae, marine organisms, plants, snakes, and other organisms. This review deals with the fibrinolytic enzymes, their mechanisms, sources, and their therapeutic potential.
Collapse
Affiliation(s)
- Parveen A
- Department of Biotechnology, Biotechnology, Aarupadai Institute of Technology, Vinayaka Missions University, Chennai, India
| | - Devika R
- Department of Biotechnology, Biotechnology, Aarupadai Institute of Technology, Vinayaka Missions University, Chennai, India
| |
Collapse
|
6
|
Gasmi A, Bjørklund G, Peana M, Mujawdiya PK, Pivina L, Ongenae A, Piscopo S, Severin B. Phosphocalcic metabolism and the role of vitamin D, vitamin K2, and nattokinase supplementation. Crit Rev Food Sci Nutr 2021; 62:7062-7071. [PMID: 33966563 DOI: 10.1080/10408398.2021.1910481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Calcium is involved in bone metabolism, regulation of nerve signaling, and release of neurotransmitters. Phosphorus is a structural component of ATP, participates in metabolic energy regulation, and ensures stability to biological membranes and cells. Vitamin D and vitamin K are important for intestinal absorption and renal excretion of calcium and phosphorus. Vitamin D plays a regulatory role in bone formation, carbohydrate metabolism, immune responses, and cardiovascular regulation. Research has linked vitamin D deficiency to the development of diabetes mellitus, hypertension, cancer, and osteoporosis. Vitamin K has been associated with a reduced risk of osteoporosis, cancer, and cardiovascular diseases (due to improved vascular elasticity). This review highlights the importance of vitamins D and K in the metabolism of calcium and phosphorus and explores various molecular mechanisms that help maintain the system's mineral homeostasis. Moreover, the paper reviews the enzyme nattokinase's role in thrombotic prevention due to its fibrinolytic activity.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan.,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Adrien Ongenae
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Salva Piscopo
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Beatrice Severin
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
7
|
Long J, Zhang X, Gao Z, Yang Y, Tian X, Lu M, He L, Li C, Zeng X. Isolation of Bacillus spp. with High Fibrinolytic Activity and Performance Evaluation in Fermented Douchi. J Food Prot 2021; 84:717-727. [PMID: 33232445 DOI: 10.4315/jfp-20-307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/23/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Fibrinolytic enzymes are effective and highly safe in treating cardiovascular and cerebrovascular diseases. Therefore, screening fibrinolytic enzyme-producing microbial strains with excellent fermentation performance is of great value to industrial applications. The fibrin plate method was used in screening strains with high yields of fibrinolytic enzymes from different fermented food products, and the screened strains were preliminarily identified using molecular biology. Then, the strains were used for solid-state fermentation of soybeans. Moreover, the fermentation product douchi was subjected to fibrinolytic activity measurement, sensory evaluation, and biogenic amine content determination. The fermentation performance of each strain was comprehensively evaluated through principal component analysis. Finally, the target strain was identified based on strain morphology, physiological and biochemical characteristics, 16S rDNA sequence, and phylogenetic analysis results. A total of 15 Bacillus species with high fibrinolysin activity were selected. Their fibrinolytic enzyme-producing activity levels were higher than 5,500 IU/g. Through molecular biology analysis, we found 4 strains of Bacillus subtilis, 10 strains of Bacillus amyloliquefaciens, and 1 strain of Bacillus velezensis. The principal component analysis results showed that SN-14 had the best fermentation performance and reduced the accumulation of histamine and total amine, the fibrinolytic activity of fermented douchi reached 5,920.5 ± 107.7 IU/g, and the sensory score was 4.6 ± 0.3 (out of 5 points). Finally, the combined results of physiological and biochemical analyses showed SN-14 was Bacillus velezensis. The high-yield fibrinolytic and excellent fermentation performance strain Bacillus velezensis SN-14 has potential industrial application. HIGHLIGHTS
Collapse
Affiliation(s)
- Jia Long
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xin Zhang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China.,College of Artificial Intelligence and Electrical Engineering, GuiZhou Institute of Technology, Guiyang 550003, People's Republic of China
| | - Zexin Gao
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Yun Yang
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xueyi Tian
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Mingyuan Lu
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|