1
|
Gao X, Chen Z, Zhang Z, Qian Q, Chen A, Qin L, Tang X, Jiang Q, Zhang X. Pathogenicity of Aeromonas veronii Isolated from Diseased Macrobrachium rosenbergii and Host Immune-Related Gene Expression Profiles. Microorganisms 2024; 12:694. [PMID: 38674638 PMCID: PMC11052084 DOI: 10.3390/microorganisms12040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Aeromonas veronii is widespread in aquatic environments and is responsible for infecting various aquatic animals. In this study, a dominant strain was isolated from the hepatopancreas of diseased Macrobrachium rosenbergii and was named JDM1-1. According to its morphological, physiological, and biochemical characteristics and molecular identification, isolate JDM1-1 was identified as A. veronii. The results of artificial challenge showed isolate JDM1-1 had high pathogenicity to M. rosenbergii with an LD50 value of 8.35 × 105 CFU/mL during the challenge test. Histopathological analysis revealed severe damage in the hepatopancreas and gills of the diseased prawns, characterized by the enlargement of the hepatic tubule lumen and gaps between the tubules as well as clubbing and degeneration observed at the distal end of the gill filament. Eight virulence-related genes, namely aer, ompA, lip, tapA, hlyA, flgA, flgM, and flgN, were screened by PCR assay. In addition, virulence factor detection showed that the JDM1-1 isolate produced lipase, lecithinase, gelatinase, and hemolysin. Furthermore, the mRNA expression profiles of immune-related genes of M. rosenbergii following A. veronii infection, including ALF1, ALF2, Crustin, C-lectin, and Lysozyme, were assessed, and the results revealed a significant upregulation in the hepatopancreas and intestines at different hours post infection. This study demonstrates that A. veronii is a causative agent associated with massive die-offs of M. rosenbergii and contributes valuable insights into the pathogenesis and host defense mechanisms of A. veronii invasion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.G.); (Z.C.); (Z.Z.); (Q.Q.); (A.C.); (L.Q.); (X.T.); (Q.J.)
| |
Collapse
|
2
|
Ghadin N, Yusof NAM, Syarul Nataqain B, Raston NHA, Low CF. Selection and characterization of ssDNA aptamer targeting Macrobrachium rosenbergii nodavirus capsid protein: A potential capture agent in gold-nanoparticle-based aptasensor for viral protein detection. JOURNAL OF FISH DISEASES 2024; 47:e13892. [PMID: 38014615 DOI: 10.1111/jfd.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
The giant freshwater prawn holds a significant position as a valuable crustacean species cultivated in the aquaculture industry, particularly well-known and demanded among the Southeast Asian countries. Aquaculture production of this species has been impacted by Macrobrachium rosenbergii nodavirus (MrNV) infection, which particularly affects the larvae and post-larvae stages of the prawn. The infection has been recorded to cause mortality rates of up to 100% among the affected prawns. A simple, fast, and easy to deploy on-site detection or diagnostic method is crucial for early detection of MrNV to control the disease outbreak. In the present study, novel single-stranded DNA aptamers targeting the MrNV capsid protein were identified using the systematic evolution of ligands by exponential enrichment (SELEX) approach. The aptamer was then conjugated with the citrate-capped gold nanoparticles (AuNPs), and the sensitivity of this AuNP-based aptasensor for the detection of MrNV capsid protein was evaluated. Findings revealed that the aptamer candidate, APT-MrNV-CP-1 was enriched throughout the SELEX cycle 4, 9, and 12 with the sequence percentage of 1.76%, 9.09%, and 12.42%, respectively. The conjugation of APT-MrNV-CP-1 with citrate-capped AuNPs exhibited the highest sensitivity in detecting the MrNV capsid protein, where the presence of 62.5 nM of the viral capsid protein led to a significant agglomeration of the AuNPs. This study demonstrated the practicality of an AuNP-based aptasensor for disease diagnosis, particularly for detecting MrNV infection in giant freshwater prawns.
