1
|
Zheng Y, Zhou Y, Zhao L, Li J, Lu L, Jiang Y. Development of a lateral flow immuno-chromatic strip assay for the detection of cyprinid herpesvirus 3 (CyHV-3). JOURNAL OF FISH DISEASES 2023; 46:1065-1071. [PMID: 37409374 DOI: 10.1111/jfd.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the main pathogen of koi herpesvirus disease (KHVD), which has caused serious damage to the ornamental and food-producing carp industry. Effective and rapid on-site detection methods are needed for early diagnosis of CyHV-3. A lateral flow immuno-chromatographic assay (LFIA) using two specific anti-CyHV-3 monoclonal antibodies has been developed and validated for on-site detection of CyHV-3. MAb 3C9 was used to bio-conjugate CyHV-3 antigen with colloidal gold, and MAb 2A8 was used to capture antigen bound colloidal gold on the test line. The control line was lined with goat anti-mouse IgG to capture unbound colloidal gold to validate performance. The test results can be viewed within 10 min after putting the strip into CyHV-3 virus infection fluid. The lowest limit of detection for the LFIA test was found to be 1.5 × 104 copies/μL and it showed no cross-reactivity with other fish viral pathogens. The specificity of the strip was 100% when spleen and kidney tissues of CyHV-3-infected and healthy koi were validated at the field level. The LFIA strip will be an effective device for the early detection of CyHV-3 in the future.
Collapse
Affiliation(s)
- Yihua Zheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| | - Yi Zhou
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| | - Lupin Zhao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| | - Jiaxun Li
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yousheng Jiang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Volpe E, Errani F, Mandrioli L, Ciulli S. Advances in Viral Aquatic Animal Disease Knowledge: The Molecular Methods' Contribution. BIOLOGY 2023; 12:biology12030466. [PMID: 36979158 PMCID: PMC10045235 DOI: 10.3390/biology12030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aquaculture is the fastest-growing food-producing sector, with a global production of 122.6 million tonnes in 2020. Nonetheless, aquatic animal production can be hampered by the occurrence of viral diseases. Furthermore, intensive farming conditions and an increasing number of reared fish species have boosted the number of aquatic animals' pathogens that researchers have to deal with, requiring the quick development of new detection and study methods for novel unknown pathogens. In this respect, the molecular tools have significantly contributed to investigating thoroughly the structural constituents of fish viruses and providing efficient detection methods. For instance, next-generation sequencing has been crucial in reassignment to the correct taxonomic family, the sturgeon nucleo-cytoplasmic large DNA viruses, a group of viruses historically known, but mistakenly considered as iridoviruses. Further methods such as in situ hybridisation allowed objectifying the role played by the pathogen in the determinism of disease, as the cyprinid herpesvirus 2, ostreid herpesvirus 1 and betanodaviruses. Often, a combination of molecular techniques is crucial to understanding the viral role, especially when the virus is detected in a new aquatic animal species. With this paper, the authors would critically revise the scientific literature, dealing with the molecular techniques employed hitherto to study the most relevant finfish and shellfish viral pathogens.
Collapse
Affiliation(s)
- Enrico Volpe
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Francesca Errani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Luciana Mandrioli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Sara Ciulli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| |
Collapse
|
3
|
Bergmann SM, Jin Y, Franzke K, Grunow B, Wang Q, Klafack S. Koi herpesvirus (KHV) and KHV disease (KHVD) - a recently updated overview. J Appl Microbiol 2020; 129:98-103. [PMID: 32077213 DOI: 10.1111/jam.14616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Over the last years, there has been an enormous increase in the knowledge on koi herpesvirus (KHV), koi herpesvirus disease (KHVD), pathogenesis and virus variants. Different KHV lineages have clearly been identified, possible genomic changes during replication in different cell cultures at different temperatures but also in several hosts have been identified, a persistent stage of infection has been specified and it has been shown that infection with KHV is not host specific at all, but KHVD is. Additionally, it has been shown that it is possible to combat KHVD by immunization with inactivated and attenuated live vaccines using different delivery systems but also to benefit from alternative treatments with e.g. exopolysaccharids obtained from Arthrospira platensis.
