1
|
Ojaimi Loibman S, Quintana-Hayashi MP, Santos L, Lindén SK. Aeromonas salmonicida AI-1 and AI-2 quorum sensing pathways are differentially regulated by rainbow trout mucins and during in vivo colonization. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109862. [PMID: 39209006 DOI: 10.1016/j.fsi.2024.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aeromonas salmonicida is an opportunistic pathogen with relevance for aquaculture. Fish epithelia are covered by a mucus layer, composed mainly by highly glycosylated mucins, which are the first point of contact between fish and pathogens. Quorum sensing (QS), a bacterial communication mechanism through secreted autoinducer signals that governs gene expression, influences bacterial growth and virulence. The main A. salmonicida autoinducers are mediated by the luxS and asaI genes, corresponding to inter- and intraspecies communication, respectively. The aim of this study was to determine the effect of the mucins that pathogens encounter during colonization of the gill and skin on A. salmonicida QS. We found that expression of A. salmonicida asaI, but not luxS, was increased after culture at 20 °C compared to 10 °C. Rainbow trout gill and skin mucins up-regulated asaI expression 2-fold but down-regulated luxS 10-fold. The downregulation of luxS was reflected by a reduction in autoinducer-2 secretion. Mucins isolated from skin had a stronger inhibitory effect than mucins isolated from gills on both luxS expression and A1-2 secretion, consistent with a higher relative abundance of N-Acetylneuraminic acid on skin mucins than on gill mucins. Reduction of AI-2 production by mucins or luxS-deletion lead to a reduced A. salmonicida auto-aggregation. Furthermore, after colonization of the gill, luxS was down regulated whereas asaI expression was upregulated. Both in vivo and in vitro, the expression of luxS and asaI were thus differentially regulated, frequently in an inverse manner. The strong AI-2 inhibiting effect of the skin mucins is likely part of the mucin-based defense against pathogens.
Collapse
Affiliation(s)
| | | | - Licínia Santos
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Sweden
| | - Sara K Lindén
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Sweden.
| |
Collapse
|
2
|
Fouad AM, Abo-Al-Ela HG, Negm EA, Abdelhaseib M, Alian A, Abdelsater N, Said REM, Anwar FAS, Assar DH, Mohamed SAA. Impact of Polyonchobothrium magnum on health and gut microbial ecology of African catfish (Clarias gariepinus): Insights from morphological, molecular, and microbiological analyses. JOURNAL OF FISH DISEASES 2024:e14013. [PMID: 39239791 DOI: 10.1111/jfd.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Parasites pose significant challenges to aquaculture and fisheries industries. Our study focuses on the Polyonchobothrium magnum and African catfish to address a potential health issue in aquaculture, explore host-parasite interactions that can help develop effective management practices to ensure fish health and industry sustainability. P. magnum was isolated from the stomach of African catfish (Clarias gariepinus) as the primary site of infection, with a prevalence of 10%. Most affected fish were heavily infected (8 out of 10). Infection was confirmed by sequencing the PCR-targeted region of the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene, along with light and scanning electron microscopes. The parasite had an elongated scolex with deep bothria, a prominent apical disc wider than the scolex itself, and a four-lobed appearance. The scolex contained a central rostellum divided into two semicircles, bearing 26-30 hooks, with an average of 28. The apical disc had large hooks arranged in four quadrants, with 6-8 hooks each, averaging 7 per quadrant. No neck was observed. Phylogenetic analysis of our sequence showed a 100% match with isolates from Guangzhou, China. In infected fish, the anterior kidney showed increased expression levels of nuclear factor kappa B and lysozyme, but decreased levels of in major histocompatibility complex antigen II. Plasma analysis revealed a significant drop in superoxide dismutase, a rise in interleukin-1 beta, and lower IgM levels compared to non-infected controls. Non-infected fish displayed greater gut microbiota diversity, with dominant families including Moraxellaceae, Enterobacteriaceae, Fusobacteriaceae, and Caulobacteraceae, and prevalent genera such as Acinetobacter, Cetobacterium, and Brevundimonas. In contrast, infected fish exhibited very low diversity, with significantly higher proportions of Enterobacteriaceae (45.99%) and Aeromonadaceae (41.79%) compared to non-infected fish, which had 13.76% and 3.64% respectively. Cetobacterium somerae was prevalent in non-infected fish, while infected fish harboured Aeromonas fluvialis, Plesiomonas shigelloides, and Gallaecimonas xiamenensis. Overall, P. magnum disrupted the immune status and gut microbiota of the host, thereby impacting its health.