Collapse
Affiliation(s)
- Norazli Ghadin
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nur Afiqah Md Yusof
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Chen Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Potapov S, Gorshkova A, Krasnopeev A, Podlesnaya G, Tikhonova I, Suslova M, Kwon D, Patrushev M, Drucker V, Belykh O. RNA-Seq Virus Fraction in Lake Baikal and Treated Wastewaters. Int J Mol Sci 2023; 24:12049. [PMID: 37569424 PMCID: PMC10418309 DOI: 10.3390/ijms241512049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, we analyzed the transcriptomes of RNA and DNA viruses from the oligotrophic water of Lake Baikal and the effluent from wastewater treatment plants (WWTPs) discharged into the lake from the towns of Severobaikalsk and Slyudyanka located on the lake shores. Given the uniqueness and importance of Lake Baikal, the issues of biodiversity conservation and the monitoring of potential virological hazards to hydrobionts and humans are important. Wastewater treatment plants discharge treated effluent directly into the lake. In this context, the identification and monitoring of allochthonous microorganisms entering the lake play an important role. Using high-throughput sequencing methods, we found that dsDNA-containing viruses of the class Caudoviricetes were the most abundant in all samples, while Leviviricetes (ssRNA(+) viruses) dominated the treated water samples. RNA viruses of the families Nodaviridae, Tombusviridae, Dicitroviridae, Picobirnaviridae, Botourmiaviridae, Marnaviridae, Solemoviridae, and Endornavirida were found in the pelagic zone of three lake basins. Complete or nearly complete genomes of RNA viruses belonging to such families as Dicistroviridae, Marnaviridae, Blumeviridae, Virgaviridae, Solspiviridae, Nodaviridae, and Fiersviridae and the unassigned genus Chimpavirus, as well as unclassified picorna-like viruses, were identified. In general, the data of sanitary/microbiological and genetic analyses showed that WWTPs inadequately purify the discharged water, but, at the same time, we did not observe viruses pathogenic to humans in the pelagic zone of the lake.
Collapse
Affiliation(s)
- Sergey Potapov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Anna Gorshkova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Andrey Krasnopeev
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Galina Podlesnaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Irina Tikhonova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Maria Suslova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Dmitry Kwon
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Maxim Patrushev
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Valentin Drucker
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Olga Belykh
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| |
Collapse
|
4
|
Kumar G, Singh AK, Agarwal D. Structural and functional characterization of RNA dependent RNA polymerase of Macrobrachium rosenbergii nodavirus (MnRdRp). J Biomol Struct Dyn 2023; 41:12825-12837. [PMID: 36757137 DOI: 10.1080/07391102.2023.2175384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/07/2023] [Indexed: 02/10/2023]
Abstract
Macrobrachium rosenbergii is a highly valued farmed freshwater species and its production has been affected globally by white tail disease caused by M. rosenbergii nodavirus (MrNV). MrNV is a single stranded positive sense RNA virus encoding RNA-dependent RNA polymerase (RdRp) for genome replication. Due to its essentiality for pathogenesis, it is an important drug target. The domain prediction of the complete sequence revealed the presence of two enzymatic regions namely methyl transferase and RdRp separated by transmembrane region. The predicted three-dimensional (3D) structure of MnRdRp using AlphaFold 2 shows that the structure is composed of three major sub-domains common for other polymerases namely fingers, palm and thumb. Structural similarity search revealed its similarity with other flaviviridea members especially with BVDV RdRp (BvdvRdRp). The structure of fingers and palm sub-domains is more conserved than the thumb sub-domain. A small α-helix named 'priming helix' having conserve Tyr was identified at position 829-833 with a potential role in de novo initiation. Analysis of electrostatic potential revealed that nucleotide and template channels are electropositive. Metal binding residues were identified as Asp599, Asp704 and Asp705. The α and β phosphates of incoming nucleotide interact with two Mn2+, Arg455 and Arg537. For recognition of 2'-OH of incoming rNTP, Asp604, Ser661 and Asn670 were identified which can form H-bond network with 2'-OH group. Docking study revealed that Dasabuvir can potentially inhibit MnRdRp. The study concluded that the overall structure and function of MnRdRp are similar to Flaviviridae polymerases and their inhibitors can work against this enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gulshan Kumar