Collapse
Affiliation(s)
- S M Bergmann
- OIE and National Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | - Y Jin
- OIE and National Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | - K Franzke
- OIE and National Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | - B Grunow
- Institute of Muscle Biology & Growth, Junior Research Group Fish Growth Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Q Wang
- Key Lab of Fishery Drug Development, Ministry of Agriculture, Key Lab of Aquatic Animal Immune Technology, Peal River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - S Klafack
- OIE and National Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany.,Institute for Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Liu Z, Wu J, Ma Y, Hao L, Liang Z, Ma J, Ke H, Li Y, Cao J. Protective immunity against CyHV-3 infection via different prime-boost vaccination regimens using CyHV-3 ORF131-based DNA/protein subunit vaccines in carp Cyprinus carpio var. Jian. FISH & SHELLFISH IMMUNOLOGY 2020; 98:342-353. [PMID: 31978531 DOI: 10.1016/j.fsi.2020.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Cyprinid Herpesvirus 3 (CyHV-3), also known as Koi Herpesvirus (KHV), causes Koi Herpesvirus Disease (KHVD) which leads to serious economic losses worldwide. To exploit DNA/subunit vaccine candidates, CyHV-3 ORF131 gene and cDNA was cloned and analyzed in the present study. Major B cell epitopes of deduced CyHV-3 pORF131 was also predicted. Then the complete CDS of CyHV-3 ORF131 was inserted into pEGFP-N1 vector and a modified pYD1/EBY100 system to construct the DNA and subunit vaccine, respectively. Subsequently, carp were immunized with homologous and heterologous prime-boost regimens relying on the constructed DNA and oral subunit vaccines. Then the protective immunity generated from different vaccines and regimens as well as the capacity of yeast (Saccharomyces cerevisiae) as an oral vaccine vehicle was evaluated. Our study confirmed that CyHV-3 ORF131 gene consisted of 2 introns and 3 exons encoding a 428 amino acids peptide. Further analysis indicated that four fragments of CyHV-3 pORF131 contained the major B cell epitopes (Cys20~Val140, Ser169~Tyr245, Thr258~Pro390, Phe414~Gln428), which could be linked and expressed in E. coli (BL21) as a truncated pORF131. The expression of full-length CyHV-3 pORF131 by pEGFP-N1 and yeast surface display was verified by In vitro assays before vaccination. Immunization of carp with CyHV-3 ORF131 DNA and subunit vaccines could evoke the activation of immune-related genes such as CXCa, CXCR1, IL-1β, TNF-α, INF-a1, Mx-1, IgM, IgT1 and production of specific serum IgM measured by ELISA. RPS (relative percent of survival) ranging from 53.33% to 66.67% was acquired post challenge test. Moreover, flow cytometry analysis illustrated the delivery of surface-displayed CyHV-3 pORF131 to midgut after oral gavage. Thus, our findings suggest that CyHV-3 ORF131 can serve as DNA/subunit vaccines candidate and the yeast as an ideal oral vaccine vehicle.
Collapse
Affiliation(s)
- Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China.
| | - Jing Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Zhiling Liang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Jiangyao Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Hao Ke
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, PRC, Guangzhou, 510640, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Junming Cao
- Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
5
|
Morphological, microbiological and ultrastructural aspects of sepsis by Aeromonas hydrophila in Piaractus mesopotamicus. PLoS One 2019; 14:e0222626. [PMID: 31539396 PMCID: PMC6754153 DOI: 10.1371/journal.pone.0222626] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 09/04/2019] [Indexed: 12/22/2022] Open
Abstract
Aeromonas bacteria can cause an infection characterized by septicemia and is one of the most common pathogens in tropical fish. This disease is responsible for high morbidity and mortality rates, causing considerable losses in aquaculture. Thus, the understanding of its pathophysiology is crucial to develop control strategies of this bacterial infection in farmed fish. This study aimed to characterize early pathological aspects of acute sepsis in pacu (Piaractus mesopotamicus) experimentally infected with Aeromonas hydrophila. A total of 160 juvenile pacus were inoculated intraperitoneally with A. hydrophila (1.78 x 109 CFU/mL) and at 0 (control), 1, 3, 6, and 9 hours post-inoculation (hpi), animals were anesthetized and samples were collected for microbiological, light microscopy and transmission electron microscopy (TEM) analyzes. The results showed the occurrence of hemodynamic alterations, such as hemorrhage and congestion, which were observed mainly after 6 and 9 hpi. It was possible to re-isolate Aeromonas at all sampling times except in control group. However, just after 9 hpi it was possible to find the bacteria in all fish and tissues. Light microscopy analyses revealed a degenerative process, necrosis and vascular damage mainly at 6 and 9 hpi. According to the ultrastructural examination, areas of cellular death were identified in all examined tissues, especially at 6 and 9 hpi. However, the most severe, related to necrosis, were observed after 6 and 9 hpi. The findings suggested that this bacterium spreads in the first hpi through the fish organs, mainly affecting spleen, liver and kidney, causing irreversible lesions at the molecular level.
