1
|
Cacot G, Davis DA, LaFrentz BR, Liles MR, Butts IAE, Shoemaker CA, Beck BH, Farmer M, Bruce TJ. Assessment of dietary yeast-based additives for cultured catfish and tilapia health. JOURNAL OF FISH DISEASES 2024; 47:e14008. [PMID: 39160764 DOI: 10.1111/jfd.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Channel catfish (Ictalurus punctatus) and Nile tilapia (Oreochromis niloticus) are two aquaculture species of great importance. Intensive production is often hindered by poor growth performance and disease mortality. The aim of this study was to evaluate the potential of a commercial fermented yeast product, DVAQUA, on channel catfish and Nile tilapia growth performance metrics and disease resistance. Channel catfish and Nile tilapia were fed practical diets supplemented with 0%, 0.1% or 0.4% of DVAQUA over approximately 2-month feeding periods in recirculation aquaculture systems. To assess the potential of the postbiotic against common aquaculture pathogens, juvenile catfish were subsequently challenged by immersion with Edwardsiella ictaluri S97-773 or virulent Aeromonas hydrophila ML09-119. Nile tilapia juveniles were challenged by injection with Streptococcus iniae ARS-98-60. Serum lysozyme activity, blood chemistry and growth metrics were measured at the end of the feeding period, but no differences were observed across the different metrics, except for survival. For the pathogen challenges, there were no differences in endpoint mortality for channel catfish with either pathogen (p > .05). In contrast, Nile tilapia survivability to S. iniae infection increased proportionally to the inclusion of DVAQUA (p = .005). Changes to sera lysozyme activity were also noted in the tilapia trial, with a reduction of activity in the fish fed the 0.4% DVAQUA diet compared to the control diet (p = .031). Expression profiles of proinflammatory genes and antibodies were also found to be modulated in channel catfish fed the postbiotic, indicating some degree of protective response. These results suggest that this postbiotic may be beneficial in protecting Nile tilapia against S. iniae infection by influencing immune parameters and additional research is needed to evaluate the potential of this DVAQUA for improving catfish health and disease control.
Collapse
Affiliation(s)
- Guillaume Cacot
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - D Allen Davis
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | | | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | | | - Benjamin H Beck
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, Alabama, USA
| | | | - Timothy J Bruce
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
2
|
Kala K, Mallik SK, Shahi N, Pathak R, Sharma P, Chandra S, Patiyal RS, Pande V, Pandey N, Pande A, Pandey PK. Emergence of Aeromonas salmonicida subsp. masoucida MHJM250: unveiling pathological characteristics and antimicrobial susceptibility in golden mahseer, Tor putitora (Hamilton, 1822) in India. Vet Res Commun 2024:10.1007/s11259-024-10518-6. [PMID: 39269671 DOI: 10.1007/s11259-024-10518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Aeromonas salmonicida subsp. masoucida, designated as laboratory strain MHJM250, was characterized from a naturally infected farmed golden mahseer, Tor putitora. The infected fish exhibited clinical signs of erosion at the caudal fin and hemorrhage onx the ventral body surface. Molecular identification through 16 S rDNA and phylogenetic analysis revealed 100% similarity with a known strain A. salmonicida subsp. masoucida (MT122821.1). MHJM250 exhibited positive reactions for oxidase, catalase, esculin, MR-VP, O/F and utilized arginine and lysine. It also demonstrated siderophore activity, thrived at various NaCl concentrations, hydrolyzed gelatinase, skimmed milk and casinase. In vitro studies exhibited its hemolytic nature, significant biofilm production in glucose-rich tryptone soya broth and beta-hemolysis. MHJM250 didn't produce slime and was non-precipitated upon boiling. It showed crystal violet binding characteristics and auto-agglutination with relatively weak hydrophobicity (25%). In the challenge assay, intraperitoneal administration of MHJM250 to T. pitutora fingerlings at 108 CFU mL-1 resulted in pathogenicity with 3% mortality and mild hemorrhagic symptoms. Histopathological analysis revealed degenerative changes in gill, kidney, liver, muscle, and intestine samples. The bacterium displayed resistance to several antibiotics (µg/disc); ampicillin (10 µg), ampicillin/ sulbactam (10/10 µg), clindamycin (2 µg), linezolid (30 µg), penicillin G (10 µg) and rifampicin (5 µg) and varied minimum inhibitory concentrations against oxytetracycline, erythromycin and florfenicol. Transmission electron microscopy showed its rod-shaped structure with single polar flagellum and lophotrichous flagella. An investigation on the molecular basis for virulence factors of A. salmonicida subsp. masoucida MHJM250 may offer crucial understandings to formulate disease prevention and control strategies in aquaculture.
