1
|
Conrad RA, Evenhuis JP, Lipscomb RS, Pérez-Pascual D, Stevick RJ, Birkett C, Ghigo JM, McBride MJ. Flavobacterium columnare ferric iron uptake systems are required for virulence. Front Cell Infect Microbiol 2022; 12:1029833. [PMID: 36325469 PMCID: PMC9618737 DOI: 10.3389/fcimb.2022.1029833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Flavobacterium columnare, which causes columnaris disease, is one of the costliest pathogens in the freshwater fish-farming industry. The virulence mechanisms of F. columnare are not well understood and current methods to control columnaris outbreaks are inadequate. Iron is an essential nutrient needed for metabolic processes and is often required for bacterial virulence. F. columnare produces siderophores that bind ferric iron for transport into the cell. The genes needed for siderophore production have been identified, but other components involved in F. columnare iron uptake have not been studied in detail. We identified the genes encoding the predicted secreted heme-binding protein HmuY, the outer membrane iron receptors FhuA, FhuE, and FecA, and components of an ATP binding cassette (ABC) transporter predicted to transport ferric iron across the cytoplasmic membrane. Deletion mutants were constructed and examined for growth defects under iron-limited conditions and for virulence against zebrafish and rainbow trout. Mutants with deletions in genes encoding outer membrane receptors, and ABC transporter components exhibited growth defects under iron-limited conditions. Mutants lacking multiple outer membrane receptors, the ABC transporter, or HmuY retained virulence against zebrafish and rainbow trout mirroring that exhibited by the wild type. Some mutants predicted to be deficient in multiple steps of iron uptake exhibited decreased virulence. Survivors of exposure to such mutants were partially protected against later infection by wild-type F. columnare.
Collapse
Affiliation(s)
- Rachel A. Conrad
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture (USDA), Kearneysville, WV, United States
| | - Ryan S. Lipscomb
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture (USDA), Kearneysville, WV, United States
| | - David Pérez-Pascual
- Institut Pasteur, Université de Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Rebecca J. Stevick
- Institut Pasteur, Université de Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture (USDA), Kearneysville, WV, United States
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
- *Correspondence: Mark J. McBride,
| |
Collapse
|
2
|
Conrad RA, Evenhuis JP, Lipscomb RS, Birkett C, McBride MJ. Siderophores Produced by the Fish Pathogen Flavobacterium columnare Strain MS-FC-4 Are Not Essential for Its Virulence. Appl Environ Microbiol 2022; 88:e0094822. [PMID: 35969053 PMCID: PMC9469716 DOI: 10.1128/aem.00948-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 01/17/2023] Open
Abstract
Flavobacterium columnare causes columnaris disease in wild and aquaculture-reared freshwater fish. F. columnare virulence mechanisms are not well understood, and current methods to control columnaris disease are inadequate. Iron acquisition from the host is important for the pathogenicity and virulence of many bacterial pathogens. F. columnare iron acquisition has not been studied in detail. We identified genes predicted to function in siderophore production for ferric iron uptake. Genes predicted to encode the proteins needed for siderophore synthesis, export, uptake, and regulation were deleted from F. columnare strain MS-FC-4. The mutants were examined for defects in siderophore production, for growth defects in iron-limited conditions, and for virulence against zebrafish and rainbow trout. Mutants lacking all siderophore activity were obtained. These mutants displayed growth defects when cultured under iron-limited conditions, but they retained virulence against zebrafish and rainbow trout similar to that exhibited by the wild type, indicating that the F. columnare MS-FC-4 siderophores are not required for virulence under the conditions tested. IMPORTANCE Columnaris disease, which is caused by Flavobacterium columnare, is a major problem for freshwater aquaculture. Little is known regarding F. columnare virulence factors, and control measures are limited. Iron acquisition mechanisms such as siderophores are important for virulence of other pathogens. We identified F. columnare siderophore biosynthesis, export, and uptake genes. Deletion of these genes eliminated siderophore production and resulted in growth defects under iron-limited conditions but did not alter virulence in rainbow trout or zebrafish. The results indicate that the F. columnare strain MS-FC-4 siderophores are not critical virulence factors under the conditions tested but may be important for survival under iron-limited conditions in natural aquatic environments or aquaculture systems.