Collapse
|
6
|
Qadiri SSN, Kim SJ, Krishnan R, Kim JO, Kim WS, Oh MJ. Development of an in-situ hybridization assay using riboprobes for detection of viral haemorrhagic septicemia virus (VHSV) mRNAs in a cell culture model. J Virol Methods 2018; 264:1-10. [PMID: 30414796 DOI: 10.1016/j.jviromet.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
An in situ hybridization (RNA-ISH) assay has been developed and optimized to detect viral haemorrhagic septicemia virus (VHSV), an OIE listed piscine rhabdovirus, in infected fish cells using fathead minnow (FHM) as a model cell line. Two antisense riboprobes (RNA probes) targeting viral transcripts from a fragment of nucleoprotein (N) and glycoprotein (G) genes were generated by reverse transcription polymerase chain reaction (RT-PCR) using VHSV specific primers followed by a transcription reaction in the presence of digoxigenin dUTP. The synthesized RNA probes were able to detect viral mRNAs in formalin fixed VHSV infected FHM cells at different time points post inoculation (pi). To correlate the signal intensity, a time dependent quantitation of the viral mRNA transcript and infectivity titer was done by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and 50% tissue culture infectivity dose (TCID50), respectively, from the infected cells and culture supernatants. Further, we compared the diagnostic sensitivity of ISH assay with immunocytochemistry (ICC). Both the riboprobes used in the ISH assay detected VHSV as early as 6 hpi in the FHM cells inoculated with a multiplicity of infection (moi) of 2. Also, the signal detection in ISH was at an early stage in comparison to ICC, wherein, signal was first detected at 12 hpi. Our results clearly highlight that current ISH assay can be of value as a diagnostic tool to localize and detect VHSV in conjunction with conventional virus isolation in cell culture.
Collapse
Affiliation(s)
- Syed Shariq Nazir Qadiri
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Soo-Jin Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Rahul Krishnan
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Jae-Ok Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Wi-Sik Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
7
|
Haetrakul T, Dunbar SG, Chansue N. Antiviral activities of Clinacanthus nutans (Burm.f.) Lindau extract against Cyprinid herpesvirus 3 in koi (Cyprinus carpio koi). JOURNAL OF FISH DISEASES 2018; 41:581-587. [PMID: 29468849 DOI: 10.1111/jfd.12757] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 06/08/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) or koi herpesvirus (KHV) is a virulent viral infection in common carp and koi. The disease has caused global epizootic and economic loss in fish aquaculture and in the wild. Clinacanthus nutans (Burm. f.) Lindau is a well-known medicinal plant used in Thai traditional medicine. Virucidal effects of the plant extract against human herpes simplex virus have been reported. In this study, C. nutans crude extract was tested for antiviral activities against CyHV-3 in koi carp. Results showed effective antiviral activity against CyHV-3 pre- and post-infection. The 50% lethal concentration (LC50 ) of extract was higher than 5 mg/ml. The 50% effective dose (ED50 ) was 0.99 mg/ml, 0.78 mg/ml, 0.75 mg/ml and 0.71 mg/ml at 1, 2, 3 and 4 hr pre-infection, respectively. The ED50 from post-infection tests was 2.05 mg/ml and 2.34 mg/ml at 0 and 24 hr, respectively. These results demonstrated that crude extract expressed antiviral activity against CyHV-3 and can be applied as a therapeutic agent in common carp and koi aquaculture.