Collapse
Affiliation(s)
- Alamira Marzouk Fouad
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, Egypt
- Genetics and Genetic Engineering, Development of Animal Wealth, Faculty of Veterinary Medicine, Egyptian Chinese University, Cairo, Egypt
| | - Eman A Negm
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Maha Abdelhaseib
- Department of Food Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Abdallah Alian
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Naser Abdelsater
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Fatma A S Anwar
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sara Abdel-Aal Mohamed
- Department of Parasitology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Chen M, Xue M, Chen J, Xiao Z, Hu X, Zhang C, Jiang N, Fan Y, Meng Y, Zhou Y. Isolation, identification and characterization of Aeromonas jandaei from diseased Chinese soft-shell turtles. JOURNAL OF FISH DISEASES 2024; 47:e13919. [PMID: 38217353 DOI: 10.1111/jfd.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
Aeromonas jandaei is a gram-negative bacterium commonly found in aquatic environments and can induce illnesses in amphibians, reptiles and aquatic animals. In this study, a strain of bacteria was isolated from the diseased Chinese soft-shell turtle (Pelodiscus sinensis), then named strain JDP-FX. This isolate was identified as A. jandaei after analysis of morphological, physiological and biochemical characteristics, as well as 16S rRNA and gyrB gene sequences. Virulence genetic testing further detected temperature-sensitive protease (eprCAI), type III secretion system (TTSS) (ascv), nuclease (nuc), cytotonic enterotoxin (alt) and serine proteinase (ser) in JDP-FX. Compared with healthy Chinese soft-shell turtle, the serum levels of total protein (TP), albumin (ALB) and globulin (GLB) were significantly decreased in the diseased Chinese soft-shell turtle, while, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were significantly increased. Histopathological observations showed that multiple tissues, including intestinal mucosa, liver and kidney, were severely damaged in the diseased Chinese soft-shell turtle. Moreover, the diseased Chinese soft-shell turtle had significant cell degeneration, necrosis, sloughing and interstitial inflammatory cell infiltration. The pathogenicity of JDP-FX was tested via artificial infection. The median lethal dosage (LD50 ) of the strain was 1.05 × 105 colony forming units (CFU/g) per weight of Chinese soft-shell turtle. Drug susceptibility analysis revealed that JDP-FX was susceptible to ceftazidime, minocycline, cefoperazone, ceftriaxone and piperacillin. In addition, JDP-FX was resistant to doxycycline, florfenicol, sulfonamides, gentamicin, ampicillin and neomycin. Therefore, this study may provide guidance for further research into the diagnosis, prevention and treatment of JDP-FX infection.
Collapse
Affiliation(s)
- Mengmeng Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jingtao Chen
- Hubei Hongwang Ecological Agriculture Technology Co., Ltd, Xiantao, China
| | - Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiaowei Hu
- Department of Fisheries Development, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Chunjie Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
4
|
Adah DA, Saidu L, Oniye SJ, Adah AS, Daoudu OB, Ola-Fadunsin SD. Molecular characterization and antibiotics resistance of Aeromonas species isolated from farmed African catfish Clarias gariepinus Burchell, 1822. BMC Vet Res 2024; 20:16. [PMID: 38184574 PMCID: PMC10771007 DOI: 10.1186/s12917-023-03860-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Aeromonas species are one of the most important etiologies of diseases in fish farms, leading to clinical manifestation and mortality and are associated with public health risks. This study aimed to investigate the prevalence, phenotypic and molecular characteristics of Aeromonas species isolated from farmed Clarias gariepinus using 16 S rRNA sequencing. Additionally, their antibiogram and multiple antibiotic resistance index were determined using a disc diffusion test. RESULTS A total of 230 Aeromonas strains were isolated from Clarias gariepinus with 40.9% obtained from diseased fish, and 25% isolated from apparently healthy ones. Five different species including Aeromonas caviae, Aeromonas veronii, Aeromonas hydrophila, Aeromonas dhakensis and Aeromonas enteropelogenes were fully identified and genetically characterized. Based on the available literature, this is the first report of Aeromonas enteropelogenes from the study area. The phylogenetic analysis showed genetic heterogeneity and distance within the species and the reference strains. The multiple resistant Aeromonas species were susceptible to ciprofloxacin, gentamycin, and florfenicol. The Aeromonas species' multiple antibiotic resistance index values varied between 0.20 and 0.80 and were isolated from the farms where antibiotics were intensively used. CONCLUSIONS The diversity of multidrug-resistant Aeromonas species isolated from fish farms is a major threat to fish production giving us more understanding of epidemiology and the multidrug Aeromonas species with a MAR index of greater than 0.2 were isolated from farms where antibiotic use was widespread. As a result, a considerably increased danger of multiple antibiotic resistance spreading to the fish culture environment may impact aquaculture production. Hence there is a need for appropriate and monitored drug usage.
