1
|
Su Y, Liu M, Li M, Han Z, Lü D, Zhang Y, Zhu F, Shen Z, Qian P, Tang X. Metabolomic analysis of lipid changes in Bombyx mori infected with Nosema bombycis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104750. [PMID: 37329996 DOI: 10.1016/j.dci.2023.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
The silkworm (Bombyx mori) is a model species of lepidopteran insect. Microsporidium spp. are obligate intracellular eukaryotic parasites. Infection by the microsporidian Nosema bombycis (Nb) results in an outbreak of Pébrine disease in silkworms and causes substantial losses to the sericulture industry. It has been suggested that Nb depends on nutrients from host cells for spore growth. However, little is known about changes in lipid levels after Nb infection. In this study, ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was performed to analyze the effect of Nb infection on lipid metabolism in the midgut of silkworms. A total of 1601 individual lipid molecules were detected in the midgut of silkworms, of which 15 were significantly decreased after Nb challenge. Classification, chain length, and chain saturation analysis revealed that these 15 differential lipids can be classified into different lipid subclasses, of which 13 belong to glycerol phospholipid lipids and two belong to glyceride esters. The results indicated that Nb uses the host lipids to complete its own replication, and the acquisition of host lipid subclasses is selective; not all lipid subclasses are required for microsporidium growth or proliferation. Based on lipid metabolism data, phosphatidylcholine (PC) was found to be an important nutrient for Nb replication. Diet supplementation with lecithin substantially promoted the replication of Nb. Knockdown and overexpression of the key enzyme phosphatidate phosphatase (PAP) and phosphatidylcholine (Bbc) for PC synthesis also confirmed that PC is necessary for Nb replication. Our results showed that most lipids in the host midgut decreased when silkworms were infected with Nb. Reduction of or supplementation with PC may be a strategy to suppress or promote microsporidial replication.
Collapse
Affiliation(s)
- Yaping Su
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Mengjin Liu
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Mingze Li
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Zhenghao Han
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Dingding Lü
- Zhenjiang College, Zhenjiang, 212028, Jiangsu Province, China
| | - Yiling Zhang
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Feng Zhu
- Zaozhuang University, Zaozhuang, 277160, Shandong Province, China
| | - Zhongyuan Shen
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Ping Qian
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Xudong Tang
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China.
| |
Collapse
|
2
|
McClements DJ. Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Compr Rev Food Sci Food Saf 2023; 22:3531-3559. [PMID: 37350040 DOI: 10.1111/1541-4337.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Numerous examples of next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs, are commercially available. These products are usually designed to have physicochemical properties, sensory attributes, and functional behaviors that match those of the animal-sourced products they are designed to replace. However, there has been concern about the potential negative impacts of these foods on human nutrition and health. In particular, many of these products have been criticized for being ultraprocessed foods that contain numerous ingredients and are manufactured using harsh processing operations. In this article, the concept of ultraprocessed foods is introduced and its relevance to describe the properties of next-generation plant-based foods is discussed. Most commercial plant-based meat, seafood, egg, and dairy analogs currently available do fall into this category, and so can be classified as ultraprocessed plant-based (UPB) foods. The nutrient content, digestibility, bioavailability, and gut microbiome effects of UPB foods are compared to those of animal-based foods, and the potential consequences of any differences on human health are discussed. Some commercial UPB foods would not be considered healthy based on their nutrient profiles, especially those plant-based cheeses that contain low levels of protein and high levels of fat, starch, and salt. However, it is argued that UPB foods can be designed to have good nutritional profiles and beneficial health effects. Finally, areas where further research are still needed to create a more healthy and sustainable food supply are discussed.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
McClements IF, McClements DJ. Designing healthier plant-based foods: Fortification, digestion, and bioavailability. Food Res Int 2023; 169:112853. [PMID: 37254427 DOI: 10.1016/j.foodres.2023.112853] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Many consumers are incorporating more plant-based foods into their diets as a result of concerns about the environmental, ethical, and health impacts of animal sourced foods like meat, seafood, egg, and dairy products. Foods derived from animals negatively impact the environment by increasing greenhouse gas emissions, land use, water use, pollution, deforestation, and biodiversity loss. The livestock industry confines and slaughters billions of livestock animals each year. There are concerns about the negative impacts of some animal sourced foods, such as red meat and processed meat, on human health. The livestock industry is a major user of antibiotics, which is leading to a rise in the resistance of several pathogenic microorganisms to antibiotics. It is often assumed that a plant-based diet is healthier than one containing more animal sourced foods, but this is not necessarily the case. Eating more fresh fruits, vegetables, nuts, and whole grain cereals has been linked to improved health outcomes but it is unclear whether next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs are healthier than the products they are designed to replace. Many of these new products are highly processed foods that contain high levels of saturated fat, sugar, starch, and salt, and low levels of micronutrients, nutraceuticals, and dietary fibers. Moreover, they are often rapidly digested in the gastrointestinal tract because processing disrupts plant tissues and releases the macronutrients. Consequently, it is important to formulate plant-based foods to reduce the levels of nutrients linked to adverse health effects and increase the levels linked to beneficial health effects. Moreover, it is important to design the food matrix so that the macronutrients are not digested and absorbed too quickly, but the micronutrients are highly bioavailable. In this article, we discuss how next-generation plant-based foods can be made healthier by controlling their nutrient profile, digestibility, and bioavailability.
Collapse
|
4
|
Modification of High-Density Lipoprotein Functions by Diet and Other Lifestyle Changes: A Systematic Review of Randomized Controlled Trials. J Clin Med 2021; 10:jcm10245897. [PMID: 34945193 PMCID: PMC8707678 DOI: 10.3390/jcm10245897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/01/2023] Open
Abstract
High-density lipoprotein (HDL) functional traits have emerged as relevant elements that may explain HDL antiatherogenic capacity better than HDL cholesterol levels. These properties have been improved in several lifestyle intervention trials. The aim of this systematic review is to summarize the results of such trials of the most commonly used dietary modifications (fatty acids, cholesterol, antioxidants, alcohol, and calorie restriction) and physical activity. Articles were screened from the Medline database until March 2021, and 118 randomized controlled trials were selected. Results from HDL functions and associated functional components were extracted, including cholesterol efflux capacity, cholesteryl ester transfer protein, lecithin-cholesterol acyltransferase, HDL antioxidant capacity, HDL oxidation status, paraoxonase-1 activity, HDL anti-inflammatory and endothelial protection capacity, HDL-associated phospholipase A2, HDL-associated serum amyloid A, and HDL-alpha-1-antitrypsin. In mainly short-term clinical trials, the consumption of monounsaturated and polyunsaturated fatty acids (particularly omega-3 in fish), and dietary antioxidants showed benefits to HDL functionality, especially in subjects with cardiovascular risk factors. In this regard, antioxidant-rich dietary patterns were able to improve HDL function in both healthy individuals and subjects at high cardiovascular risk. In addition, in randomized trial assays performed mainly in healthy individuals, reverse cholesterol transport with ethanol in moderate quantities enhanced HDL function. Nevertheless, the evidence summarized was of unclear quality and short-term nature and presented heterogeneity in lifestyle modifications, trial designs, and biochemical techniques for the assessment of HDL functions. Such findings should therefore be interpreted with caution. Large-scale, long-term, randomized, controlled trials in different populations and individuals with diverse pathologies are warranted.
Collapse
|