Collapse
Affiliation(s)
- Rachel A. Conrad
- Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia, USA
| | - Ryan S. Lipscomb
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia, USA
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia, USA
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Draft Genome Sequences of
Flavobacterium covae
Strains LSU-066-04 and LV-359-01. Microbiol Resour Announc 2022; 11:e0035222. [PMID: 35703564 PMCID: PMC9302162 DOI: 10.1128/mra.00352-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavobacterium covae is one of four Flavobacterium spp. that cause columnaris disease in teleost fish. Here, we report the draft genomes of two isolates, LSU-066-04 and LV-359-01, and their predicted virulence factors.
Collapse
|
4
|
Roseobacter group probiotics exhibit differential killing of fish pathogenic Tenacibaculum species. Appl Environ Microbiol 2022; 88:e0241821. [PMID: 35080904 DOI: 10.1128/aem.02418-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fish pathogenic bacteria of the Tenacibaculum genus are a serious emerging concern in modern aquaculture, causing tenacibaculosis in a broad selection of cultured finfish. Data describing their virulence mechanisms are scarce and few means, antibiotic treatment aside, are available to control their proliferation in aquaculture systems. We genome sequenced a collection of 19 putative Tenacibaculum isolates from outbreaks at two aquaculture facilities and tested their susceptibility to treatment with tropodithietic acid (TDA)-producing Roseobacter group probiotics. We found that local outbreaks of Tenacibaculum can involve heterogeneous assemblages of species and strains with the capacity to produce multiple different virulence factors related to host invasion and infection. The probiotic Phaeobacter piscinae S26 proved efficient in killing pathogenic Tenacibaculum species such as T. maritimum, T. soleae, and some T. discolor strains. However, the T. mesophilum and T. gallaicum species exhibit natural tolerance towards TDA and are hence not likely to be easily killed by TDA-producing probiotics. Tolerance towards TDA in Tenacibaculum is likely involving multiple inherent physiological features pertaining to electron and proton transport, iron sequestration, and potentially also drug efflux mechanisms, as genetic determinants encoding such features were significantly associated with TDA tolerance. Collectively, our results support the use of TDA-producers to prevent tenacibaculosis, however, their efficacy is likely limited to some Tenacibaculum species. Importance A productive and sustainable aquaculture sector is needed to meet the UN sustainable development goals (SDGs) and supply the growing world population with high-protein food sources. A sustainable way to prevent disease outbreaks in the industry is the application of probiotic bacteria that can antagonize fish pathogens in the aquaculture systems. TDA-producing Roseobacter group probiotics have proven efficient in killing important vibrio pathogens and protecting fish larvae against infection, yet their efficacy against different fish pathogenic species of the Tenacibaculum genus has not been explored. Therefore, we tested the efficacy of such potential probiotics against a collection of different Tenacibaculum isolates and found the probiotic to efficiently kill a subset of relevant strains and species, supporting their use as sustainable disease control measure in aquaculture.