Collapse
Affiliation(s)
- Deborah Arimie Adah
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria.
| | - Lawal Saidu
- Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria
| | - Sonnie Joshua Oniye
- Department of Biological Science, National Open University of Nigeria, Abuja, Nigeria
| | - Adakole Sylvanus Adah
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Oluwafemi Babatunde Daoudu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Shola David Ola-Fadunsin
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
5
|
Jia B, Burnley H, Gardner IA, Saab ME, Doucet A, Hammell KL. Diagnosis of Renibacterium salmoninarum infection in harvested Atlantic salmon (Salmo salar L.) on the east coast of Canada: Clinical findings, sample collection methods and laboratory diagnostic tests. JOURNAL OF FISH DISEASES 2023; 46:575-589. [PMID: 36861304 DOI: 10.1111/jfd.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Chronic subclinical infection with the aetiological agent of bacterial kidney disease (BKD), Renibacterium salmoninarum, presents challenges for the clinical management of disease in farmed salmonids and for prevalence estimation. Harvested salmon sampled at processing plants provide the opportunity to describe subclinical outcomes of BKD using gross necropsy observations and diagnostic test results in farmed Atlantic salmon (Salmo salar L.) populations that are apparently healthy (i.e. alive at harvest) but naturally exposed to R. salmoninarum infection. Sampling of farmed salmon (Population A, n = 124 and Population B, n = 160) was performed immediately post-slaughter as fish were being processed at a plant in New Brunswick, Canada. Populations were selected based on planned harvests from sites with histories of recent exposure events related to clinical BKD as evidenced by the site veterinarian's diagnosis of mortality attributable to BKD: One site (Pop A) had recently increasing mortalities attributed to BKD, and the other site (Pop B) had ongoing low-level mortalities with BKD pathology. As expected with the different exposure histories, Pop A had a higher percentage (57.2%) of R. salmoninarum culture-positive kidney samples compared with similar fish samples in Pop B (17.5%). Diagnosis of R. salmoninarum by gross granulomatous lesions in internal visceral organs, bacterial culture and identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) using different swab transport methods, and molecular detection methods (quantitative PCR, qPCR) were compared. Agreement of culture-positive percentages at the sample level was moderate (kappa: 0.61-0.75) among specimens collected using different kidney sampling methods in Pop A and Pop B. The highest proportion of R. salmoninarum-positive cultures occurred when kidney tissues were transported to the laboratory and inoculated directly onto agar using a swab (94% of cultures from Pop A and 82% from Pop B when fish were positive by any culture method). Fish with cumulative lesion scores (severity of granulomatous lesions in 3 different visceral organs) of >4 were all culture positive, and when compared with non-lesioned fish, had substantially higher odds of being culture positive: Pop A: odds ratio (OR) = 73, 95% confidence interval (CI) (7.91, 680.8); Pop B: OR = 66, 95% CI (6.12, 720.7). Our study found that onsite postmortem examinations with severity scores of gross granulomatous lesions were predictive of positive culture results for R. salmoninarum, and they were a useful proxy for assessing prevalence in apparently healthy populations with subclinical infection.
