1
|
Akinduko AA, Salawu SO, Akinmoladun AC, Akindahunsi AA, Osemwegie OO. Assessment of the anxiolytic, antidepressant, and antioxidant potential of Parquetina nigrescens (Afzel.) Bullock in Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117597. [PMID: 38128891 DOI: 10.1016/j.jep.2023.117597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The recent growing concerns about the multisystemic nature of mental health conditions in the global population are facilitating a new paradigm involving alternative natural, nutritional, and complementary therapies. Herbal remedies despite accounts in literature of their ethnobotanical as alternative remedies for diverse ailments, remain underexplored for psychiatric disorders like anxiety, depression, and insomnia. AIM OF THE STUDY Hence, the anxiolytic, antidepressant, and antioxidant properties of a hydro-ethanolic leaf extract of Parquetina nigrescens (PN) in male Wistar rats were investigated. MATERIALS AND METHODS The sedative effect was evaluated using the Diazepam sleeping time test while anxiety was induced with a single intraperitoneal injection of 20 mg/kg pentylenetetrazol (PTZ). This was after pre-treatment with 100, 150, and 250 mg/kg of PN or the standard drugs (1 mg/kg diazepam and 30 mg/kg imipramine) for 14 consecutive days. Behavioral tests (Open Field test, Elevated Plus-Maze test, and Forced Swim test) were performed on days 1 and 14, to evaluate the antidepressant and anxiolytic activities of PN. Oxidative stress and neurochemical markers were determined in the brain homogenates of the animals. RESULTS The duration of sleep was significantly (p < 0.001) increased in the PN-administered group compared to the control. The behavioral models showed that PN exhibited antidepressant and anxiolytic properties in PTZ-induced animals. Significant reductions were observed in GSH level and SOD activity while MDA, nitrite, and GPx levels were significantly increased in PTZ-induced rats. However, treatment with PN significantly improved brain antioxidant status by ameliorating the PTZ-induced oxidative stress. Dopamine, cortisol, and acetylcholine esterase activity levels were significantly (p < 0.05) elevated while serotonin and brain-derived neurotrophic factors were reduced in PTZ-induced rats compared with the control. CONCLUSION The PN demonstrated neurotransmitter modulatory ability by ameliorating the PTZ-induced neurochemical dysfunction. Findings from this study showed that PN exhibited sedative, antidepressant, and anxiolytic activities in rats.
Collapse
Affiliation(s)
- Ayokunmi Adebukola Akinduko
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria; Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - Sule Ola Salawu
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - Afolabi Clement Akinmoladun
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, Ondo State, Nigeria.
| | | | - Osarenkhoe Omorefosa Osemwegie
- Department of Food Science and Microbiology, College of Pure and Applied Sciences, Landmark University, Omu Aran, Kwara State, Nigeria.
| |
Collapse
|
2
|
Almeida CORP, Martinez RM, Figueiredo MS, Teodoro AJ. Botanical, nutritional, phytochemical characteristics, and potential health benefits of murici (Byrsonima crassifolia) and taperebá (Spondias mombin): insights from animal and cell culture models. Nutr Rev 2024; 82:407-424. [PMID: 37349898 DOI: 10.1093/nutrit/nuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Brazil has great biodiversity, and the Amazon biome stands out for a variety of native fruits with high economic and nutritional potential. Murici (Byrsonima crassifolia) and taperebá (Spondias mombin) are sources of vitamins, minerals, and phytochemicals with potential health benefits. Because of the bioactive potential of these Brazilian fruits, this review aims to gather the most current existing knowledge about their botanical, nutritional, and phytochemical properties, because the presence of several bioactive compounds may bring promising strategies to the prevention and treatment of several diseases. The search was conducted of the LILACS, MEDLINE, PubMed, and Science Direct databases, considering articles published between 2010 and 2023. The compiled results showed that these fruits, their leaves, and seeds have great antioxidant activity and are a good source of phytochemicals, especially phenolic compounds. In vitro and in vivo studies indicate that these bioactive compounds have several health benefits related to the prevention or treatment of diseases, including antioxidant effects; anti-inflammatory effects; and antidiabetic, antidepressant, neuroprotective, antiproliferative, anticancer, hypolipemic, cardioprotective, gastroprotective, hepatoprotective, and nephroprotective effects, and they are particularly related to the reduction of damage from oxidative stress. This review highlights the potential of these fruits as functional foods and for therapeutic purposes. However, it is recommended to conduct more studies on the identification and quantification of phytochemicals present in these fruits and studies in humans to better understand the mechanisms of action related to their effects and to understand the interaction of these compounds with the human body, as well as to prove the safety and efficacy of these compounds on health.