- College of Fisheries Science Gunla, Birsa Agricultural University, Ranchi, Jharkhand, India
| | - A K Singh
- College of Fisheries Science Gunla, Birsa Agricultural University, Ranchi, Jharkhand, India
| | - Deepak Agarwal
- TNJFU, Institute of Fisheries Post Graduate Studies, OMR, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Xia J, Wang C, Yao L, Wang W, Zhao W, Jia T, Yu X, Yang G, Zhang Q. Investigation on Natural Infection of Covert Mortality Nodavirus in Farmed Giant Freshwater Prawn (Macrobrachium rosenbergii). Animals (Basel) 2022; 12:ani12111370. [PMID: 35681834 PMCID: PMC9179840 DOI: 10.3390/ani12111370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Covert mortality nodavirus (CMNV) is a newly discovered aquatic animal virus in recent years. Here, we detected CMNV positive in farmed giant freshwater prawn (Macrobrachium rosenbergii) from Jiangsu, China by TaqMan RT-qPCR. Meanwhile, in situ hybridization and histological analysis indicated that the intestine, gill, hepatopancreas and ovary of giant freshwater prawn were the target organs of CMNV. In addition, a large number of CMNV-like particles were observed in the hepatopancreas and gill tissues under transmission electron microscopy. Overall, our study confirms that giant freshwater prawn is a susceptible host of CMNV, further expands the known host range of CMNV, and provided a new direction for further investigation and exploration of multiple pathogenic factors of giant freshwater prawn disease. Abstract Covert mortality nodavirus (CMNV), from the Nodaviridae family, is characterized by its unique cross-species transmission and wide epidemic distribution features. In this study, Macrobrachium rosenbergii was proved to be infected naturally by CMNV, which further expand the known host range of CMNV. Here, 61.9% (70/113) of the M. rosenbergii samples collected from Jiangsu Province were CMNV positive in the TaqMan RT-qPCR assay, which indicated the high prevalence of CMNV in M. rosenbergii. Meanwhile, the sequences of CMNV RdRp gene cloned from M. rosenbergii were highly identical to that of the original CMNV isolate from Penaeus vannamei. In situ hybridization (ISH) and histology analysis indicated that the intestine, gill, hepatopancreas and ovary were the targeted organs of CMNV infection in M. rosenbergii, and obvious histopathological damage including vacuolation and karyopyknosis were occurred in the above organs. Notably, the presence of CMNV in gonad alerted its potential risk of vertical transmission in M. rosenbergii. Additionally, numerous CMNV-like particles could be observed in tissues of hepatopancreas and gill under transmission electron microscopy. Collectively, our results call for concern of the potential negative impact of the spread and prevalence of CMNV in M. rosenbergii on its aquaculture, as well as providing a renewed orientation for further investigation and exploration of the diverse pathogenic factors causing M. rosenbergii diseases.
Collapse
Affiliation(s)
- Jitao Xia
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (L.Y.); (W.W.); (W.Z.); (T.J.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (C.W.); (X.Y.)
| | - Chong Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (C.W.); (X.Y.)
| | - Liang Yao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (L.Y.); (W.W.); (W.Z.); (T.J.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (C.W.); (X.Y.)
| | - Wei Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (L.Y.); (W.W.); (W.Z.); (T.J.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (C.W.); (X.Y.)
| | - Wenxiu Zhao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (L.Y.); (W.W.); (W.Z.); (T.J.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (C.W.); (X.Y.)
| | - Tianchang Jia
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (L.Y.); (W.W.); (W.Z.); (T.J.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (C.W.); (X.Y.)
| | - Xingtong Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (C.W.); (X.Y.)
