1
|
Abbaschian S, Soltani M. Functional, structural, and rheological properties of the complexes containing sunflower petal extract with dairy and plant-based proteins. Food Chem 2025; 465:141948. [PMID: 39591707 DOI: 10.1016/j.foodchem.2024.141948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
This study aims to investigate the impact of sunflower petal extract (SFE) on the functional and structural properties of sodium caseinate and chickpea proteins. For this purpose, 3.5 % of sodium caseinate solution and 3.5 % of protein extracted from chickpea powder were prepared in phosphate buffer (pH = 7). SFE was used at different concentrations, from 1 to 3 % in different protein solutions and functional, structural and rheological properties were measured. The results revealed that complexation of SFE with different proteins can enhance the antioxidant, foaming properties, solubility, emulsion activity, emulsion stability, viscoelastic behavior, and can decrease surface hydrophobicity. FTIR and docking results showed that the most bonding type was non-covalent bonds. Major phenolic compounds containing heliannone A, B, and kaempferol had strong affinity with sodium caseinate, and then chickpea protein. Therefore, the results demonstrated that SFE and its complexes had appropriate emulsifying properties that reduces interfacial tension in the water/oil interface.
Collapse
Affiliation(s)
- Somayeh Abbaschian
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mostafa Soltani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition & Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Wang X, Chen C, Bao Y, Wang Y, Leonidovna Strakh Y. Encapsulation of three different types of polyphenols in casein using a customized pH-driven method: Preparation and characterization. Food Res Int 2024; 189:114547. [PMID: 38876606 DOI: 10.1016/j.foodres.2024.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
Phenolic compounds represent natural compounds endowed with diverse biological functionalities. However, their inherent limitations, characterized by poor water solubility and low oral bioavailability, limit their broader applications. Encapsulation delivery systems are emerging as a remedy, able to ameliorate these limitations by enhancing the stability and solubility of phenolic compounds. In this study, a novel, customized pH-driven approach was developed by determining the optimal deprotonation and protonation points of three different types of polyphenols: ferulic acid, resveratrol, and rhein. The polyphenols were successfully encapsulated in a casein carrier. The solubility, stability, LogD, and LogS curves of the three polyphenols at different pH values were analyzed to identify the optimal deprotonation points for ferulic acid (pH 9), resveratrol (pH 11), and rhein (pH 10). Based on these findings, three different nanoparticles were prepared. The encapsulation efficiencies of the three phenolic compounds were 95.86%, 94.62%, and 94.18%, respectively, and the casein nanoparticles remained stable at room temperature for seven days. FTIR spectroscopy, fluorescence spectroscopy, and molecular docking study substantiated the encapsulation of phenolic compounds within the hydrophobic core of casein-based complexes, facilitated by hydrogen bonding interactions and hydrophobic interactions. Furthermore, the analysis of antioxidant activity elucidated that casein nanoparticles heightened both the water solubility and antioxidant efficacy of the phenolic compounds. This customized encapsulation technique, by establishing a transitional pH value, resolves the challenges of chemical instability and facile degradation of polyphenols under alkaline conditions in the application process of pH-driven methods. It presents novel insights for the application of polyphenols in the domains of food and biomedical fields.
Collapse
Affiliation(s)
- Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chao Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu 210023, China.
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuqing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yana Leonidovna Strakh
- Belarusian State Technological University, Minsk, Belarus; Central Botanical Garden of the National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
3
|
Cheng Y, Gao X, Li S, Wang L, Li W, Cao X. Formation and non-covalent interactions of binary and ternary complexes based on β-casein, Lentinus edodes mycelia polysaccharide, and taxifolin. Int J Biol Macromol 2024; 269:132212. [PMID: 38729495 DOI: 10.1016/j.ijbiomac.2024.132212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Polyphenols, polysaccharides, and proteins are essential nutrients and functional substances present in food, and when present together these components often interact with each other to influence their structure and function. Proteins and polysaccharides are also excellent carrier materials for polyphenols. In this context, this study investigated the non-covalent interactions between taxifolin (TAX), Lentinus edodes mycelia polysaccharide (LMP), and β-casein (β-CN). β-CN and LMP spontaneously formed nanocomplexes by hydrogen bonds and van der Waals forces. The quenching constant and binding constant were (1.94 ± 0.02) × 1013 L mol-1 s-1 and (3.22 ± 0.17) × 105 L mol-1 at 298 K, respectively. The altered conformation of β-CN, resulting from the binding to LMP, affected the interaction with TAX. LMP significantly enhanced the binding affinity of TAX and β-CN, but did not change the static quenching binding mode. The binding constant for β-CN-TAX was (3.96 ± 0.09) × 1013 L mol-1, and that for the interaction between TAX and β-CN-LMP was (32.06 ± 0.05) × 1013 L mol-1. In summary, β-CN-LMP nanocomplexes have great potential as a nanocarrier for polyphenols, and this study provides a theoretical foundation for the rational design of non-covalent complexes involving LMP and β-CN, both in binary and ternary configurations.