Collapse
Affiliation(s)
- T Haetrakul
- Department of Veterinary Medicine, Faculty of Veterinary Science, Ornamental Aquatic Animals and Aquatic Animals for Conservation Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - S G Dunbar
- Marine Research Group, Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA
| | - N Chansue
- Department of Veterinary Medicine, Faculty of Veterinary Science, Ornamental Aquatic Animals and Aquatic Animals for Conservation Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
De-la-Re-Vega E, Sánchez-Paz A, Gallardo-Ybarra C, Lastra-Encinas MA, Castro-Longoria R, Grijalva-Chon JM, López-Torres MA, Maldonado-Arce AD. The Pacific oyster (Crassostrea gigas) Hsp70 modulates the Ostreid herpes virus 1 infectivity. FISH & SHELLFISH IMMUNOLOGY 2017; 71:127-135. [PMID: 28986219 DOI: 10.1016/j.fsi.2017.09.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
The Ostreid herpes virus type 1 (OsHV-1) is one of the most devastating pathogen in oyster cultures. Among several factors, as food limitation, oxygen depletion, salinity and temperature variations, episodes of "summer mortality" of the Pacific oyster Crassostrea gigas have also been associated with OsHV-1 infection. Mortalities of C. gigas spat and juveniles have increased significantly in Europe, and contemporary mortality records of this mollusk in México have been associated with the occurrence of OsHV-1. In the present study, the expression of the heat shock protein 70 gene from the Pacific oyster correlates with the abundance of DNA polymerase transcripts from the OsHV-1. This may suggest that the induction on the expression of the Pacific oyster hsp70 may potentially participate in the immune response against the virus. Furthermore, this study reports for the first time a TEM representative image of the OsHV-1 in aqueous solution, which possesses an icosahedral shape with a diameter of 70 nm × 100 nm. Finally, the examined sequence encoding the ORF4 of the OsHV-1 isolate from northwest Mexico showed specific sequence variations when compared with OsHV-1 isolates from distant geographical areas.
Collapse
Affiliation(s)
- Enrique De-la-Re-Vega
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico.
| | - Arturo Sánchez-Paz
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Calle Hermosa 101, Col. Los Ángeles, CP 83106 Hermosillo, Sonora, Mexico
| | - Carolina Gallardo-Ybarra
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | - Manuel Adolfo Lastra-Encinas
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | - Reina Castro-Longoria
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | - José Manuel Grijalva-Chon
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | - Marco Antonio López-Torres
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | | |
Collapse
|
9
|
Clouthier SC, McClure C, Schroeder T, Desai M, Hawley L, Khatkar S, Lindsay M, Lowe G, Richard J, Anderson ED. Diagnostic validation of three test methods for detection of cyprinid herpesvirus 3 (CyHV-3). DISEASES OF AQUATIC ORGANISMS 2017; 123:101-122. [PMID: 28262633 DOI: 10.3354/dao03093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of koi herpesvirus disease in koi and common carp. The disease is notifiable to the World Organisation for Animal Health. Three tests-quantitative polymerase chain reaction (qPCR), conventional PCR (cPCR) and virus isolation by cell culture (VI)-were validated to assess their fitness as diagnostic tools for detection of CyHV-3. Test performance metrics of diagnostic accuracy were sensitivity (DSe) and specificity (DSp). Repeatability and reproducibility were measured to assess diagnostic precision. Estimates of test accuracy, in the absence of a gold standard reference test, were generated using latent class models. Test samples originated from wild common carp naturally exposed to CyHV-3 or domesticated koi either virus free or experimentally infected with the virus. Three laboratories in Canada participated in the precision study. Moderate to high repeatability (81 to 99%) and reproducibility (72 to 97%) were observed for the qPCR and cPCR tests. The lack of agreement observed between some of the PCR test pair results was attributed to cross-contamination of samples with CyHV-3 nucleic acid. Accuracy estimates for the PCR tests were 99% for DSe and 93% for DSp. Poor precision was observed for the VI test (4 to 95%). Accuracy estimates for VI/qPCR were 90% for DSe and 88% for DSp. Collectively, the results show that the CyHV-3 qPCR test is a suitable tool for surveillance, presumptive diagnosis and certification of individuals or populations as CyHV-3 free.