- College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Guoliang Yang
- College of Life Sciences, Huzhou University, Huzhou 313000, China
- Jiangsu Shufeng Prawn Breeding Co., LTD., Gaoyou 225600, China
- Correspondence: (G.Y.); (Q.Z.); Tel.: +86-532-85823062 (Q.Z.); Fax: +86-13905723532 (G.Y.); +86-532-85811514 (Q.Z.)
| | - Qingli Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (L.Y.); (W.W.); (W.Z.); (T.J.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (C.W.); (X.Y.)
- College of Life Sciences, Huzhou University, Huzhou 313000, China
- Correspondence: (G.Y.); (Q.Z.); Tel.: +86-532-85823062 (Q.Z.); Fax: +86-13905723532 (G.Y.); +86-532-85811514 (Q.Z.)
| |
Collapse
|
6
|
NaveenKumar S, Rai P, Karunasagar I, Karunasagar I. Recombinant viral proteins delivered orally through inactivated bacterial cells induce protection in Macrobrachium rosenbergii (de Man) against White Tail Disease. JOURNAL OF FISH DISEASES 2021; 44:601-612. [PMID: 33210311 DOI: 10.1111/jfd.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
White tail disease (WTD) is a disease of Macrobrachium rosenbergii caused by Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) with the potential to devastate the aquaculture industry. The present study aimed to explore the possible protection of M. rosenbergii against the disease by oral administration of bacterially expressed recombinant capsid proteins of MrNV and XSV. Juvenile M. rosenbergii were fed with the feed coated with inactivated bacteria encapsulated expressed recombinant viral proteins either individually or in combination for 7 days. Challenge studies using WTD causing agents were carried out after 3 (group I), 10 (group II) and 20 (group III) days post-feeding of viral proteins. Recombinant capsid protein of MrNV showed better protection when compared to other treatments with relative per cent survival of 62.5% (group I), 57.9% (group II) and 39.5% (group III). Treatment controls of groups I, II and III showed 100%, 95% and 95% mortality, respectively. The study demonstrates that oral administration of recombinant capsid proteins of MrNV and XSV provides effective protection against WTD in freshwater prawn.
Collapse
Affiliation(s)
- Singaiah NaveenKumar
- Fisheries Research Centre, Ministry of Environment, Water and Agriculture, Saihat, Kingdom of Saudi Arabia
| | - Praveen Rai
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Indrani Karunasagar
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru, India
| |
Collapse
|
7
|
Huang Y, Ren Q. Innate immune responses against viral pathogens in Macrobrachium. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103966. [PMID: 33338519 DOI: 10.1016/j.dci.2020.103966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/27/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Some members of genus Macrobrachium are important economically prawns and valuable objects for studying the innate immune defense mechanism of crustaceans. Studies have focused on immune responses against bacterial and fungal infections and have expanded to include antiviral immunity over the past two decades. Similar to all living organisms, prawns are exposed to viruses, including white spot syndrome virus, Macrobrachium rosenbergii nodavirus, and Decapod iridescent virus 1 and develop effective defense mechanisms. Here, we review current understanding of the antiviral host defense in two species of Macrobrachium. The main antiviral defense of Macrobrachium is the activation of intracellular signaling cascades, leading to the activation of cellular responses (apoptosis) and humoral responses (immune-related signaling pathways, antimicrobial and antiviral peptides, lectins, and prophenoloxidase-activating system).
