1
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Yang P, Wang X, Wang H, Hu Y, Wen P, Tu Z. The decrease of Ara h 2 allergenicity by glycation is determined by reducing sugar chain length and isomers. Food Chem 2024; 432:137289. [PMID: 37659330 DOI: 10.1016/j.foodchem.2023.137289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
The mechanism of the effect of reducing sugar chain length and isomers on the allergenicity of Ara h 2 after glycation was investigated. Ara h 2 was more prone to glycation with ribose which had a short chain length. The glycation sites of Ara h 2 after glycation with galactose were higher than the glycation sites in galactose's isomers-Ara h 2 conjugates, which might be affected by the configuration differences at position C-4 and the small steric effects in terminal groups -CHO of galactose. Ara h 2-ribose conjugate had the lowest allergenicity, and glycation with galactose was more capable of reducing Ara h 2 allergenicity than its isomers. The results indicated that glycation with ribose caused conformational epitope destruction and linear epitope masking of Ara h 2 greatly. Furthermore, since the small steric effects of -CHO, galactose was more capable of reducing Ara h 2 allergenicity than fructose. This study will provide a theoretical basis for selecting appropriate reducing sugars and preparing hypoallergenic products containing peanuts.
Collapse
Affiliation(s)
- Ping Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xumei Wang
- College of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
3
|
Xu Y, Ahmed I, Zhao Z, Lv L. A comprehensive review on glycation and its potential application to reduce food allergenicity. Crit Rev Food Sci Nutr 2023:1-23. [PMID: 37683268 DOI: 10.1080/10408398.2023.2248510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Food allergens are a major concern for individuals who are susceptible to food allergies and may experience various health issues due to allergens in their food. Most allergenic foods are subjected to heat treatment before being consumed. However, thermal processing and prolonged storage can cause glycation reactions to occur in food. The glycation reaction is a common processing method requiring no special chemicals or equipment. It may affect the allergenicity of proteins by altering the structure of the epitope, revealing hidden epitopes, concealing linear epitopes, or creating new ones. Changes in food allergenicity following glycation processing depend on several factors, including the allergen's characteristics, processing parameters, and matrix, and are therefore hard to predict. This review examines how glycation reactions affect the allergenicity of different allergen groups in allergenic foods.
Collapse
Affiliation(s)
- Yue Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Qingdao, China
| | - Zhengxi Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Dasanayaka BP, Wang H, Li Z, Yu M, Ahmed AMM, Zhang Z, Lin H, Wang X. Evaluating the effects of processing on antigenicity and immunochemical detectability of fish proteins by ELISA. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Wu Y, Lu Y, Huang Y, Wang J, Li S, Xu M, Lin H, Li Z. Comparative Analysis of Glycosylation Affecting Sensitization by Regulating the Cross-Reactivity of Parvalbumins in Turbot ( Scophthalmus maximus), Conger Eel ( Conger myriaster) and Sea Bass ( Micropterus salmoides). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10611-10619. [PMID: 35952368 DOI: 10.1021/acs.jafc.2c04423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parvalbumin (PV) is the most common allergen in fish. Some patients with fish allergy are allergic to only one species of fish but are tolerant to others; however, the underlying mechanism has not been identified. This study showed that three types of glycated fishes' PV showed a similar decrease in immunoglobulin E (IgE) binding. Glycosylation could improve the simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) digestion resistance of fishes' PV. We also discovered that the cross-reactivity between eel and turbot was weaker than that of bass; glycosylation can reduce cross-reactivity between eel/bass and turbot by downregulating Th2 cytokines and upregulating Th1 cytokines as well as downregulating the expression of G-T PV, G-E PV, G-B PV of IL-4 (94.31 ± 3.16, 73.26 ± 0.91, 94.95 ± 3.03 ng/mL), and IL-13 (38.84 ± 0.75, 33.77 ± 0.71, 36.51 ± 0.50 ng/mL) and upregulating the expression of IFN-γ (318.01 ± 3.46, 387.15 ± 3.30, 318.01 ± 4.21 ng/mL) compared with T PV, respectively. This study showed that glycosylation affected sensitization by regulating the cross-reactivity of parvalbumins.