Collapse
Affiliation(s)
- Krishna Kala
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Sumanta Kumar Mallik
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Neetu Shahi
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Richa Pathak
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Prerna Sharma
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Suresh Chandra
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - R S Patiyal
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Nityanand Pandey
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Amit Pande
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Pramod Kumar Pandey
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India.
| |
Collapse
|
3
|
Aini N, Putri DSYR, Achhlam DH, Fatimah F, Andriyono S, Hariani D, Do HDK, Wahyuningsih SPA. Supplementation of Bacillus subtilis and Lactobacillus casei to increase growth performance and immune system of catfish ( Clarias gariepinus) due to Aeromonas hydrophila infection. Vet World 2024; 17:602-611. [PMID: 38680146 PMCID: PMC11045519 DOI: 10.14202/vetworld.2024.602-611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim Catfish has a high economic value and is popular among consumers. To ensure well-stocked catfish stocks, good fisheries management must also be ensured. The high demand for catfish must be supplemented by preventive measures against pathogenic bacterial infections using probiotics with high potential for Lactobacillus casei and Bacillus subtilis. The aim of this study was to determine the effect of probiotic supplementation consisting of a combination of L. casei and B. subtilis probiotics on the growth, immune system, water quality, proximate value of feed, and body composition of catfish infected with Aeromonas hydrophila. Materials and Methods This study used a completely randomized study with eight treatments and three replications. The manipulated factor was the probiotic concentration [0% (A), 0.5% (B), 10% (C), and 15% (D)] in groups of catfish infected and uninfected with A. hydrophila. Combination of B. subtilis, and L. casei that were used in a 1:1 ratio of 108 colony forming unit/mL. The study lasted for 42 days. On the 35th day, A. hydrophila was infected by intramuscular injection into fish. The Statistical Package for the Social Sciences (SPSS) software version 23.0 (IBM SPSS Statistics) was used to analyze data on growth, immune system, and water quality. Results Providing probiotics in feed can increase the nutritional value of feed based on proximate test results. There were significant differences in average daily gain (ADG), feed conversion ratio (FCR), and survival rate (SR) parameters in the group of catfish infected with A. hydrophila (p > 0.05); however, there were no significant differences in final body weight, specific growth rate (SGR), and percentage weight gain. Interleukin-1β (IL-1β) levels were significantly different between treatments C and D. The tumor necrosis factor (TNF) α parameters were significantly different between treatments A and C, whereas the phagocytic activity of treatment A was significantly different from that of treatment D. There was a significant difference (p > 0.05) in the growth parameters of SGR, ADG, and FCR in the group of fish that were not infected with A. hydrophila, with the best treatment being a probiotic concentration of 15%, but there was no significant difference in the SR parameters. IL-1β and TNF-α levels significantly differed between E and E0 (15% probiotics) but were not significantly different in terms of phagocytosis parameters. Conclusion Based on the results of this study, it can be concluded that using a combination of probiotics L. casei and B. subtilis can improve the growth, immune system, water quality, proximate value of feed, and body composition of catfish infected with A. hydrophila.