Collapse
Affiliation(s)
- Beibei Jia
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Holly Burnley
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Ian A Gardner
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Matthew E Saab
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Aquatic Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Adele Doucet
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Vet-Champlain Animal Care, Dieppe, New Brunswick, Canada
| | - K Larry Hammell
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
6
|
Li H, Wang H, Zhang J, Liu R, Zhao H, Shan S, Yang G. Identification of three inflammatory Caspases in common carp (Cyprinus carpio L.) and its role in immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:590-601. [PMID: 36283597 DOI: 10.1016/j.fsi.2022.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Inflammatory Caspases are key effectors of the inflammasomes and play an important role in innate immune response. However, there are few studies on the homologs of inflammatory Caspases in bony fish. In the present study, three inflammatory Caspase genes were cloned from common carp and named CcCaspase-A1, CcCaspase-A2 and CcCaspase-B. Nucleotide sequences alignment revealed that the three Caspases were very similar in structure, which contained a PYD domain in the N-terminal, and a CASc domain in the C-terminal. In the phylogenetic tree, CcCaspase-A1 and CcCaspase-A2 were close to the Caspase-A of grass carp, and CcCaspase-B was close to the DrCaspase-B of zebrafish. In healthy common carp, the expression levels of CcCaspase-A1 and CcCaspase-A2 were the highest in the gills, and CcCaspase-B was the highest in the spleen. After immune stimulation with Edwardsiella tarda or Aeromonas hydrophila, the expression levels of all CcCaspases increased significantly. The fluorescence localization assays showed that all these CcCaspases were expressed in the cytoplasm, and were involved in the assembly of CcNLRP1 inflammasome. These results suggest that the inflammatory CcCaspases play a key role in immune response of common carp against bacterial infection, which may enrich the knowledge of inflammasome in fish, and provide basic data for the prevention and treatment of fish infectious diseases.
Collapse
Affiliation(s)
- Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Jiahui Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Huaping Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| |
Collapse
|
7
|
Soto-Dávila M, Chakraborty S, Santander J. Relative expression and validation of Aeromonas salmonicida subsp. salmonicida reference genes during ex vivo and in vivo fish infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105320. [PMID: 35753622 DOI: 10.1016/j.meegid.2022.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The genus Aeromonas is found worldwide in freshwater and marine environments and has been implicated in the etiology of human and animal diseases. In fish, among Aeromonas species, A. salmonicida causes massive mortality and great economic losses in marine and continental aquaculture species. Currently, several aspects of the clinical signs and pathogenesis of this Gram-negative bacterium have been described; however, determination of an appropriate reference gene is essential to normalize cellular mRNA data remain unknown. Here we evaluate the stability of seven candidate reference genes to be used for data normalization during ex vivo and in vivo experiments conducted in Atlantic cod, Atlantic salmon, and lumpfish. To assess this, raw Ct values obtained were evaluated by using geNorm, NormFinder, BestKeeper, Delta Ct comparison, and the comprehensive ranking, through the bioinformatic open-access portal RefFinder. We determined that fabD and era were most suitable reference genes in Atlantic cod primary macrophages, hfq and era in Atlantic salmon primary macrophages, rpoB and fabD in lumpfish head kidney samples, and hfq and era in lumpfish spleen. Our study demonstrates that use of multiple reference genes and its validation before measurements helps to minimize variability arising in qPCR studies that evaluate A. salmonicida gene expression in fish tissues. Overall, this study provided with an expanded list of reliable reference genes for A. salmonicida gene expression using qPCR during fish infection studies.