Collapse
Affiliation(s)
- Yeting Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yuhao Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Junyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Siyue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Mengyao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| |
Collapse
|
6
|
Yang W, Duan W, Li Q, Duan D, Wang Q. Phosphorylation of ovalbumin after pulsed electric fields pretreatment: Effects on conformation and immunoglobulin G/immunoglobulin E-binding ability. Front Nutr 2022; 9:932428. [PMID: 36034920 PMCID: PMC9412950 DOI: 10.3389/fnut.2022.932428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
Ovalbumin (OVA) is one of major allergens of hen egg white with excellent nutritional and processing properties. Previous research exhibits that pulsed electric field (PEF) treatment could partially unfold OVA. This may contribute to the improvement of OVA phosphorylation. In this study, the effect of PEF pretreatment combined with phosphorylation on the structure and immunoglobulin (Ig) G/IgE-binding ability of OVA was investigated. The structural changes were measured by circular dichroism (CD), ultraviolet absorption, and fluorescence spectroscopy. The IgG- and IgE-binding abilities were determined by inhibition enzyme-linked immunosorbent assay (ELISA) using rabbit polyclonal antibodies and egg-allergy patients’ sera, respectively. The results showed that PEF pretreatment combined with phosphorylation markedly reduced the IgG- and IgE-binding abilities. It was attributed to the changes in secondary and tertiary structure, which was reflected in the increase of ultraviolet (UV) absorbance, α-helix content, and the increase the molecular weight. Moreover, it suggested PEF pretreatment improved the phosphorylation of OVA and enhanced the reduction of IgG/IgE-binding capacity of phosphorylated OVA. Therefore, PEF pretreatment combined with phosphorylation has the potential for developing a method for OVA desensitization.
Collapse
Affiliation(s)
- Wenhua Yang
- School of Chemical and Biological Engineering, Yichun University, Yichun, China.,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenjing Duan
- School of Chemical and Biological Engineering, Yichun University, Yichun, China
| | - Qiuhong Li
- School of Chemical and Biological Engineering, Yichun University, Yichun, China
| | - Dengle Duan
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
7
|
Dong X, Raghavan V. A comprehensive overview of emerging processing techniques and detection methods for seafood allergens. Compr Rev Food Sci Food Saf 2022; 21:3540-3557. [PMID: 35676763 DOI: 10.1111/1541-4337.12987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
Abstract
Seafood is rich in nutrients and plays a significant role in human health. However, seafood allergy is a worldwide health issue by inducing adverse reactions ranging from mild to life-threatening in seafood-allergic individuals. Seafood consists of fish and shellfish, with the major allergens such as parvalbumin and tropomyosin, respectively. In the food industry, effective processing techniques are applied to seafood allergens to lower the allergenicity of seafood products. Also, sensitive and rapid allergen-detection methods are developed to identify and assess allergenic ingredients at varying times. This review paper provides an overview of recent advances in processing techniques (thermal, nonthermal, combined [hybrid] treatments) and main allergen-detection methods for seafood products. The article starts with the seafood consumption and classification, proceeding with the prevalence and symptoms of seafood allergy, followed by a description of biochemical characteristics of the major seafood allergens. As the topic is multidisciplinary in scope, it is intended to provide information for further research essential for food security and safety.