Collapse
|
5
|
Prior BS, Lange MD, Salger SA, Reading BJ, Peatman E, Beck BH. The effect of piscidin antimicrobial peptides on the formation of Gram-negative bacterial biofilms. JOURNAL OF FISH DISEASES 2022; 45:99-105. [PMID: 34590712 DOI: 10.1111/jfd.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Fish-derived antimicrobial peptides are an important part of the innate immune system due to their potent antimicrobial properties. Piscidins are a class of antimicrobial peptides first described in hybrid striped bass (Morone chrysops x Morone saxatilis) but have also been identified in many other fish species. Previous work demonstrated the broad antimicrobial activity of piscidins against Gram-negative and Gram-positive bacterial species. This study sought to determine the extent to which class I (striped bass piscidin 1, white bass piscidin 1 and striped bass/white bass piscidin 3) and class II (striped bass piscidin 4 and white bass piscidin 5) piscidins inhibit biofilm formation of different Gram-negative bacteria. In general, the class I and II piscidins demonstrate potent activity against Escherichia coli and Flavobacterium columnare biofilms. The class II piscidins showed more activity against E. coli and F. columnare isolates than did the class I piscidins. The piscidins in general were much less effective against inhibiting Aeromonas hydrophila and A. veronii biofilm growth. Only the class I piscidins showed significant growth inhibition among the Aeromonas spp. examined.
Collapse
Affiliation(s)
- Benjamin S Prior
- School of Fisheries, Aquaculture, and Aquatic Sciences, Aquatic Genetics and Genomics, Auburn University, Auburn, AL, USA
| | - Miles D Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| | | | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Aquatic Genetics and Genomics, Auburn University, Auburn, AL, USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| |
Collapse
|
6
|
Bruce TJ, Ma J, Sudheesh PS, Cain KD. Quantification and comparison of gene expression associated with iron regulation and metabolism in a virulent and attenuated strain of Flavobacterium psychrophilum. JOURNAL OF FISH DISEASES 2021; 44:949-960. [PMID: 33591637 DOI: 10.1111/jfd.13354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Iron is essential for growth and virulence in most pathogenic bacterial strains. In some cases, the hosts for these pathogenic bacteria develop specialized strategies to sequester iron and limit infectivity. This in turn may result in the invading pathogens utilizing high-affinity iron transport mechanisms, such as the use of iron-chelating siderophores, to extend beyond the host defences. Flavobacterium psychrophilum, the causative agent of bacterial coldwater disease (BCWD) in salmonids, relies on iron metabolism for infectivity, and the genome of the model CSF-259-93 strain has recently been made available. Further, this strain serves as a parent strain for a live-attenuated vaccine strain, B.17, which has been shown to provide rainbow trout with protection against BCWD. To elucidate specific gene expression responses to iron metabolism and compare strain differences, both F. psychrophilum strains were grown under iron-limiting conditions and 26 genes related to iron metabolism were mapped for 96 hr in culture via qPCR analyses. Results indicate increased production of the ferrous iron transport protein B (FITB; p =.008), and ferric receptor CfrA (FR 1; p =.012) in the wild-type CSF-259-93 strain at 72 hr and 96 hr post-exposure to iron-limiting media. In the B.17 vaccine strain, siderophore synthase (SS) expression was found to be downregulated at 72 hr, in comparison with 0h (p =.018). When strains were compared, FITB (p =.021), FR1 (p =.009) and SS (p =.016) were also elevated in B.17 at 0 hr and TonB outer protein membrane receptor 1 (TBomr1; p =.005) had a lower expression at 96 hr. Overall, this study demonstrated strain-related gene expression changes in only a fraction of the iron metabolism genes tested; however, results provide insight on potential virulence mechanisms and clarification on iron-related gene expression for F. psychrophilum.
