1
|
Li T, Zhang Y, Shao J, Hou R, Zhang Z, Ye C, Wang H, Zhu B, Zhang Y. Enhancement of non-covalent interaction between soy protein isolate and quercetin by sodium alginate. Food Chem 2024; 460:140422. [PMID: 39068794 DOI: 10.1016/j.foodchem.2024.140422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/16/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Effects of sodium alginate (SA) on the non-covalent interaction between soybean protein isolate (SPI) and quercetin (Que) were investigated by multispectral technology, molecular docking and dynamics simulation technology. Structural alterations of the binary complexes were observed after SA addition, characterized by a red shift of maximum fluorescence emission wavelength. The introduction of 0.1% (w/v) SA led to a reduction of 12.3% in the α-helix and β-sheet structures, accompanied by 12.6% increase in the β-turn and random coil conformations. The binding of SA to SPI provided electrostatic interactions and facilitated the subsequent binding of SPI to Que. Molecular docking confirmed that hydrophobic interactions and electrostatic interactions were also the main driving force. Molecular dynamics simulation emphasized that the ternary complexes with SA exhibited greater stability compared to the binary ones. The foaming and emulsifying properties of SPI-Que complexes were enhanced by 33.76% and 68.28%, respectively, due to the addition of SA.
Collapse
Affiliation(s)
- Taoran Li
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yubo Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Juanjuan Shao
- Department of Science and Technology, Hebei Agricultural University, Hebei 061100, China
| | - Ruiyang Hou
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zifan Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengxiang Ye
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongwu Wang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Beibei Zhu
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yating Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Camilleri E, Blundell R. A comprehensive review of the phytochemicals, health benefits, pharmacological safety and medicinal prospects of Moringaoleifera. Heliyon 2024; 10:e27807. [PMID: 38496871 PMCID: PMC10944276 DOI: 10.1016/j.heliyon.2024.e27807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Moringa oleifera has emerged as a subject of increasing interest, drawing attention for its diverse phytochemical composition and potential health benefits. This review delves into Moringa oleifera's phytochemical constituents, including but not limited to flavonoids, alkaloids, and carotenoids. Expanding beyond its chemical intricacies, the spectrum of health advantages attributed to it are explored, encompassing its remarkable anticancer, antioxidant, anti-diabetic, anti-inflammatory, antimicrobial, and cardioprotective effect. Throughout this review, the underlying physiological mechanisms attributed to these properties by its phytochemicals are explored. Concurrently, the review addresses its pharmacological safety, ensuring a nuanced understanding of its applications in medicinal industries. In summary, this literature review presents a comprehensive exploration of Moringa oleifera, focusing on its phytochemical composition, health benefits, physiological mechanisms, pharmacological safety and nutritional importance.
Collapse
Affiliation(s)
- Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080, Msida, Malta
| |
Collapse
|
3
|
Srivastava A, Ahmad R, Wani IA, Siddiqui S, Yadav K, Trivedi A, Upadhyay S, Husain I, Ahamad T, Dudhagi SS. Steroidal lactones from Withania somnifera effectively target Beta, Gamma, Delta and Omicron variants of SARS-CoV-2 and reveal a decreased susceptibility to viral infection and perpetuation: a polypharmacology approach. In Silico Pharmacol 2024; 12:14. [PMID: 38419919 PMCID: PMC10897645 DOI: 10.1007/s40203-023-00184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024] Open
Abstract
Prevention from disease is presently the cornerstone of the fight against COVID-19. With the rapid emergence of novel SARS-CoV-2 variants, there is an urgent need for novel or repurposed agents to strengthen and fortify the immune system. Existing vaccines induce several systemic and local side-effects that can lead to severe consequences. Moreover, elevated cytokines in COVID-19 patients with cancer as co-morbidity represent a significant bottleneck in disease prognosis and therapy. Withania somnifera (WS) and its phytoconstituent(s) have immense untapped immunomodulatory and therapeutic potential and the anticancer potential of WS is well documented. To this effect, WS methanolic extract (WSME) was characterized using HPLC. Withanolides were identified as the major phytoconstituents. In vitro cytotoxicity of WSME was determined against human breast MDA-MB-231 and normal Vero cells using MTT assay. WSME displayed potent cytotoxicity against MDA-MB-231 cells (IC50: 66 µg/mL) and no effect on Vero cells in the above range. MD simulations of Withanolide A with SARS-CoV-2 main protease and spike receptor-binding domain as well as Withanolide B with SARS-CoV spike glycoprotein and SARS-CoV-2 papain-like protease were performed using Schrödinger. Stability of complexes followed the order 6M0J-Withanolide A > 6W9C-Withnaolide B > 5WRG-Withanolide B > 6LU7-Withanolide A. Maximum stable interaction(s) were observed between Withanolides A and B with SARS-CoV-2 and SARS-CoV spike glycoproteins, respectively. Withanolides A and B also displayed potent binding to pro-inflammatory markers viz. serum ferritin and IL-6. Thus, WS phytoconstituents have the potential to be tested further in vitro and in vivo as novel antiviral agents against COVID-19 patients having cancer as a co-morbidity. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00184-y.