Collapse
Affiliation(s)
- Carolina O R P Almeida
- Graduate Program in Food and Nutrition, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel M Martinez
- Graduate Program in Food and Nutrition Security, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana S Figueiredo
- Nutrition and Dietetics Department, Universidade Federal Fluminense/Faculdade de Nutrição, Rio de Janeiro, RJ, Brazil
| | - Anderson J Teodoro
- Nutrition and Dietetics Department, Universidade Federal Fluminense/Faculdade de Nutrição, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Liu Z, Sun M, Jin C, Sun X, Feng F, Niu X, Wang B, Zhang Y, Wang J. Naringenin confers protection against experimental autoimmune encephalomyelitis through modulating the gut-brain axis: A multiomics analysis. J Nutr Biochem 2023; 122:109448. [PMID: 37741298 DOI: 10.1016/j.jnutbio.2023.109448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system that involves the immune system attacking the protective covering of nerve fibers. This disease can be influenced by both environmental and genetic factors. Evidence has highlighted the critical role of the intestinal microbiota in MS and its animal model, experimental autoimmune encephalomyelitis (EAE). The composition of gut microflora is mainly determined by dietary components, which, in turn, modulate host homeostasis. A diet rich in naringenin at 0.5% can effectively mitigate the severity of EAE in mice. However, there is little direct data on the impact of naringenin at optimal doses on EAE development, as well as its intestinal microbiota and metabolites. Our study revealed that 2.0% naringenin resulted in the lowest clinical score and pathological changes in EAE mice, and altered the gene expression profiles associated with inflammation and immunity in spinal cord tissue. We then used untargeted metabolomics and 16S rRNA gene sequences to identify metabolites and intestinal microbiota, respectively. Naringenin supplementation enriched gut microbiota in EAE mice, including increasing the abundance of Paraprevotellaceae and Comamonadaceae, while decreasing the abundance of Deltaproteobacteria, RF39, and Desulfovibrionaceae. Furthermore, the changes in gut microbiota affected the production of metabolites in the feces and brain, suggesting a role in regulating the gut-brain axis. Finally, we conducted a fecal transplantation experiment to validate that gut microbiota partly mediates the effect of naringenin on EAE alleviation. In conclusion, naringenin has potential immunomodulatory effects that are influenced to some extent by the gut microbiome.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Mengyang Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaoying Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Fangyu Feng
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xinli Niu
- School of Life Science, Henan University, Kaifeng, China
| | - Bin Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China.
| |
Collapse
|
4
|
Lee SH, Seo D, Lee KH, Park SJ, Park S, Kim H, Kim T, Joo IH, Park JM, Kang YH, Lim GH, Kim DH, Yang JY. Biometabolites of Citrus unshiu Peel Enhance Intestinal Permeability and Alter Gut Commensal Bacteria. Nutrients 2023; 15:nu15020319. [PMID: 36678190 PMCID: PMC9862503 DOI: 10.3390/nu15020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Flavanones in Citrus unshiu peel (CUP) have been used as therapeutic agents to reduce intestinal inflammation; however, the anti-inflammatory effects of their biometabolites remain ambiguous. Here, we identified aglycone-type flavanones, such as hesperetin and naringenin, which were more abundant in the bioconversion of the CUP than in the ethanol extracts of the CUP. We found that the bioconversion of the CUP induced the canonical nuclear factor-κB pathway via degradation of IκB in Caco-2 cells. To check the immune suppressive capacity of the aglycones of the CUP in vivo, we orally administered the bioconversion of the CUP (500 mg/kg) to mice for two weeks prior to the 3% dextran sulfate sodium treatment. The CUP-pretreated group showed improved body weight loss, colon length shortage, and intestinal inflammation than the control mice. We also found a significant decrease in the population of lamina propria Th17 cells in the CUP-pretreated group following dextran sodium sulfate (DSS) treatment and an increase in mRNA levels of occludin in CUP-treated Caco-2 cells. Pyrosequencing analysis revealed a decreased abundance of Alistipes putredinis and an increased abundance of Muribaculum intestinale in the feces of the CUP-pretreated mice compared to those of the control mice. Overall, these findings suggest that the pre-administration of CUP biometabolites may inhibit the development of murine colitis by modulating intestinal permeability and the gut microbiome.
Collapse
Affiliation(s)
- Se-Hui Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Dongju Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Kang-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - So-Jung Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sun Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeyun Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Taekyung Kim
- Department of Biology Education, Pusan National University, Busan 46241, Republic of Korea
| | - In Hwan Joo
- Department of Pathology, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jong-Min Park
- Department of Pathology, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Yun-Hwan Kang
- Department of Industry Promotion, National Institute for Korean Medicine Development, Geongsan 38540, Republic of Korea
| | - Gah-Hyun Lim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Dong Hee Kim
- Department of Pathology, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jin-Young Yang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: ; Tel.: +82-51-510-2286; Fax: +82-51-581-2962
| |
Collapse
|
5
|
Fasakin OW, Oboh G, Ademosun AO. The prevalence, mechanism of action, and toxicity of Nigerian psychoactive plants. COMPARATIVE CLINICAL PATHOLOGY 2022; 31:853-873. [PMID: 35789743 PMCID: PMC9243860 DOI: 10.1007/s00580-022-03374-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Cannabis sativa, Datura stramonium, Nicotiana tabacum, and Carica papaya are plants that naturally grow in Nigeria. They are reportedly rich in neuroactive compounds that are capable of reacting with the nervous system to elicit psychoactive and/or toxic effects that deter predators. However, despite the toxicological potential of these plants, their recreational use is on the rise due to the psychoactivity they proffer and prevalence in Nigeria. The aim of the present study is to evaluate the plants' recreational use, mechanism of actions and toxicities. Relevant published documents on psychoactive plants in Nigeria were obtained from Web of Science between 2002 and 2020. Non-English documents, documents not in Science Citation Index Expanded and Google Scholar were removed while 1186 documents were reviewed. Results showed that the plants are recreationally used in Nigeria with a higher prevalence than the global frequency. They are very addictive and lead to dependence. The plants were also observed to elicit different mechanism of action, though the activation of monoaminergic neurotransmission system was common to all. Regrettably, the plants could be toxic when ingested under non-medical conditions. Conclusively, these plants are addictive with potential toxic effects. Therefore, control of the recreational use of these plants should be revamped and overhauled.
Collapse
Affiliation(s)
- Olamide Wilson Fasakin
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001 Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001 Nigeria
| | - Ayokunle Olubode Ademosun
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001 Nigeria
| |
Collapse
|