Collapse
Affiliation(s)
- Sharon C Clouthier
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Prescott MA, Reed AN, Jin L, Pastey MK. Rapid Detection of Cyprinid Herpesvirus 3 in Latently Infected Koi by Recombinase Polymerase Amplification. JOURNAL OF AQUATIC ANIMAL HEALTH 2016; 28:173-180. [PMID: 27485254 PMCID: PMC5958048 DOI: 10.1080/08997659.2016.1185048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Since the emergence of cyprinid herpesvirus 3 (CyHV-3), outbreaks have been devastating to Common Carp Cyprinus carpio and koi (a variant of Common Carp), leading to high economic losses. Current diagnostics for detecting CyHV-3 are limited in sensitivity and are further complicated by latency. Here we describe the detection of CyHV-3 by recombinase polymerase amplification (RPA). The RPA assay can detect as low as 10 copies of the CyHV-3 genome by an isothermal reaction and yields results in approximately 20 min. Using the RPA assay, the CyHV-3 genome can be detected in the total DNA of white blood cells isolated from koi latently infected with CyHV-3, while less than 10% of the latently infected koi can be detected by a real-time PCR assay in the total DNA of white blood cells. In addition, RPA products can be detected in a lateral flow device that is cheap and fast and can be used outside of the diagnostic lab. The RPA assay and lateral flow device provide for the rapid, sensitive, and specific amplification of CyHV-3 that with future modifications for field use and validation could lead to enhanced surveillance and early diagnosis of CyHV-3 in the laboratory and field. Received September 14, 2015; accepted April 9, 2016.
Collapse
Affiliation(s)
- Meagan A. Prescott
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis Oregon 97331
- Department of Microbiology, College of Science, Oregon State University, Corvallis Oregon 97331
| | - Aimee N. Reed
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis Oregon 97331
- Department of Microbiology, College of Science, Oregon State University, Corvallis Oregon 97331
| | - Ling Jin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis Oregon 97331
- Department of Microbiology, College of Science, Oregon State University, Corvallis Oregon 97331
| | - Manoj K. Pastey
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis Oregon 97331
| |
Collapse
|
11
|
In situ localization and tissue distribution of ostreid herpesvirus 1 proteins in infected Pacific oyster, Crassostrea gigas. J Invertebr Pathol 2016; 136:124-35. [PMID: 27066775 DOI: 10.1016/j.jip.2016.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/20/2022]
Abstract
Immunohistochemistry (IHC) assays were conducted on paraffin sections from experimentally infected spat and unchallenged spat produced in hatchery to determine the tissue distribution of three viral proteins within the Pacific oyster, Crassostrea gigas. Polyclonal antibodies were produced from recombinant proteins corresponding to two putative membrane proteins and one putative apoptosis inhibitor encoded by ORF 25, 72, and 87, respectively. Results were then compared to those obtained by in situ hybridization performed on the same individuals, and showed a substantial agreement according to Landis and Koch numeric scale. Positive signals were mainly observed in connective tissue of gills, mantle, adductor muscle, heart, digestive gland, labial palps, and gonads of infected spat. Positive signals were also reported in digestive epithelia. However, few positive signals were also observed in healthy appearing oysters (unchallenged spat) and could be due to virus persistence after a primary infection. Cellular localization of staining seemed to be linked to the function of the viral protein targeted. A nucleus staining was preferentially observed with antibodies targeting the putative apoptosis inhibitor protein whereas a cytoplasmic localization was obtained using antibodies recognizing putative membrane proteins. The detection of viral proteins was often associated with histopathological changes previously reported during OsHV-1 infection by histology and transmission electron microscopy. Within the 6h after viral suspension injection, positive signals were almost at the maximal level with the three antibodies and all studied organs appeared infected at 28h post viral injection. Connective tissue appeared to be a privileged site for OsHV-1 replication even if positive signals were observed in the epithelium cells of different organs which may be interpreted as a hypothetical portal of entry or release for the virus. IHC constitutes a suited method for analyzing the early infection stages of OsHV-1 infection and a useful tool to investigate interactions between OsHV-1 and its host at a protein level.
Collapse
|
12
|
Boutier M, Ronsmans M, Rakus K, Jazowiecka-Rakus J, Vancsok C, Morvan L, Peñaranda MMD, Stone DM, Way K, van Beurden SJ, Davison AJ, Vanderplasschen A. Cyprinid Herpesvirus 3: An Archetype of Fish Alloherpesviruses. Adv Virus Res 2015; 93:161-256. [PMID: 26111587 DOI: 10.1016/bs.aivir.2015.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The order Herpesvirales encompasses viruses that share structural, genetic, and biological properties. However, members of this order infect hosts ranging from molluscs to humans. It is currently divided into three phylogenetically related families. The Alloherpesviridae family contains viruses infecting fish and amphibians. There are 12 alloherpesviruses described to date, 10 of which infect fish. Over the last decade, cyprinid herpesvirus 3 (CyHV-3) infecting common and koi carp has emerged as the archetype of fish alloherpesviruses. Since its first description in the late 1990s, this virus has induced important economic losses in common and koi carp worldwide. It has also had negative environmental implications by affecting wild carp populations. These negative impacts and the importance of the host species have stimulated studies aimed at developing diagnostic and prophylactic tools. Unexpectedly, the data generated by these applied studies have stimulated interest in CyHV-3 as a model for fundamental research. This review intends to provide a complete overview of the knowledge currently available on CyHV-3.