Collapse
Affiliation(s)
- Nurul Aini
- Doctoral Mathematics and Natural Sciences Study Program, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
- Department of Agricultural Technology, KH University. A. Wahab Hasbullah, Jombang, Indonesia
| | | | - Divany Hunaimatul Achhlam
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Fatimah Fatimah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
- University Center of Excellence Research Center for Bio-Molecule Engineering, Universitas Airlangga, Surabaya, Indonesia
| | - Sapto Andriyono
- Department of Marine, Faculty of Fisheries and Marine Sciences, Universitas Airlangga, Surabaya, Indonesia
| | - Dyah Hariani
- Department of Biology, Faculty of Mathematics and Natural Sciences, Surabaya State University, Surabaya, Indonesia
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
4
|
Wise AL, LaFrentz BR, Kelly AM, Liles MR, Griffin MJ, Beck BH, Bruce TJ. Coinfection of channel catfish (Ictalurus punctatus) with virulent Aeromonas hydrophila and Flavobacterium covae exacerbates mortality. JOURNAL OF FISH DISEASES 2024. [PMID: 38214100 DOI: 10.1111/jfd.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Flavobacterium covae and virulent Aeromonas hydrophila are prevalent bacterial pathogens within the US catfish industry that can cause high mortality in production ponds. An assessment of in vivo bacterial coinfection with virulent A. hydrophila (ML09-119) and F. covae (ALG-00-530) was conducted in juvenile channel catfish (Ictalurus punctatus). Catfish were divided into seven treatments: (1) mock control; (2) and (3) high and low doses of virulent A. hydrophila; (4) and (5) high and low doses of F. covae; (6) and (7) simultaneous challenge with high and low doses of virulent A. hydrophila and F. covae. In addition to the mortality assessment, anterior kidney and spleen were collected to evaluate immune gene expression, as well as quantify bacterial load by qPCR. At 96 h post-challenge (hpc), the high dose of virulent A. hydrophila infection (immersed in 2.3 × 107 CFU mL-1 ) resulted in cumulative percent mortality (CPM) of 28.3 ± 9.5%, while the high dose of F. covae (immersed in 5.2 × 106 CFU mL-1 ) yielded CPM of 23.3 ± 12.9%. When these pathogens were delivered in combination, CPM significantly increased for both the high- (98.3 ± 1.36%) and low-dose combinations (76.7 ± 17.05%) (p < .001). Lysozyme activity was found to be different at 24 and 48 hpc, with the high-dose vAh group demonstrating greater levels than unexposed control fish at each time point. Three proinflammatory cytokines (tnfα, il8, il1b) demonstrated increased expression levels at 48 hpc. These results demonstrate the additive effects on mortality when these two pathogens are combined. The synthesis of these mortality and health metrics advances our understanding of coinfections of these two important catfish pathogens and will aid fish health diagnosticians and channel catfish producers in developing therapeutants and prevention methods to control bacterial coinfections.
Collapse
Affiliation(s)
- Allison L Wise
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, Alabama, USA
| | | | - Anita M Kelly
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Matt J Griffin
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Benjamin H Beck
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, Alabama, USA
| | - Timothy J Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
5
|
Tuttle JT, Bruce TJ, Abdelrahman HA, Roy LA, Butts IAE, Beck BH, Kelly AM. Persistence of a Wild-Type Virulent Aeromonas hydrophila Isolate in Pond Sediments from Commercial Catfish Ponds: A Laboratory Study. Vet Sci 2023; 10:vetsci10030236. [PMID: 36977275 PMCID: PMC10056530 DOI: 10.3390/vetsci10030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Virulent Aeromonas hydrophila (vAh) is a major bacterial pathogen in the U.S. catfish industry and is responsible for large-scale losses within commercial ponds. Administering antibiotic feeds can effectively treat vAh infections, but it is imperative to discern new approaches and better understand the mechanics of infection for this bacterium. As such, the persistence of vAh in pond sediments was determined by conducting laboratory trials using sediment from four commercial catfish ponds. Twelve chambers contained sterilized sediment, vAh isolate ML-09-119, and 8 L of water maintained at 28 °C and were aerated daily. At 1, 2, 4, 6, and 8 days, and every 7th day post-inoculation for 28 days, 1 g of sediment was removed, and vAh colony forming units (CFU) were enumerated on ampicillin dextrin agar. Viable vAh colonies were present in all sediments at all sampling periods. The vAh growth curve peaked (1.33 ± 0.26 × 109 CFU g-1) at 96 h post-inoculation. The population plateaued between days 14 and 28. No correlations were found between CFU g-1 and physiochemical sediment variables. This study validated the ability of vAh to persist within pond sediments in a laboratory setting. Further research on environmental factors influencing vAh survivability and population dynamics in ponds is needed.