Collapse
Affiliation(s)
- Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Irshad A. Wani
- Department of Cardiology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, UP 226007 India
| | - Anchal Trivedi
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Shivbrat Upadhyay
- Department of Biotechnology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Ishrat Husain
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Tanveer Ahamad
- Department of Biotechnology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Shivanand S. Dudhagi
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, UP 226001 India
| |
Collapse
|
4
|
Rao H, Maurya A, Kumar Raidas H, Koram B, Kumar Goswami R, Singh Rajpoot V, Khute S, Subash P, Chandra Mandal S, Saha S, Rao Kareti S. In Silico Exploration of Potential Phytoconstituents from the Bark Extract of Boswellia serrata for Hemorrhoidal Disease: Molecular Docking and Molecular Dynamics Analysis. Chem Biodivers 2024; 21:e202301416. [PMID: 38078787 DOI: 10.1002/cbdv.202301416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/03/2023] [Indexed: 02/22/2024]
Abstract
Boswellia serrata Roxb. Ex Colebr is a popular medicinal plant used traditionally in herbal medicinal preparations to treat a variety of diseases. The purpose of the present investigation was to investigate the anti-hemorrhoidal property of the bark extract of B. serrata (BS). For this, the sequential Soxhlet extraction method was carried out by using different solvents such as hexane, chloroform, and methanol. After the extraction, the obtained dry extracts were tested for quantitative determinations such as total alkaloid content (TAC), total flavonoid content (TFC), total phenol content (TPC), and total tannin content (TTC) for all the extracts. Moreover, in vitro antioxidant activity was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity and scavenging activity against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). Methanolic bark extract showed the highest TPC (67.10±1.83), TFC (372.73±4.45), TAC (9.732±1.06), and TTC (48.932±1.82), as well as the antioxidant assays DPPH (IC50=9.88 μg/ml) and ABTS (IC50=15.09 μg/ml). In this study, both LC-MS and GC-MS were performed to identify the chemical composition of all the extracts. Consequently, 19 compounds were identified by GC-MS and 27 compounds were identified by LC-MS analysis. The identified phytoconstituent(s) that could potentially interact with the target protein cyclooxygenase-2 (COX-2) (PDB: 4RRW) using molecular dynamics simulation and in silico docking were studied. Three compounds that have passed in drug-likeness and ADME-Tox properties are having more docking score than the standard. In this study, camptothecin, justicidin B, and taxiphyllin are identified as potential lead compounds with anti-hemorrhoidal properties and may be helpful in the process of drug development and discovery of novel drugs. Hence, these results demonstrate that BS is a good source of pharmacologically active components with potential applications against hemorrhoidal disease.
Collapse
Affiliation(s)
- Harshawardhan Rao
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| | - Aryan Maurya
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| | - Hemant Kumar Raidas
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| | - Bholeshankar Koram
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| | - Rohit Kumar Goswami
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| | - Vivek Singh Rajpoot
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| | - Sulekha Khute
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, Chhattisgarh, India
| | - Paranthaman Subash
- Department of Pharmacognosy, Sri Shanmugha College of Pharmacy, 637304, Sankari, Salem District, Tamilnadu, India
| | - Subhash Chandra Mandal
- Pharmacognosy & Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Faculty of Engineering & Technology, Jadavpur University, 700032, Kolkata, India
| | - Subham Saha
- Pharmacognosy & Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Faculty of Engineering & Technology, Jadavpur University, 700032, Kolkata, India
| | - Srinivasa Rao Kareti
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| |
Collapse
|
5
|
Rafiq A, Jabeen T, Aslam S, Ahmad M, Ashfaq UA, Mohsin NUA, Zaki MEA, Al-Hussain SA. A Comprehensive Update of Various Attempts by Medicinal Chemists to Combat COVID-19 through Natural Products. Molecules 2023; 28:4860. [PMID: 37375415 PMCID: PMC10305344 DOI: 10.3390/molecules28124860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The ongoing COVID-19 pandemic has resulted in a global panic because of its continual evolution and recurring spikes. This serious malignancy is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the outbreak, millions of people have been affected from December 2019 till now, which has led to a great surge in finding treatments. Despite trying to handle the pandemic with the repurposing of some drugs, such as chloroquine, hydroxychloroquine, remdesivir, lopinavir, ivermectin, etc., against COVID-19, the SARS-CoV-2 virus continues its out-of-control spread. There is a dire need to identify a new regimen of natural products to combat the deadly viral disease. This article deals with the literature reports to date of natural products showing inhibitory activity towards SARS-CoV-2 through different approaches, such as in vivo, in vitro, and in silico studies. Natural compounds targeting the proteins of SARS-CoV-2-the main protease (Mpro), papain-like protease (PLpro), spike proteins, RNA-dependent RNA polymerase (RdRp), endoribonuclease, exoribonuclease, helicase, nucleocapsid, methyltransferase, adeno diphosphate (ADP) phosphatase, other nonstructural proteins, and envelope proteins-were extracted mainly from plants, and some were isolated from bacteria, algae, fungi, and a few marine organisms.