Collapse
Affiliation(s)
- Ye Cheng
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Xue Gao
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Siqi Li
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Le Wang
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Wenkai Li
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Xiangyu Cao
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China.
| |
Collapse
|
4
|
Mileti O, Baldino N, Luzzi S, Lupi FR, Gabriele D. Interfacial Rheological Study of β-Casein/Pectin Mixtures at the Air/Water Interface. Gels 2024; 10:41. [PMID: 38247764 PMCID: PMC10815610 DOI: 10.3390/gels10010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Colloidal food products, such as emulsions, foams, gels, and dispersions, are complex systems that need the presence of stabilizing agents to enable their formation and provide stability. Proteins are often used for food foams and emulsions because of their ability to lower interfacial tension and make viscoelastic interfaces. Generally, to improve the resistance against rupture, polysaccharides are used in association with the proteins. Pectin is a complex polysaccharide that can help to stabilize foams or emulsions. This work aims at studying the mechanical resistance of the interface formed by mixtures of β-casein and pectin at high and low methoxylation degrees at the air/water interface using dilatational and shear kinematics. Frequency sweep tests, in the linear region, were performed in shear at different aging times and in dilatational mode, and the rheological data were analyzed. The transient data of the surface tension were analyzed by kinetic models to obtain the characteristic rates of the interfacial phenomena. The kinetic mechanisms of the protein/pectin mixed systems are controlled by protein and show a weak gel behavior for short aging times. The interfaces obtained with both pectins in a mixture with β-casein evolved with time, gelling and showing a solid-like behavior at concentrations of 1 and 10 g/L and after 3.5 h of aging time. The interfacial shear trend obtained suggests a good stabilizing effect of the pectins from citrus with long aging times.
Collapse
Affiliation(s)
| | - Noemi Baldino
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.) University of Calabria, I-87036 Rende, Italy; (O.M.); (S.L.); (F.R.L.); (D.G.)
| | | | | | | |
Collapse
|
5
|
Petrovic SM, Barbinta-Patrascu ME. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds' Delivery: State-of-the Art and Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7550. [PMID: 38138692 PMCID: PMC10744464 DOI: 10.3390/ma16247550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
"Green" strategies to build up novel organic nanocarriers with bioperformance are modern trends in nanotechnology. In this way, the valorization of bio-wastes and the use of living systems to develop multifunctional organic and biogenic nanocarriers (OBNs) have revolutionized the nanotechnological and biomedical fields. This paper is a comprehensive review related to OBNs for bioactives' delivery, providing an overview of the reports on the past two decades. In the first part, several classes of bioactive compounds and their therapeutic role are briefly presented. A broad section is dedicated to the main categories of organic and biogenic nanocarriers. The major challenges regarding the eco-design and the fate of OBNs are suggested to overcome some toxicity-related drawbacks. Future directions and opportunities, and finding "green" solutions for solving the problems related to nanocarriers, are outlined in the final of this paper. We believe that through this review, we will capture the attention of the readers and will open new perspectives for new solutions/ideas for the discovery of more efficient and "green" ways in developing novel bioperformant nanocarriers for transporting bioactive agents.
Collapse
Affiliation(s)
- Sanja M. Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 1600 Leskovac, Serbia;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Măgurele, Romania
| |
Collapse
|
6
|
Wang XJ, Zhou Q, Wu YR, Li J, Wang W, Yu ZY, Zheng MM, Zhou YB, Liu K. Regulation Mechanism of Phenolic Hydroxyl Number on Self-Assembly and Interaction between Edible Dock Protein and Hydrophobic Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18510-18523. [PMID: 37971491 DOI: 10.1021/acs.jafc.3c05713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In this study, galangin (Gal), kaempferol (Kae), quercetin (Que), and myricetin (Myr) were chosen as the representative flavonoids with different phenolic hydroxyl numbers in the B-ring. The edible dock protein (EDP) was chosen as the new plant protein. Based on this, the regulation mechanism of the phenolic hydroxyl number on the self-assembly behavior and molecular interaction between EDP and flavonoid components were investigated. Results indicated that the loading capacity order of flavonoids within the EDP nanomicelles was Myr (10.92%) > Que (9.56%) > Kae (6.63%) > Gal (5.55%). Moreover, this order was consistent with the order of the hydroxyl number in the flavonoid's B ring: Myr (3) > Que (2) > Kae (1) > Gal (0). The micro morphology exhibited that four flavonoid-EDP nanomicelles had a core-shell structure. In the meantime, the EDP encapsulation remarkably improved the flavonoids' water solubility, storage stability, and sustained release characteristics. During the interaction of EDP and flavonoids, the noncovalent interactions including van der Waals forces, hydrophobic interaction, and hydrogen bonding were the main binding forces. All of the results demonstrated that the hydroxyl number of bioactive compounds is a critical factor for developing a delivery system with high loading ability and stability.
Collapse
Affiliation(s)
- Xiao-Jie Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qian Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu-Ru Wu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jing Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wei Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhen-Yu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ming-Ming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yi-Bin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kang Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|