Collapse
Affiliation(s)
- James T Tuttle
- Alabama Fish Farming Center, Greensboro, AL 36744, USA
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Timothy J Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Hisham A Abdelrahman
- Alabama Fish Farming Center, Greensboro, AL 36744, USA
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Luke A Roy
- Alabama Fish Farming Center, Greensboro, AL 36744, USA
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ian A E Butts
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Benjamin H Beck
- Aquatic Animal Health Research Unit, US Department of Agriculture, Agricultural Research Service, Auburn, AL 36832, USA
| | - Anita M Kelly
- Alabama Fish Farming Center, Greensboro, AL 36744, USA
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
6
|
The Infection Dynamics of Experimental Edwardsiella ictaluri and Flavobacterium covae Coinfection in Channel Catfish (Ictalurus punctatus). Pathogens 2023; 12:pathogens12030462. [PMID: 36986384 PMCID: PMC10051119 DOI: 10.3390/pathogens12030462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Edwardsiella ictaluri and Flavobacterium covae are pervasive bacterial pathogens associated with significant losses in catfish aquaculture. Bacterial coinfections have the potential to increase outbreak severity and can worsen on-farm mortality. A preliminary assessment of in vivo bacterial coinfection with E. ictaluri (S97-773) and F. covae (ALG-00-530) was conducted using juvenile channel catfish (Ictalurus punctatus). Catfish were divided into five treatment groups: (1) mock control; (2) E. ictaluri full dose (immersion; 5.4 × 105 CFU mL−1); (3) F. covae full dose (immersion; 3.6 × 106 CFU mL−1); (4) E. ictaluri half dose (immersion; 2.7 × 105 CFU mL−1) followed by half dose F. covae (immersion; 1.8 × 106 CFU mL−1); and (5) F. covae half dose followed by half dose E. ictaluri. In the coinfection challenges, the second inoculum was delivered 48 h after the initial exposure. At 21 days post-challenge (DPC), the single dose E. ictaluri infection yielded a cumulative percent mortality (CPM) of 90.0 ± 4.1%, compared with 13.3 ± 5.9% in the F. covae group. Mortality patterns in coinfection challenges mimicked the single dose E. ictaluri challenge, with CPM of 93.3 ± 5.4% for fish initially challenged with E. ictaluri followed by F. covae, and 93.3 ± 2.7% for fish exposed to F. covae and subsequently challenged with E. ictaluri. Despite similarities in the final CPM within the coinfection groups, the onset of peak mortality was delayed in fish exposed to F. covae first but was congruent with mortality trends in the E. ictaluri challenge. Catfish exposed to E. ictaluri in both the single and coinfected treatments displayed increased serum lysozyme activity at 4-DPC (p < 0.001). Three pro-inflammatory cytokines (il8, tnfα, il1β) were evaluated for gene expression, revealing an increase in expression at 7-DPC in all E. ictaluri exposed treatments (p < 0.05). These data enhance our understanding of the dynamics of E. ictaluri and F. covae coinfections in US farm-raised catfish.