Collapse
Affiliation(s)
- Maxime Boutier
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Maygane Ronsmans
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Krzysztof Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Joanna Jazowiecka-Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Catherine Vancsok
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Léa Morvan
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ma Michelle D Peñaranda
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - David M Stone
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Keith Way
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Steven J van Beurden
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
13
|
Boutier M, Ronsmans M, Ouyang P, Fournier G, Reschner A, Rakus K, Wilkie GS, Farnir F, Bayrou C, Lieffrig F, Li H, Desmecht D, Davison AJ, Vanderplasschen A. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging. PLoS Pathog 2015; 11:e1004690. [PMID: 25700279 PMCID: PMC4336323 DOI: 10.1371/journal.ppat.1004690] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/20/2015] [Indexed: 12/27/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in common and koi carp industries, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open reading frame 134 (ORF134), we unexpectedly obtained a clone with additional deletion of ORF56 and ORF57. This triple deleted recombinant replicated efficiently in vitro and expressed an in vivo safety/efficacy profile compatible with use as an attenuated vaccine. To determine the role of the double ORF56-57 deletion in the phenotype and to improve further the quality of the vaccine candidate, a series of deleted recombinants was produced and tested in vivo. These experiments led to the selection of a double deleted recombinant lacking ORF56 and ORF57 as a vaccine candidate. The safety and efficacy of this strain were studied using an in vivo bioluminescent imaging system (IVIS), qPCR, and histopathological examination, which demonstrated that it enters fish via skin infection similar to the wild type strain. However, compared to the parental wild type strain, the vaccine candidate replicated at lower levels and spread less efficiently to secondary sites of infection. Transmission experiments allowing water contamination with or without additional physical contact between fish demonstrated that the vaccine candidate has a reduced ability to spread from vaccinated fish to naïve sentinel cohabitants. Finally, IVIS analyses demonstrated that the vaccine candidate induces a protective mucosal immune response at the portal of entry. Thus, the present study is the first to report the rational development of a recombinant attenuated vaccine against CyHV-3 for mass vaccination of carp. We also demonstrated the relevance of the CyHV-3 carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin. Common carp, and its colorful ornamental variety koi, is one of the most economically valuable species in aquaculture. Since the late 1990s, the common and koi carp culture industries have suffered devastating worldwide losses due to cyprinid herpesvirus 3 (CyHV-3). In the present study, we report the development of an attenuated recombinant vaccine against CyHV-3. Two genes were deleted from the viral genome, leading to a recombinant virus that is no longer capable of causing the disease but can be propagated in cell culture (for vaccine production) and infect fish when added to the water, thereby immunizing the fish. This attenuated recombinant vaccine also had a drastic defect in spreading from vaccinated to non-vaccinated cohabitant fish. The vaccine induced a protective mucosal immune response capable of preventing the entry of virulent CyHV-3 and is compatible with the simultaneous vaccination of a large number of carp by simply immersing the fish in water containing the vaccine. This vaccine represents a promising tool for controlling the most dreadful disease ever encountered by the carp culture industries. In addition, the present study highlights the importance of the CyHV-3 - carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin.
Collapse
Affiliation(s)
- Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Maygane Ronsmans
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ping Ouyang
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Guillaume Fournier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Anca Reschner
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Krzysztof Rakus
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Gavin S. Wilkie
- MRC—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Frédéric Farnir
- Biostatistics and Bioinformatics, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Calixte Bayrou
- Pathology, Department of Morphology and Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - François Lieffrig
- Fish Pathology Lab, Department of Biotechnology, CER Groupe, Marloie, Belgium
| | - Hong Li
- USDA-ARS-ADRU, Washington State University, Pullman, Pullman, Washington, United States of America
| | - Daniel Desmecht
- Pathology, Department of Morphology and Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Andrew J. Davison
- MRC—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|