Collapse
Affiliation(s)
- Timothy J Bruce
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, USA
| | - Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, USA
| | - Ponnerassery S Sudheesh
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, USA
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, USA
| |
Collapse
|
7
|
Farmer BD, Fuller SA, Beck BH, Abernathy JW, Lange MD, Webster CD. Differential susceptibility of white bass (Morone chrysops), striped bass (Morone saxatilis) and hybrid striped bass (M. chrysops × M. saxatilis) to Flavobacterium columnare and effects of mucus on bacterial growth and biofilm development. JOURNAL OF FISH DISEASES 2021; 44:161-169. [PMID: 33006773 DOI: 10.1111/jfd.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Columnaris disease generates substantial losses of many freshwater fish species; one is the hybrid striped bass. The ubiquitous aquatic bacterium Flavobacterium columnare can be highly effective in biofilm formation on fish skin and gills. Previous research showed a difference between columnaris disease susceptibility of hybrid striped bass (Morone saxatilis × M. chrysops) and white bass (M. chrysops). To understand these differential susceptibilities and possible mucosal relationship, we assessed total bacterial growth and biofilm formation with mucus derived from each moronid parental species: white bass and striped bass (M. saxatilis). Differential susceptibility was confirmed of the other parent species, the striped bass (M. saxatilis). In addition to intraspecies investigations, individual hybrid striped bass mucosal affects were also studied for deferential responses to bacterial growth and biofilm formation. Species- and concentration-dependent differences were detected in the total growth of the bacteria to host mucus. Our data suggest that bass mucus can significantly affect biofilm formation with the F. columnare isolate tested. There appears to be a correlation between the bacteria's response of growth and biofilms and bass species susceptibility. This study provides insight into our understanding of the host-pathogen interaction between F. columnare and moronids.
Collapse
Affiliation(s)
- Bradley D Farmer
- Harry K. Dupree Stuttgart National Aquaculture Research Center, United States Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| | - Sidney Adam Fuller
- Harry K. Dupree Stuttgart National Aquaculture Research Center, United States Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| | - Benjamin H Beck
- Aquatic Animal Health Research Unit, United States Department of Agriculture, Agricultural Research Service, Auburn, AL, USA
| | - Jason W Abernathy
- Harry K. Dupree Stuttgart National Aquaculture Research Center, United States Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| | - Miles D Lange
- Aquatic Animal Health Research Unit, United States Department of Agriculture, Agricultural Research Service, Auburn, AL, USA
| | - Carl D Webster
- Harry K. Dupree Stuttgart National Aquaculture Research Center, United States Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| |
Collapse
|
8
|
Lange MD, Farmer BD, Abernathy J. Vertebrate mucus stimulates biofilm development and upregulates iron acquisition genes in Flavobacterium columnare. JOURNAL OF FISH DISEASES 2020; 43:101-110. [PMID: 31709555 DOI: 10.1111/jfd.13103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Columnaris disease is responsible for substantial losses throughout the production of many freshwater fish species. One of the ways in which the bacterium Flavobacterium columnare is so effective in initiating disease is through the formation of biofilms on fish skin and gills. To further explore the interaction between host factors and bacterial cells, we assayed the ability of vertebrate mucus to enhance F. columnare biofilm development. Different concentrations of catfish, tilapia and pig mucus (5-60 µg/ml) increased biofilm growth at varying degrees among F. columnare isolates. Our data suggest that vertebrate mucus acts as a signalling molecule for the development of F. columnare biofilms; however, there are clear disparities in how individual isolates respond to different mucus fractions to stimulate biofilms. The expression of iron acquisition genes among two genomovar II isolates showed that ferroxidase, TonB receptor and the siderophore synthetase gene were all significantly upregulated among F. columnare biofilms. Interestingly, the siderophore acetyltransferase gene was only shown to be significantly upregulated in one of the genomovar II isolates. This work provides insight into our understanding of the interaction between F. columnare and vertebrate mucus, which likely contributes to the growth of planktonic cells and the transition into biofilms.