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
8
|
Yang C, Wang L, Schwartz K, Burrough E, Groeltz-Thrush J, Chen Q, Zheng Y, Shen H, Li G. Case Report and Genomic Characterization of a Novel Porcine Nodavirus in the United States. Viruses 2021; 13:v13010073. [PMID: 33430224 PMCID: PMC7825704 DOI: 10.3390/v13010073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nodaviruses are small bisegmented RNA viruses belonging to the family Nodaviridae. Nodaviruses have been identified in different hosts, including insects, fishes, shrimps, prawns, dogs, and bats. A novel porcine nodavirus was first identified in the United States by applying next-generation sequencing on brain tissues of pigs with neurological signs, including uncontrollable shaking. RNA1 of the porcine nodavirus had the highest nucleotide identity (51.1%) to the Flock House virus, whereas its RNA2 shared the highest nucleotide identity (48%) with the RNA2 segment of caninovirus (Canine nodavirus). Genetic characterization classified porcine nodavirus as a new species under the genus Alphanodavirus. Further studies are needed to understand the pathogenicity and clinical impacts of this virus.
Collapse
Affiliation(s)
- Chenghuai Yang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (C.Y.); (K.S.); (E.B.); (J.G.-T.); (Q.C.); (Y.Z.); (H.S.)
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Leyi Wang
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA;
| | - Kent Schwartz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (C.Y.); (K.S.); (E.B.); (J.G.-T.); (Q.C.); (Y.Z.); (H.S.)
| | - Eric Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (C.Y.); (K.S.); (E.B.); (J.G.-T.); (Q.C.); (Y.Z.); (H.S.)
| | - Jennifer Groeltz-Thrush
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (C.Y.); (K.S.); (E.B.); (J.G.-T.); (Q.C.); (Y.Z.); (H.S.)
| | - Qi Chen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (C.Y.); (K.S.); (E.B.); (J.G.-T.); (Q.C.); (Y.Z.); (H.S.)
| | - Ying Zheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (C.Y.); (K.S.); (E.B.); (J.G.-T.); (Q.C.); (Y.Z.); (H.S.)
| | - Huigang Shen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (C.Y.); (K.S.); (E.B.); (J.G.-T.); (Q.C.); (Y.Z.); (H.S.)
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (C.Y.); (K.S.); (E.B.); (J.G.-T.); (Q.C.); (Y.Z.); (H.S.)
- Correspondence: ; Tel.: +1-515-2943-358
| |
Collapse
|
9
|
Naveen Kumar S, Rai P, Karunasagar I, Karunasagar I. Genomic and antibody-based assays for the detection of Indian strains of Macrobrachium rosenbergii nodavirus and extra small virus associated with white tail disease of Macrobrachium rosenbergii. Virusdisease 2021; 31:459-469. [PMID: 33381620 DOI: 10.1007/s13337-020-00641-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/07/2020] [Indexed: 11/29/2022] Open
Abstract
White tail disease (WTD) of cultured Macrobrachium rosenbergii is caused by Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV). Since both the viruses have small single strand RNA as genetic material with short generation time, they are more prone to mutations. Hence detection methods developed for one strain may be suboptimal for the detection of isolates from the different geographical locations. In the present study two new genomic based methods (RT-PCR and dot-blot hybridization) along with one immunological method (polyclonal antibodies based detection) were developed for the detection of Indian isolates of MrNV and XSV. Among genomic based methods, RT-PCR assay developed was most sensitive. Sensitivity of detection of RT-PCR was 1 fg (both MrNV and XSV) of total RNA extracted from purified viral inoculum preparation. In case of WTD positive whole tissue total RNA, the limit of detection was 10 fg for both MrNV and XSV. Dot-blot hybridization had a detection limit of 10 pg and 0.1 ng for MrNV and XSV respectively when RNA extracted from viral inoculum preparation was used; 0.1 ng and 1 ng when WTD positive whole tissue total RNA was used. Polyclonal antibodies against recombinant proteins (MrNV and XSV capsid) were synthesised. Western blotting and indirect ELISA revealed that the antibodies produced to be specific and highly sensitive. Recombinant protein (antigen) of MrNV and XSV capsid were detected at the dilution of 1:8000. However in case of infected prawn tissue sample, MrNV and XSV were detected at the dilution of 1:32,000 and 1:64,000 respectively. All methods developed are field applicable.