Collapse
Affiliation(s)
- Manuel Soto-Dávila
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada; Department of Biology, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
8
|
Mursalim MF, Budiyansah H, Raharjo HM, Debnath PP, Sakulworakan R, Chokmangmeepisarn P, Yindee J, Piasomboon P, Elayaraja S, Rodkhum C. Diversity and antimicrobial susceptibility profiles of Aeromonas spp. isolated from diseased freshwater fishes in Thailand. JOURNAL OF FISH DISEASES 2022; 45:1149-1163. [PMID: 35598068 DOI: 10.1111/jfd.13650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Motile Aeromonas septicemia (MAS), a disease caused by Aeromonas spp., is recognized as a major disease in freshwater aquaculture. This study aimed to investigate the distribution and diversity of Aeromonas spp. and their antimicrobial susceptibility patterns. A total of 86 isolates of Aeromonas spp. were recovered from diseased freshwater fishes from 13 farms in Thailand. All isolates were identified using biochemical characteristics, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), polymerase chain reaction assays, and the gyrB gene sequence analysis. The result of MALDI-TOF MS showed 100% (86 isolates) accuracy at genus-level identification, and 88.4% (76 isolates) accuracy at species-level identification. Six species of Aeromonas were confirmed through nucleotide sequencing and phylogenetic analysis of the gyrB gene Aeromonas veronii (72.1%), Aeromonas jandaei (11.6%), Aeromonas schubertii (9.3%), Aeromonas diversa (3.5%), Aeromonas hydrophila (2.3%), and Aeromonas punctata (1.2%). Antimicrobial susceptibility tests for all isolates revealed resistance against amoxicillin (99%), ampicillin (98%), oxolinic acid (81.4%), oxytetracycline (77%), trimethoprim-sulfamethoxazole (24%), and enrofloxacin (21%). The multiple antibiotic resistance (MAR) index varied between 0.14 and 0.86, with MAR values more than 0.2 in 99% of isolates. Furthermore, four diverse multidrug-resistant (MDR) patterns were found among Aeromonas isolates. Our finding show that A. veronii is the most abundant species in Thai cultured freshwater fish with the highest MDR patterns.
Collapse
Affiliation(s)
- Muhammad Fadhlullah Mursalim
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Study Program, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Hendri Budiyansah
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Hartanto Mulyo Raharjo
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Partho Pratim Debnath
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Rungnapa Sakulworakan
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Putita Chokmangmeepisarn
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jitrapa Yindee
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Patharapol Piasomboon
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sivaramasamy Elayaraja
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
De Silva LADS, Wickramanayake MVKS, Heo GJ. Virulence and antimicrobial resistance potential of Aeromonas spp. associated with shellfish. Lett Appl Microbiol 2021; 73:176-186. [PMID: 33891720 DOI: 10.1111/lam.13489] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
Aeromonas spp. are associated with seafood-related outbreaks worldwide. In seafood industry, shellfish play a major role in global seafood production. With this emerging trend of shellfish consumption, shellfish-related bacterial infections are being reported frequently. Aeromonas spp. are natural contaminants found in shellfish. Although 36 species have been identified, some species including Aeromonas hydrophila, Aeromonas caviae and Aeromonas veronii biotype sobria have dragged major attention as foodborne pathogenic bacteria. The ability to elaborate a variety of virulence factors of Aeromonas spp. contributes to the pathogenic activities. Also, emerging antimicrobial resistance in Aeromonas spp. has become a huge challenge in seafood industry. Furthermore, multidrug resistance increases the risk of consumer health. Studies have supplied pieces of evidence about the emerging health risk of Aeromonas spp. isolated from seafood. Therefore, the present review was intended to highlight the prevalence, virulence and antimicrobial resistance of Aeromonas spp. isolated from various types of shellfish.
Collapse
Affiliation(s)
- L A D S De Silva
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - M V K S Wickramanayake
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - G-J Heo
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
10
|
Sanitary quality improvement of fish produced in the northern Benin cotton basin water reservoirs by cage culture and fish transfer in agricultural contaminant-free water: human health implications. Trop Anim Health Prod 2020; 52:3597-3607. [PMID: 32948969 DOI: 10.1007/s11250-020-02397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
Northern Benin water reservoirs may remain valuable resources for fish production if the ecotoxicological risks related to agricultural pesticides are eradicated. The present work was undertaken (i) to evaluate sanitary quality and human health implications of fish (Clarias gariepinus and Oreochromis niloticus) reared in cages compared with those produced in pens installed in a contaminated water reservoir (Batran) and a reference water reservoir (Songhaï) and (ii) to test the efficacy of fish transferring to water without agricultural contaminants on fish health status. Pathogenic bacteria and pesticide residues were analyzed by phenotypic and biochemical identification and gas chromatography coupled with mass spectrometry, respectively. For both species, Aeromonas species occur in fish reared in pens at Batran. In Batran, regardless of infrastructure and species, residues of 4,4'-DDE (Dichlorodiphenyldichloroethylene) (1.4-4.9 μg/kg) and Chlorpyriphos (ethyl) (2.8-12.1 μg/kg) were measured, while only the last molecule was found in C. gariepinus from Songhaï (8.9-8.10 μg/kg). Irrespective of the species in the Batran water reservoir, Chlorpyriphos (ethyl) concentration was higher in cages and lower in pens, while 4, 4'-DDE was more concentrated in fish farmed in pens. Levels of these pesticide residues were well below World Health Organization/Food and Agriculture Organization permissible limits and the risk analyzed indicates no potential adverse health implications in consumption of these fish. Also, fish bacteriological quality was in compliance with the international standards. The fish decontamination approach used herein results in a reduction of the splenic macrophage phagocytic activity in both studied fish species.