Collapse
|
7
|
Nguyen KQ, Bruce TJ, Afe OE, Liles MR, Beck BH, Davis DA. Growth Performance, Survival, Blood Chemistry, and Immune Gene Expression of Channel Catfish ( Ictalurus punctatus) Fed Probiotic-Supplemented Diets. Vet Sci 2022; 9:vetsci9120701. [PMID: 36548862 PMCID: PMC9786324 DOI: 10.3390/vetsci9120701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The channel catfish (Ictalurus punctatus) farming industry is the largest and one of the oldest aquaculture industries in the United States. Despite being an established industry, production issues stemming from disease outbreaks remain problematic for producers. Supplementing fish diets with probiotics to enhance the immune system and growth potential is one approach to mitigating disease. Although considerable laboratory data demonstrate efficacy, these results do not always translate to natural modes of disease transmission. Hence, the present work was conducted in the laboratory but incorporated flow-through water from large catfish pond production systems, allowing for natural exposure to pathogens. Two feeding trials were conducted in an 18-tank aquaria system housing two different sizes, 34.8 ± 12.5 g and 0.36 ± 0.03 g, of channel catfish. Channel catfish in the first trial were fed three experimental diets over six weeks. Commercial diets were top-coated with two selected spore-forming Bacillus spp. probiotics, Bacillus velezensis AP193 (1 × 106 CFU g−1) and BiOWiSH (3.6 × 104 CFU g−1), or a basal diet that contained no dietary additive. In the second eight-week trial, diets were top-coated with BiOWiSH at three concentrations (1.8, 3.6, and 7.3 × 104 CFU g−1), along with one basal diet (no probiotic). At the completion of these studies, growth performance, survival, hematocrit, blood chemistry, and immune expression of interleukin 1β (il1β), tumor necrosis factor-alpha (tnf-α), interleukin-8 (il8), transforming-growth factor β1 (tgf-β1), and toll-like receptor 9 (tlr9) were evaluated using qPCR. Trial results revealed no differences (p > 0.05) among treatments concerning growth, survival, or hematological parameters. For immune gene expression, interesting trends were discerned, with substantial downregulation observed in B. velezensis AP193-fed fish for il1β, tnf-α, and tlr9 expression within splenic tissue, compared to that of the basal and BiOWiSH diets (p < 0.05). However, the results were not statistically significant for anterior kidney tissue in the first trial. In the second trial, varied levels of probiotic inclusion revealed no significant impact of BiOWiSH’s products on the expression of il1β, tnf-α, il8, and tgf-β1 in both spleen and kidney tissue at any rate of probiotic inclusion (p > 0.05). Based on these findings, more research on utilizing probiotics in flow-through systems with natural infection conditions is crucial to ensure consistency from a controlled laboratory scale to real-world practices.
Collapse
Affiliation(s)
- Khanh Q. Nguyen
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| | - Timothy J. Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Oluwafunmilola E. Afe
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
- Department of Fisheries and Aquaculture Technology, Federal University of Technology Akure, Akure 340110, Nigeria
| | - Mark R. Liles
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Benjamin H. Beck
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL 36830, USA
| | - Donald Allen Davis
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Jiang X, Wang X, Li L, Niu C, Pei C, Zhu L, Kong X. Identification of Shewanella putrefaciens as a novel pathogen of the largemouth bass (Micropterus salmoides) and histopathological analysis of diseased fish. Front Cell Infect Microbiol 2022; 12:1042977. [DOI: 10.3389/fcimb.2022.1042977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
The largemouth bass (Micropterus salmoides) is an economically important aquaculture species in China, and its production has increased rapidly in recent years. Although Shewanella putrefaciens is known to infect several fish species, its role in infecting M. salmoides is relatively unknown. Here, we isolated a gram-negative bacterial strain (termed XX2021) from farmed largemouth bass. Based on the results of 16S rRNA sequencing and phylogenetic analyses, the isolate was identified as S. putrefaciens. The virulence of XX2021 was dependent on water temperature, such as the LD50 values were 4.21×104, 7.26×105, and 2.47×106 CFU/g fish weight at 10°C, 18°C, and 25°C, respectively. Four virulent genes—including dksA, hem, lonR, and fur—were screened through a PCR assay. The results of an antibiotic resistance test showed that XX2021 was sensitive to kanamycin, cefotaxime, doxycycline, sulfamethoxazole, florfenicol, tetracycline, and gentamicin; showed intermediate susceptibility to streptomycin, ampicillin, and norfloxacin; and was resistant to nalidixic acid and penicillin. XX2021-infected fish showed clinical symptoms typical of S. putrefaciens infection. In addition, we re-isolated XX2021 from infected fish and confirmed its identity using 16S rRNA sequencing. Histopathological changes were observed in the intestine, head kidney, spleen, and liver of diseased fish. This study presents the first report of the pathogenic effects of S. putrefaciens in farmed largemouth bass. Our findings may help develop effective disease control strategies for aquaculture fish and prevent disease outbreaks under low water temperatures.