Collapse
Affiliation(s)
- Ayesha Rafiq
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Tooba Jabeen
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Noor ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
6
|
Antiviral Molecular Targets of Essential Oils against SARS-CoV-2: A Systematic Review. Sci Pharm 2023. [DOI: 10.3390/scipharm91010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Essential oils are potential therapeutics for coronavirus disease 2019 (COVID-19), in which some of the volatile compounds of essential oils have been well known for their broad antiviral activities. These therapeutic candidates have been shown to regulate the excessive secretion of pro-inflammatory cytokines, which underlies the pathogenesis of severe COVID-19. We aimed to identify molecular targets of essential oils in disrupting the cell entry and replication of SARS-CoV-2, hence being active as antivirals. Literature searches were performed on PubMed, Scopus, Scillit, and CaPlus/SciFinder (7 December 2022) with a truncated title implying the anti-SARS-CoV-2 activity of essential oil. Data were collected from the eligible studies and described narratively. Quality appraisal was performed on the included studies. A total of eight studies were included in this review; four of which used enzyme inhibition assay, one—pseudo-SARS-CoV-2 culture; two—whole SARS-CoV-2 culture; and one—ACE2-expressing cancer cells. Essential oils may prevent the SARS-CoV-2 infection by targeting its receptors on the cells (ACE2 and TMPRSS2). Menthol, 1,8-cineole, and camphor are among the volatile compounds which serve as potential ACE2 blockers. β-caryophyllene may selectively target the SARS-CoV-2 spike protein and inhibit viral entry. Other interactions with SARS-CoV-2 proteases and RdRp are observed based on molecular docking. In conclusion, essential oils could target proteins related to the SARS-CoV-2 entry and replication. Further studies with improved and uniform study designs should be carried out to optimize essential oils as COVID-19 therapies.
Collapse
|
7
|
Kairytė K, Grybaitė B, Vaickelionienė R, Sapijanskaitė-Banevič B, Kavaliauskas P, Mickevičius V. Synthesis and Biological Activity Characterization of Novel 5-Oxopyrrolidine Derivatives with Promising Anticancer and Antimicrobial Activity. Pharmaceuticals (Basel) 2022; 15:ph15080970. [PMID: 36015119 PMCID: PMC9415606 DOI: 10.3390/ph15080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The 1-(4-acetamidophenyl)-5-oxopyrrolidine carboxylic acid was applied for synthesizing derivatives bearing azole, diazole, and hydrazone moieties in the molecule. Modification of an acetamide fragment to the free amino group afforded compounds with two functional groups, which enabled to provide a series of 4-substituted-1-(4-substituted phenyl)pyrrolidine-2-ones. The resulted compounds 2 and 4-22 were subjected to the in vitro anticancer and antimicrobial activity determination. The compounds 18-22 exerted the most potent anticancer activity against A549 cells. Furthermore, compound 21 bearing 5-nitrothiophene substituents demonstrated promising and selective antimicrobial activity against multidrug-resistant Staphylococcus aureus strains, including linezolid and tedizolid-resistant S. aureus. These results demonstrate that 5-oxopyrolidine derivatives are attractive scaffolds for the further development of anticancer and antimicrobial compounds targeting multidrug-resistant Gram-positive pathogens.
Collapse
Affiliation(s)
- Karolina Kairytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | | | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 527 East 68th Street, New York, NY 10065, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės St. 18, LT-47181 Kaunas, Lithuania
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
- Correspondence:
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|