Collapse
|
11
|
Xiong J, Huang B, Guo SL, Xu JS, Huang W. A novel multiplex PCR assay for rapid detection of virulent Aeromonas in cultured eels. J Appl Microbiol 2019; 127:418-428. [PMID: 31136041 DOI: 10.1111/jam.14311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 01/01/2023]
Abstract
AIMS Under intensive and stressful aquaculture conditions, cultured eels are highly susceptible to virulent Aeromonas sp. infections. To rapidly and simultaneously confirm Aeromonas isolate and its virulence, a two-tube multiplex PCR (mPCR) assay incorporating gyrB gene for genus-specific recognition and seven major virulence genes for virulence assessment was developed. METHODS AND RESULTS Eight pairs of primers were designed and divided into two groups-gyrB, ahpA, epr and aerA in tube 1 and alt, act, ast and hlyA in tube 2. The optimized mPCR conditions were the same except for their final concentrations. The specificity of the mPCR was validated by the extracted DNA of 10 Aeromonas and 8 non-Aeromonas species, or mixed DNA templates. Detection limits were determined to be 200 copies per μl in tube 1 and 20 copies per μl in tube 2. The mPCR reproducibility was tested by both artificial challenge and clinical samples. CONCLUSIONS The results showed this two-tube mPCR assay was rapid, specific, sensitive and reliable. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, this is the first report to distinguish virulent Aeromonas isolates from nonvirulent ones by seven popular and major virulence genes at the genus-specific level. And it will be useful for large-scale screening of virulent Aeromonas sp. in cultured eels.
Collapse
Affiliation(s)
- J Xiong
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Xiamen, China
| | - B Huang
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Xiamen, China
| | - S-L Guo
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Xiamen, China
| | - J-S Xu
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Xiamen, China
| | - W Huang
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Xiamen, China
| |
Collapse
|
12
|
Wang S, Yan Q, Zhang M, Huang L, Mao L, Zhang M, Xu X, Chen L, Qin Y. The role and mechanism of icmF in Aeromonas hydrophila survival in fish macrophages. JOURNAL OF FISH DISEASES 2019; 42:895-904. [PMID: 30919989 DOI: 10.1111/jfd.12991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Survival in host macrophages is an effective strategy for pathogenic bacteria to spread. Aeromonas hydrophila has been found to survive in fish macrophages, but the mechanisms remain unknown. In this paper, the roles and possible mechanisms of IcmF in bacterial survival in fish macrophages were investigated. First, a stable silencing strain icmF-RNAi was constructed by shRNA and RT-qPCR confirmed the expression of icmF was down-regulated by 94.42%. The expression of Hcp, DotU and VgrG was also decreased in icmF-RNAi. The intracellular survival rate of the wild-type strain was 92.3%, while the survival rate of icmF-RNAi was only 20.58%. The escape rate of the wild-type strain was 20%, while that of the icmF-RNAi was only 7.5%. Further studies indicated that the expression of icmF can significantly affect the adhesion, biofilm formation, motility and acid resistance of A. hydrophila, but has no significant effect on the growth of A. hydrophila even under the stress of H2 O2 . The results indicated that IcmF of A. hydrophila not only acts as a structural protein which participates in virulence-related characteristics such as bacterial motility, adhesion and biofilm formation, but also acts as a key functional protein which participates in the interaction between bacteria and host macrophages.
Collapse
Affiliation(s)
- Suyun Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Meimei Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Leilei Mao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Mengmeng Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Liwei Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|