Collapse
|
9
|
Sultana S, Khan MN, Hossain MS, Dai J, Rahman MS, Salimullah M. Community Structure and Functional Annotations of the Skin Microbiome in Healthy and Diseased Catfish, Heteropneustes fossilis. Front Microbiol 2022; 13:856014. [PMID: 35295300 PMCID: PMC8918984 DOI: 10.3389/fmicb.2022.856014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
The skin mucosa of fish serves as a primary barrier against pathogens. In lesion sites in diseased fish, the mucosal barrier is expected to be compromised, with a substantial presence of potential pathogens. An understanding of the skin microbiome and its functional repertoire would provide important insights into host-microbe interactions, which has important implications for prophylactic measures in aquaculture. This study revealed the skin microbiomes and their functional annotations from healthy and diseased stinging catfish (Heteropneustes fossilis) based on 16S rRNA metagenomics. The OTUs consisted of four major phyla, Proteobacteria, Bacteroidota, Actinobacteriota and Firmicutes. Among members of the predominant phyla, Proteobacteria were rich in healthy fishes, but Bacteroidota and Firmicutes were significantly differentiated in healthy and diseased fish. The diversified microbiome was high in the skin of healthy fishes and did not significantly differ from that of the diseased groups. At the genus level, Pseudomonas showed the highest abundance in healthy fish but was nearly absent in diseased fish, whereas Flavobacterium showed the highest abundance in diseased fish. Linear discriminant analysis identified two phyla (Bacteroidota, Firmicutes) and two genera (Flavobacterium, Allorhizobium) that were consistently identified in diseased fishes. Functional prediction analysis specified that the genes related to physiological functions such as metabolism, immune and digestive systems and environmental adaptations could be highly expressed in diseased fishes. The present study indicates that the compositions, richness and functions of the bacterial community could influence the health status of cultured stinging catfish. Aquaculture-associated pathogenic bacteria may be identified, and preventive measures can be taken for the surveillance of fish health.
Collapse
Affiliation(s)
- Shirin Sultana
- Aquatic Animal Health Group, Department of Fisheries, University of Dhaka, Dhaka, Bangladesh
- Fisheries Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Md. Nasir Khan
- Fisheries Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | | | - Jingcheng Dai
- School of Life Sciences and Technology, Wuhan Polytechnique University, Wuhan, China
| | - Mohammad Shamsur Rahman
- Aquatic Animal Health Group, Department of Fisheries, University of Dhaka, Dhaka, Bangladesh
| | - Md. Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| |
Collapse
|
10
|
Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Antibiotics (Basel) 2022; 11:antibiotics11020163. [PMID: 35203766 PMCID: PMC8868336 DOI: 10.3390/antibiotics11020163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas species often cause disease in farmed fish and are responsible for causing significant economic losses worldwide. Although vaccination is the ideal method to prevent infectious diseases, there are still very few vaccines commercially available in the aquaculture field. Currently, aquaculture production relies heavily on antibiotics, contributing to the global issue of the emergence of antimicrobial-resistant bacteria and resistance genes. Therefore, it is essential to develop effective alternatives to antibiotics to reduce their use in aquaculture systems. Bacteriophage (or phage) therapy is a promising approach to control pathogenic bacteria in farmed fish that requires a heavy understanding of certain factors such as the selection of phages, the multiplicity of infection that produces the best bacterial inactivation, bacterial resistance, safety, the host’s immune response, administration route, phage stability and influence. This review focuses on the need to advance phage therapy research in aquaculture, its efficiency as an antimicrobial strategy and the critical aspects to successfully apply this therapy to control Aeromonas infection in fish.