Collapse
Affiliation(s)
- Singaiah Naveen Kumar
- Fisheries Research Centre, Ministry of Environment, Water and Agriculture, P.O. Box 134, Saihat, 31972 Eastern Province Kingdom of Saudi Arabia
| | - Praveen Rai
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru, 575018 India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru, 575018 India.,Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru, 575018 India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru, 575018 India
| |
Collapse
|
10
|
Chen-Fei L, Chou-Min C, Jiun-Yan L. Feasibility of vaccination against Macrobrachium rosenbergii nodavirus infection in giant freshwater prawn. FISH & SHELLFISH IMMUNOLOGY 2020; 104:431-438. [PMID: 32580003 DOI: 10.1016/j.fsi.2020.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The giant freshwater prawn/giant river prawn, Macrobrachium rosenbergii is one of the high market value crustaceans cultured worldwide. The intensified aquaculture of the species has led to the outbreak of infectious diseases, prominently, the white tail disease (WTD). It is caused by the infection of Macrobrachium rosenbergii nodavirus (MrNV), which was classified in the family of Nodaviridae. To-date, there are no effective prophylactic and therapeutic agents available against MrNV infection. Vaccination is known to be the most effective prophylactic agent in disease prevention. However, vaccine development against virus infection in crustaceans is equivocal. The feasibility of vaccination in conferring immune protection in crustaceans against infectious diseases is disputable. The argument lies in the fact that crustaceans do not possess adaptive immunity, which is the main immune component that functions to establish immunological memory upon vaccination. Nevertheless, an increasing number of literatures has been documented, which concerns the development of vaccines against infectious diseases in crustaceans. The current review deliberates different approaches in vaccine development against MrNV, which were documented in the past years. It is noteworthy that the live-attenuated MrNV vaccine has not been experimented by far. Thus, the potential of live-attenuated MrNV vaccine in conferring long-term immune protection through the establishment of innate immune memory is currently being discussed.
Collapse
Affiliation(s)
- Low Chen-Fei
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Chong Chou-Min
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Loh Jiun-Yan
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Xu T, Liu S, Li X, Zhang Q. Genomic characterization of covert mortality nodavirus from farming shrimp: Evidence for a new species within the family Nodaviridae. Virus Res 2020; 286:198092. [PMID: 32659308 DOI: 10.1016/j.virusres.2020.198092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
The prevalence of covert mortality nodavirus (CMNV) has become one of the major threats to the shrimp farming industry in Asia and South America recently. Here, the genomic RNA1 and RNA2 of CMNV were characterized by using transcriptome sequencing and RT-PCR. Our study revealed that RNA1 is 3228 bp in length, and contains two putative Open Reading Frames (ORFs), one encoding the RNA dependent RNA polymerase (RdRp) of length 1043 amino acids and another encoding the protein B2 with a length of 132 amino acids. RNA2 is 1448 bp in length and encodes a capsid protein of 437 amino acids. CMNV shared the highest similarity of 51.78 % for RdRp with the other known nodaviruses. Phylogenetic analyses on the basis of RdRp, B2 and capsid proteins indicated that CMNV might represent a novel viral species in the family Nodaviridae. This study reported the first genome sequence of CMNV and it would be helpful for further studies of CMNV in relation to its evolution, diagnostic technique and control strategy.