Collapse
Affiliation(s)
- Miles D Lange
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Bradley D Farmer
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Jason Abernathy
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| |
Collapse
|
9
|
Lange MD, Abernathy J, Farmer BD. Evaluation of a Recombinant Flavobacterium columnare DnaK Protein Vaccine as a Means of Protection Against Columnaris Disease in Channel Catfish ( Ictalurus punctatus). Front Immunol 2019; 10:1175. [PMID: 31244827 PMCID: PMC6562308 DOI: 10.3389/fimmu.2019.01175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/08/2019] [Indexed: 01/18/2023] Open
Abstract
Flavobacterium columnare causes substantial losses among cultured finfish species. The Gram-negative bacterium is an opportunistic pathogen that manifests as biofilms on the host's mucosal surfaces as the disease progresses. We previously demonstrated that the dominant mucosal IgM antibody response to F. columnare is to the chaperone protein DnaK that is found in the extracellular fraction. To establish the efficacy of using recombinant protein technology to develop a new vaccine against columnaris disease, we are reporting on two consecutive years of vaccine trials using a recombinant F. columnare DnaK protein (rDnaK). In year one, three groups of channel catfish (n = 300) were immunized by bath immersion with a live attenuated F. columnare isolate, rDnaK or sham immunized. After 6 weeks, an F. columnare laboratory challenge showed a significant increase in survival (>30%) in both the live attenuated and rDnaK vaccines when compared to the non-immunized control. A rDnaK-specific ELISA revealed significant levels of mucosal IgM antibodies in the skin of catfish immunized with rDnaK at 4- and 6-weeks post immunization. In the second year, three groups of channel catfish (n = 300) were bath immunized with rDnaK alone or with rDnaK after a brief osmotic shock or sham immunized. After 6 weeks a laboratory challenge with F. columnare was conducted and showed a significant increase in survival in the rDnaK (> 25%) and in rDnaK with osmotic shock (>35%) groups when compared to the non-immunized control. The rDnaK-specific ELISA demonstrated significant levels of mucosal IgM antibodies in the skin of catfish groups immunized with rDnaK at 4- and 6-weeks post immunization. To further understand the processes which have conferred immune protection in the rDnaK group, we conducted RNA sequencing of skin samples from the non-immunized (n = 6) and rDnaK treated channel catfish at 1-week (n = 6) and 6 weeks (n = 6) post immunization. Significantly altered gene expression was identified and results will be discussed. Work to further enhance the catfish immune response to F. columnare rDnaK is underway as this protein remains a promising candidate for additional optimization and experimental trials in a production setting.
Collapse
Affiliation(s)
- Miles D Lange
- Harry K. Dupree Stuttgart National Aquaculture Research Center, Agricultural Research Service, United States Department of Agriculture, Stuttgart, AR, United States
| | - Jason Abernathy
- Harry K. Dupree Stuttgart National Aquaculture Research Center, Agricultural Research Service, United States Department of Agriculture, Stuttgart, AR, United States
| | - Bradley D Farmer
- Harry K. Dupree Stuttgart National Aquaculture Research Center, Agricultural Research Service, United States Department of Agriculture, Stuttgart, AR, United States
| |
Collapse
|
10
|
|
11
|
Lange MD, Farmer BD, Declercq AM, Peatman E, Decostere A, Beck BH. Sickeningly Sweet: L-rhamnose stimulates Flavobacterium columnare biofilm formation and virulence. JOURNAL OF FISH DISEASES 2017; 40:1613-1624. [PMID: 28581211 DOI: 10.1111/jfd.12629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 06/07/2023]
Abstract
Flavobacterium columnare, the causative agent of columnaris disease, causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease are urgently needed. The current work sought to evaluate the effect of L-rhamnose on the growth characteristics of F. columnare. While we initially did not observe any key changes during the total growth of F. columnare isolates tested when treated with L-rhamnose, it soon became apparent that the difference lies in the ability of this carbohydrate to facilitate the formation of biofilms. The addition of different concentrations of L-rhamnose consistently promoted the development of biofilms among different F. columnare isolates; however, it does not appear to be sufficient as a sole carbon source for biofilm growth. Our data also suggest that iron acquisition machinery is required for biofilm development. Finally, the addition of different concentrations of L-rhamnose to F. columnare prior to a laboratory challenge increased mortality rates in channel catfish (Ictalurus punctatus) as compared to controls. These results provide further evidence that biofilm formation is an integral virulence factor in the initiation of disease in fish.