Collapse
|
11
|
Wise AL, LaFrentz BR, Kelly AM, Khoo LH, Xu T, Liles MR, Bruce TJ. A Review of Bacterial Co-Infections in Farmed Catfish: Components, Diagnostics, and Treatment Directions. Animals (Basel) 2021; 11:ani11113240. [PMID: 34827972 PMCID: PMC8614398 DOI: 10.3390/ani11113240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Catfish aquaculture is a prominent agricultural sector for foodfish production in the Southern United States. Catfish producers often experience high-level mortality events due to bacterial pathogens. In many instances, co-infections caused by multiple bacterial fish pathogens are isolated during diagnostic cases. These bacterial–bacterial interactions may alter the infection dynamics, and many of these mechanisms and interactions remain unclear. Furthermore, these co-infections may complicate disease management plans and treatment strategies. The current review provides an overview of the prevalent bacterial pathogens in catfish culture and previously reported instances of co-infections in catfish and other production fish species. Abstract Catfish production is a major aquaculture industry in the United States and is the largest sector of food fish production. As producers aim to optimize production yields, diseases caused by bacterial pathogens are responsible for high pond mortality rates and economic losses. The major bacterial pathogens responsible are Edwardsiella ictaluri, Aeromonas spp., and Flavobacterium columnare. Given the outdoor pond culture environments and ubiquitous nature of these aquatic pathogens, there have been many reports of co-infective bacterial infections within this aquaculture sector. Co-infections may be responsible for altering disease infection mechanics, increasing mortality rates, and creating difficulties for disease management plans. Furthermore, proper diagnoses of primary and secondary pathogens are essential in ensuring the correct treatment approaches for antimicrobials and chemical applications. A thorough understanding of the interactions and infectivity dynamics for these warm water bacterial pathogens will allow for the adoption of new prevention and control methods, particularly in vaccine development. This review aims to provide an overview of co-infective pathogens in catfish culture and present diagnostic case data from Mississippi and Alabama to define prevalence for these multiple-species infections better.
Collapse
Affiliation(s)
- Allison L. Wise
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
| | - Benjamin R. LaFrentz
- Aquatic Animal Health Research Unit, United States Department of Agriculture, Agricultural Research Service, Auburn, AL 36832, USA;
| | - Anita M. Kelly
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
| | - Lester H. Khoo
- Thad Cochran National Warmwater Aquaculture Center, Mississippi State University, Stoneville, MS 38776, USA;
| | - Tingbi Xu
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA; (T.X.); (M.R.L.)
| | - Mark R. Liles
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA; (T.X.); (M.R.L.)
| | - Timothy J. Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
- Correspondence:
| |
Collapse
|
12
|
Wang B, Mao C, Feng J, Li Y, Hu J, Jiang B, Gu Q, Su Y. A First Report of Aeromonas veronii Infection of the Sea Bass, Lateolabrax maculatus in China. Front Vet Sci 2021; 7:600587. [PMID: 33553279 PMCID: PMC7855973 DOI: 10.3389/fvets.2020.600587] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
The sea bass, Lateolabrax maculatus is commercially farmed in Zhuhai, located in the Guangdong Province of China. L. maculatus in aquaculture have suffered acute death, characterized by ulcerations on the body surface, congestion, and hemorrhage in internal organs such as liver, kidney, and spleen. The dominant infecting strain of bacteria isolated from the kidneys of diseased fish was identified as Aeromonas veronii (strain 18BJ181). This identification was based on analysis of morphological, physiological, and biochemical features, as well as 16S rRNA and gyrB gene sequences. Drug sensitivity testing showed that the strain 18BJ181 isolate was resistant to four antibacterial drugs, including amoxicillin, madinomycin, penicillin and sulfamethoxazole, while moderately sensitive to erythromycin and rifampicin. The detection of growth characteristics showed that the strain 18BJ181 exhibited adaptability to the environment. In addition, some virulence genes, such as aer, act, gcaT, tapA and fla, were detected in the strain 18BJ181. The median lethal dosage of the strain 18BJ181 isolate in L. maculatus was 8.5 × 105 and 4.2 × 105 cfu/g under the conditions of intraperitoneal injection and intramuscular injection, respectively. The experimentally induced infection showed that the 18BJ181 isolate caused considerable histological lesions in L. maculatus, including tissue degeneration, necrosis, and different degrees of hemorrhage. These results provided evidence for a more comprehensive understanding of A. veronii strain 18BJ181 infection in L. maculatus.