Collapse
Affiliation(s)
- Xin Dong
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
8
|
Chen WM, Shao YH, Wang Z, Liu J, Tu ZC. Simulated in vitro digestion of α-lactalbumin modified by phosphorylation: Detection of digestive products and allergenicity. Food Chem 2022; 372:131308. [PMID: 34655828 DOI: 10.1016/j.foodchem.2021.131308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/04/2022]
Abstract
The effects of phosphorylation on the allergenicity of bovine α-lactalbumin (BLA) and digestive products were studied in vitro digestion. Two components with different molecular weight and conformation were obtained from natural and phosphorylated BLA. In vivo and in vitro assessment of allergenicity showed that phosphorylation prior to digestion significantly decreased the IgE/IgG binding capacity and allergic response in KU812 cells, and reduced the levels of IgG, IgE, IL-4 and histamine, with an increase in IFN-γ levels in mouse serum, depending on the changes in BLA structures, producing numerous small peptides. There were four phosphorylated sites (S22, T29, S47 and S70) in the high molecular weight components of phosphorylated BLA after digestion. These phosphorylated sites could mask the linear epitopes of digestive products, resulting in reduced allergic activity. Phosphorylation prior to digestion of dairy products can reduce the risk of anaphylaxis in patients with milk allergy to some extent.
Collapse
Affiliation(s)
- Wen-Mei Chen
- National R & D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan-Hong Shao
- National R & D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zhi Wang
- National R & D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jun Liu
- National R & D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zong-Cai Tu
- National R & D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
9
|
Maillard Reaction Induced Changes in Allergenicity of Food. Foods 2022; 11:foods11040530. [PMID: 35206007 PMCID: PMC8870895 DOI: 10.3390/foods11040530] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Food allergy is increasing in prevalence, posing aheavier social and financial burden. At present, there is still no widely accepted treatment for it. Methods to reduce or eliminate the allergenicity of trigger foods are urgently needed. Technological processing contributes to producing some hypoallergenic foods. Among the processing methods, the Maillard reaction (MR) is popular because neither special chemical materials nor sophisticated equipment is needed. MR may affect the allergenicity of proteins by disrupting the conformational epitope, disclosing the hidden epitope, masking the linear epitope, and/or forming a new epitope. Changes in the allergenicity of foods after processing are affected by various factors, such as the characteristics of the allergen, the processing parameters, and the processing matrix, and they are therefore variable and difficult to predict. This paper reviews the effects of MR on the allergenicity of each allergen group from common allergenic foods.
Collapse
|
10
|
Lv L, Ahmed I, Qu X, Ju G, Yang N, Guo Y, Li Z. Effect of the structure and potential allergenicity of glycated tropomyosin, the shrimp allergen. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liangtao Lv
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Ishfaq Ahmed
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Xin Qu
- Qingdao Municipal Center for Disease Control and Prevention 175 Shandong Road, Shibei District Qingdao Shandong Province 266033 China
| | - Guangxiu Ju
- Qingdao Municipal Center for Disease Control and Prevention 175 Shandong Road, Shibei District Qingdao Shandong Province 266033 China
| | - Ni Yang
- General Surgery Ward 1 Qingdao Eighth People's Hospital 84 Fengshan Road, Licang District Qingdao Shandong Province 266100 China
| | - Yuman Guo
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Zhenxing Li
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| |
Collapse
|
11
|
Effect of Processing on Fish Protein Antigenicity and Allergenicity. Foods 2021; 10:foods10050969. [PMID: 33925068 PMCID: PMC8145695 DOI: 10.3390/foods10050969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Fish allergy is a life-long food allergy whose prevalence is affected by many demographic factors. Currently, there is no cure for fish allergy, which can only be managed by strict avoidance of fish in the diet. According to the WHO/IUIS Allergen Nomenclature Sub-Committee, 12 fish proteins are recognized as allergens. Different processing (thermal and non-thermal) techniques are applied to fish and fishery products to reduce microorganisms, extend shelf life, and alter organoleptic/nutritional properties. In this concise review, the development of a consistent terminology for studying food protein immunogenicity, antigenicity, and allergenicity is proposed. It also summarizes that food processing may lead to a decrease, no change, or even increase in fish antigenicity and allergenicity due to the change of protein solubility, protein denaturation, and the modification of linear or conformational epitopes. Recent studies investigated the effect of processing on fish antigenicity/allergenicity and were mainly conducted on commonly consumed fish species and major fish allergens using in vitro methods. Future research areas such as novel fish species/allergens and ex vivo/in vivo evaluation methods would convey a comprehensive view of the relationship between processing and fish allergy.
Collapse
|