Collapse
Affiliation(s)
- M D Lange
- Harry K. Dupree Stuttgart National Aquaculture Research Center, U.S. Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| | - B D Farmer
- Harry K. Dupree Stuttgart National Aquaculture Research Center, U.S. Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| | - A M Declercq
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Stress Physiology Research Group, Department of Bio-analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - E Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - A Decostere
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - B H Beck
- Aquatic Animal Health Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Auburn, AL, USA
| |
Collapse
|
12
|
Kinnula H, Mappes J, Valkonen JK, Pulkkinen K, Sundberg L. Higher resource level promotes virulence in an environmentally transmitted bacterial fish pathogen. Evol Appl 2017; 10:462-470. [PMID: 28515779 PMCID: PMC5427672 DOI: 10.1111/eva.12466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023] Open
Abstract
Diseases have become a primary constraint to sustainable aquaculture, but remarkably little attention has been paid to a broad class of pathogens: the opportunists. Opportunists often persist in the environment outside the host, and their pathogenic features are influenced by changes in the environment. To test how environmental nutrient levels influence virulence, we used strains of Flavobacterium columnare, an environmentally transmitted fish pathogen, to infect rainbow trout and zebra fish in two different nutrient concentrations. To separate the effects of dose and nutrients, we used three infective doses and studied the growth of bacteria in vitro. High nutrient concentration promoted both the virulence and the outside-host growth of the pathogen, most notably in a low-virulence strain. The increase in virulence could not be exhaustively explained by the increased dose under higher nutrient supply, suggesting virulence factor activation. In aquaculture settings, accumulation of organic material in rearing units can locally increase water nutrient concentration and therefore increase disease risk as a response to elevated bacterial density and virulence factor activation. Our results highlight the role of increased nutrients in outside-host environment as a selective agent for higher virulence and faster evolutionary rate in opportunistic pathogens.
Collapse
Affiliation(s)
- Hanna Kinnula
- Department of Biological and Environmental ScienceCentre of Excellence in Biological InteractionsUniversity of JyvaskylaJyvaskylaFinland
| | - Johanna Mappes
- Department of Biological and Environmental ScienceCentre of Excellence in Biological InteractionsUniversity of JyvaskylaJyvaskylaFinland
| | - Janne K. Valkonen
- Department of Biological and Environmental ScienceCentre of Excellence in Biological InteractionsUniversity of JyvaskylaJyvaskylaFinland
| | - Katja Pulkkinen
- Department of Biological and Environmental ScienceCentre of Excellence in Biological InteractionsUniversity of JyvaskylaJyvaskylaFinland
| | - Lotta‐Riina Sundberg
- Department of Biological and Environmental ScienceCentre of Excellence in Biological InteractionsUniversity of JyvaskylaJyvaskylaFinland
| |
Collapse
|
13
|
Mohammed HH, Arias CR. Protective efficacy of Nigella sativa seeds and oil against columnaris disease in fishes. JOURNAL OF FISH DISEASES 2016; 39:693-703. [PMID: 26265495 DOI: 10.1111/jfd.12402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
Columnaris disease, caused by the bacterium Flavobacterium columnare, is currently the most frequently reported bacterial disease affecting farm-raised channel catfish in the USA. Common treatments against the disease include the use of medicated feed that has led to emergent antibiotic resistant strains of F. columnare. Nigella sativa (Black cumin) is a medicinal herb commonly used by many cultures as a natural remedy for numerous disorders. Recently, we have discovered the antibacterial activity of N. sativa and its oil extract against F. columnare. In this study, we showed N. sativa oil (NSO) strongly inhibited the growth of all of the strains of F. columnare tested and yielded significantly larger zones of inhibition than those produced by oxytetracyclin. We tested the protective effect against columnaris disease in vivo by incorporating NSO (5%) or N. sativa seeds (NSS) (5%) into fish feeds. Fishes (Ictalurus punctatus and Danio rerio) fed amended diets displayed significantly lower mortality than those fed control diets. Per cent mortalities in control groups ranged from 77% to 44% and from 70% to 18% in zebrafish and channel catfish, respectively. A dose study using different NSS concentrations showed that 5% NSS offered the most protection against columnaris disease in channel catfish.