Collapse
Affiliation(s)
- Baotun Wang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Can Mao
- Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Yong Li
- Modern Agricultural Development Center of Zhuhai City, Zhuhai, China
| | - Jianmei Hu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Biao Jiang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qunhong Gu
- Modern Agricultural Development Center of Zhuhai City, Zhuhai, China
| | - Youlu Su
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Modern Agricultural Development Center of Zhuhai City, Zhuhai, China
| |
Collapse
|
13
|
Mallik SK, Joshi N, Shahi N, Kala K, Singh S, Giri AK, Pant K, Chandra S. Characterization and pathogenicity of Aeromonas veronii associated with mortality in cage farmed grass carp, Ctenopharyngodon idella (Valenciennes, 1844) from the Central Himalayan region of India. Antonie van Leeuwenhoek 2020; 113:2063-2076. [PMID: 33125625 DOI: 10.1007/s10482-020-01478-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
In the study, Aeromonas strains (n = 12) were isolated from moribund grass carp fry reared in the cage culture unit from the Central Himalayan region of India. They were identified as Aeromonas veronii, by biochemically and 16S rRNA analysis. The experimental bath infection of grass carp fry was performed using A. veronii GCAFBLC 228, one of the 12 isolates at cell concentrations 106 and 108 CFU mL-1. The infected fry showed varied behavioural characteristics followed by tail rot, black pigmentation and hemorrhage in the body 48-96 h post infection. The post bath challenged demonstrated maximum mortality (23%) at cell concentration 108 CFU mL-1 during 10th and 12th day. Histopathology revealed hypertrophy, hyperplasia, fusion of gill lamellae, detachment and epithelial cell detachment in gill, swelling of hepatocytes, granular deposition in liver and tubular degeneration and yellow pigmented macrophage aggregates in the kidney. The in vitro assays for virulence traits recorded that A. veronii GCAFBLC 228 was β-haemolytic having strong cell surface hydrophobicity (CHS) characteristic (> 50%), precipitated after boiling, produced slime, non-suicidal and bound to crystal violet. The antibiogram showed that the strain was susceptible to ciprofloxacin (5 μg), cefotaxime (30 μg), ceftazidime (30 μg), cefoxitin (30 μg), ceftriaxone (30 μg), chloramphenicol (30 μg) and tetracycline (30 μg). Negative staining transmission electron microscopy revealed presence of the lateral flagellum-like structure and cell adherence possibly could be correlated with the pathogenicity of A. veronii GCAFBLC 228. The further investigation is warranted to study the transmission, pathogenesis and epidemiology of A. veronii GCAFBLC 228 to develop the best health management practice for cage farmed fish.
Collapse
Affiliation(s)
- Sumanta Kumar Mallik
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhavan, Industrial Area, Bhimtal, 263 136, Nainital, Uttarakhand, India.
| | - Nupur Joshi
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhavan, Industrial Area, Bhimtal, 263 136, Nainital, Uttarakhand, India
| | - Neetu Shahi
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhavan, Industrial Area, Bhimtal, 263 136, Nainital, Uttarakhand, India
| | - Krishna Kala
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhavan, Industrial Area, Bhimtal, 263 136, Nainital, Uttarakhand, India
| | - Shivam Singh
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhavan, Industrial Area, Bhimtal, 263 136, Nainital, Uttarakhand, India
| | - Abhay Kumar Giri
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhavan, Industrial Area, Bhimtal, 263 136, Nainital, Uttarakhand, India
| | - Kushagra Pant
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhavan, Industrial Area, Bhimtal, 263 136, Nainital, Uttarakhand, India
| | - Suresh Chandra
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhavan, Industrial Area, Bhimtal, 263 136, Nainital, Uttarakhand, India
| |
Collapse
|