Collapse
Affiliation(s)
- Tingting Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Qingdao, 266071, China
| | - Shuang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Qingdao, 266071, China
| | - Xiaoping Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Qingdao, 266071, China
| | - Qingli Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Qingdao, 266071, China; Marine Fisheries Science and Food Production Process Function Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
12
|
Gao X, Jiang Z, Zhang S, Chen Q, Tong S, Liu X, Jiang Q, Yang H, Wei W, Zhang X. Transcriptome analysis and immune-related genes expression reveals the immune responses of Macrobrachium rosenbergii infected by Enterobacter cloacae. FISH & SHELLFISH IMMUNOLOGY 2020; 101:66-77. [PMID: 32213315 DOI: 10.1016/j.fsi.2020.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
Macrobrachium rosenbergii is an important cultural species in China and other Southeast Asian countries. However, Enterobacter cloacae infection has caused a great economic loss in M. rosenbergii culture industry. The immune responses of M. rosenbergii to the E. cloacae infection is not fully characterized. To investigate the immune response of M. rosenbergii against E. cloacae, we performed transcriptome analysis of the M. rosenbergii hepatopancreas with and without E. cloacae infection using RNA-seq. After assembly and annotation, 29,731 high quality unigenes were obtained from RNA-seq data. Differential expression analysis revealed the existence of 2498 significantly differently expressed genes (DEGs) at 12 h post infection, with 1365 up-regulated and 1133 down-regulated genes. Among these DEGs, some well-known immune-related genes were up-regulated significantly, including C-type lectin 1, lectin 3, anti-lipopolysaccharide factor 2, Cu/Zn superoxide dismutase and heat shock protein 70. GO analysis demonstrated 24 biological process subcategories, 14 cellular component subcategories, and 12 molecular function subcategories that were enriched among these DEGs, and some DEGs were clustered into immune related subcategories such as immune system process, response to stimulus, biological adhesion, and antioxidant activity. These DEGs were enriched into 216 KEGG pathways including a core set of immune correlated pathways notably in phagosome and lysosome. In addition, 5 up-regulated and 5 down-regulated immune-related DEGs were selected for further validation by quantitative real-time PCR and the results showed consistence with the RNA-seq data. Additionally, the expression level of six selected immune-related genes (ALF2, CLEC1, LEC3, hemocyanin1, HSP70 and SOD) based on the transcriptomic data were monitored at different point of time in hepatopancreas, gill, hemolymph and intestine. Results revealed these immune-related genes were significantly up-regulated in different tissues from 6 to 24 h after E. cloacae infection. Overall, these results provided valuable information for further studying the immune response of M. rosenbergii against E. cloacae infection.
Collapse
Affiliation(s)
- Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Ziyan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuangming Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qiyun Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuaiqi Tong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wanhong Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
13
|
Ismail SNFB, Baharum SN, Fazry S, Low CF. Comparative genome analysis reveals a distinct influence of nucleotide composition on virus-host species-specific interaction of prawn-infecting nodavirus. JOURNAL OF FISH DISEASES 2019; 42:1761-1772. [PMID: 31637743 DOI: 10.1111/jfd.13093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Discovery of species-specific interaction between the host and virus has drawn the interest of many researchers to study the evolution of the newly emerged virus. Comparative genome analysis provides insights of the virus functional genome evolution and the underlying mechanisms of virus-host interactions. The analysis of nucleotide composition signified the evolution of nodavirus towards host specialization in a host-specific mutation manner. GC-rich genome of betanodavirus was significantly deficient in UpA and UpU dinucleotides composition, whilst the AU-rich genome of gammanodavirus was deficient in CpG dinucleotide. The capsid of MrNV and PvNV of gammanodavirus retains the highest abundance of adenine and uracil at the second codon position, respectively, which were found to be very distinctive from the other genera. ENC-GC3 plot inferred the influence of natural selection and mutational pressure in shaping the evolution of MrNV RdRp and capsid, respectively. Furthermore, CAI/eCAI analysis predicts a comparable adaptability of MrNV in squid, Sepia officinalis than its natural host, Macrobrachium rosenbergii. Thus, further study is warranted to investigate the capacity of MrNV replication in S. officinalis owing to its high codon adaptation index.
Collapse
Affiliation(s)
| | | | - Shazrul Fazry
- Tasik Chini Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Bangi, Malaysia
| | - Chen Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|