Collapse
Affiliation(s)
- H H Mohammed
- Aquatic Microbiology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, Center for Advanced Science, Innovation, and Commerce, Auburn, AL, USA
| | - C R Arias
- Aquatic Microbiology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, Center for Advanced Science, Innovation, and Commerce, Auburn, AL, USA
| |
Collapse
|
14
|
Lange MD, Beck BH, Brown JD, Farmer BD, Barnett LM, Webster CD. Missing the target: DNAk is a dominant epitope in the humoral immune response of channel catfish (Ictalurus punctatus) to Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2016; 51:170-179. [PMID: 26892797 DOI: 10.1016/j.fsi.2016.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
Vaccination remains a viable alternative for bacterial disease protection in fish; however additional work is required to understand the mechanisms of adaptive immunity in the channel catfish. To assess the humoral immune response to Flavobacterium columnare; a group of channel catfish were first immunized with F. columnare LV-359-01 cultured in iron-depleted media, before being challenged with wild type F. columnare LV-359-01. The immunization protocol did not confer increased protection against F. columnare; however both control and immunized responders generated serum and skin IgM antibodies against F. columnare proteins. Western blot analyses of individuals from both groups showed that IgM antibodies were generated to the same 70 kDa extracellular protein, which was identified to be the bacterial chaperonin protein DNAk. Antibodies generated were cross reactive to DNAk proteins found in other gram negative bacteria. Our data suggests that DNAk is the dominant epitope in the channel catfish B-cell response to F. columnare.
Collapse
Affiliation(s)
- Miles D Lange
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR USA.
| | - Benjamin H Beck
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR USA
| | - Jason D Brown
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR USA
| | - Bradley D Farmer
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR USA
| | - L Matthew Barnett
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR USA
| | - Carl D Webster
- U.S. Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR USA
| |
Collapse
|
15
|
Gene deletion strategy to examine the involvement of the two chondroitin lyases in Flavobacterium columnare virulence. Appl Environ Microbiol 2015; 81:7394-402. [PMID: 26253667 DOI: 10.1128/aem.01586-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/06/2015] [Indexed: 11/20/2022] Open
Abstract
Flavobacterium columnare is an important bacterial pathogen of freshwater fish that causes high mortality of infected fish and heavy economic losses in aquaculture. The pathogenesis of this bacterium is poorly understood, in part due to the lack of efficient methods for genetic manipulation. In this study, a gene deletion strategy was developed and used to determine the relationship between the production of chondroitin lyases and virulence. The F. johnsoniae ompA promoter (PompA) was fused to sacB to construct a counterselectable marker for F. columnare. F. columnare carrying PompA-sacB failed to grow on media containing 10% sucrose. A suicide vector carrying PompA-sacB was constructed, and a gene deletion strategy was developed. Using this approach, the chondroitin lyase-encoding genes, cslA and cslB, were deleted. The ΔcslA and ΔcslB mutants were both partially deficient in digestion of chondroitin sulfate A, whereas a double mutant (ΔcslA ΔcslB) was completely deficient in chondroitin lyase activity. Cells of F. columnare wild-type strain G4 and of the chondroitin lyase-deficient ΔcslA ΔcslB mutant exhibited similar levels of virulence toward grass carp in single-strain infections. Coinfections, however, revealed a competitive advantage for the wild type over the chondroitin lyase mutant. The results indicate that chondroitin lyases are not essential virulence factors of F. columnare but may contribute to the ability of the pathogen to compete and cause disease in natural infections. The gene deletion method developed in this study may be employed to investigate the virulence factors of this bacterium and may have wide application in many other members of the phylum Bacteroidetes.
Collapse
|