1
|
Jia B, Burnley H, Gardner IA, Saab ME, Doucet A, Hammell KL. Diagnosis of Renibacterium salmoninarum infection in harvested Atlantic salmon (Salmo salar L.) on the east coast of Canada: Clinical findings, sample collection methods and laboratory diagnostic tests. JOURNAL OF FISH DISEASES 2023; 46:575-589. [PMID: 36861304 DOI: 10.1111/jfd.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Chronic subclinical infection with the aetiological agent of bacterial kidney disease (BKD), Renibacterium salmoninarum, presents challenges for the clinical management of disease in farmed salmonids and for prevalence estimation. Harvested salmon sampled at processing plants provide the opportunity to describe subclinical outcomes of BKD using gross necropsy observations and diagnostic test results in farmed Atlantic salmon (Salmo salar L.) populations that are apparently healthy (i.e. alive at harvest) but naturally exposed to R. salmoninarum infection. Sampling of farmed salmon (Population A, n = 124 and Population B, n = 160) was performed immediately post-slaughter as fish were being processed at a plant in New Brunswick, Canada. Populations were selected based on planned harvests from sites with histories of recent exposure events related to clinical BKD as evidenced by the site veterinarian's diagnosis of mortality attributable to BKD: One site (Pop A) had recently increasing mortalities attributed to BKD, and the other site (Pop B) had ongoing low-level mortalities with BKD pathology. As expected with the different exposure histories, Pop A had a higher percentage (57.2%) of R. salmoninarum culture-positive kidney samples compared with similar fish samples in Pop B (17.5%). Diagnosis of R. salmoninarum by gross granulomatous lesions in internal visceral organs, bacterial culture and identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) using different swab transport methods, and molecular detection methods (quantitative PCR, qPCR) were compared. Agreement of culture-positive percentages at the sample level was moderate (kappa: 0.61-0.75) among specimens collected using different kidney sampling methods in Pop A and Pop B. The highest proportion of R. salmoninarum-positive cultures occurred when kidney tissues were transported to the laboratory and inoculated directly onto agar using a swab (94% of cultures from Pop A and 82% from Pop B when fish were positive by any culture method). Fish with cumulative lesion scores (severity of granulomatous lesions in 3 different visceral organs) of >4 were all culture positive, and when compared with non-lesioned fish, had substantially higher odds of being culture positive: Pop A: odds ratio (OR) = 73, 95% confidence interval (CI) (7.91, 680.8); Pop B: OR = 66, 95% CI (6.12, 720.7). Our study found that onsite postmortem examinations with severity scores of gross granulomatous lesions were predictive of positive culture results for R. salmoninarum, and they were a useful proxy for assessing prevalence in apparently healthy populations with subclinical infection.
Collapse
Affiliation(s)
- Beibei Jia
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Holly Burnley
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Ian A Gardner
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Matthew E Saab
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Aquatic Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Adele Doucet
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Vet-Champlain Animal Care, Dieppe, New Brunswick, Canada
| | - K Larry Hammell
- Department of Health Management, and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
2
|
Svetlicic E, Jaén-Luchoro D, Klobucar RS, Jers C, Kazazic S, Franjevic D, Klobucar G, Shelton BG, Mijakovic I. Genomic characterization and assessment of pathogenic potential of Legionella spp. isolates from environmental monitoring. Front Microbiol 2023; 13:1091964. [PMID: 36713227 PMCID: PMC9879626 DOI: 10.3389/fmicb.2022.1091964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Several species in the genus Legionella are known to cause an acute pneumonia when the aerosols containing the bacteria from man-made water systems are inhaled. The disease is usually caused by Legionella pneumophila, but other species have been implicated in the infection. The disease is frequently manifested as an outbreak, which means several people are affected when exposed to the common source of Legionella contamination. Therefor environmental surveillance which includes isolation and identification of Legionella is performed routinely. However, usually no molecular or genome-based methods are employed in further characterization of the isolates during routine environmental monitoring. During several years of such monitoring, isolates from different geographical locations were collected and 39 of them were sequenced by hybrid de novo approach utilizing short and long sequencing reads. In addition, the isolates were typed by standard culture and MALDI-TOF method. The sequencing reads were assembled and annotated to produce high-quality genomes. By employing discriminatory genome typing, four potential new species in the Legionella genus were identified, which are yet to be biochemically and morphologically characterized. Moreover, functional annotations concerning virulence and antimicrobial resistance were performed on the sequenced genomes. The study contributes to the knowledge on little-known non-pneumophila species present in man-made water systems and establishes support for future genetic relatedness studies as well as understanding of their pathogenic potential.
Collapse
Affiliation(s)
- Ema Svetlicic
- Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases (Sahlgrenska Academy) at the University of Gothenburg, Gothenburg, Sweden
| | | | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark
| | - Snjezana Kazazic
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruder Boskovic Institute, Zagreb, Croatia
| | - Damjan Franjevic
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Goran Klobucar
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden,*Correspondence: Ivan Mijakovic,
| |
Collapse
|
3
|
Topić Popović N, Kazazić S, Bilić B, Babić S, Bojanić K, Bujak M, Tartaro Bujak I, Jadan M, Strunjak-Perović I, Kepec S, Čož-Rakovac R. Shewanella spp. from wastewater treatment plant-affected environment: isolation and characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82986-83003. [PMID: 35761132 DOI: 10.1007/s11356-022-21573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Bacteria from the genus Shewanella are inhabitants of marine and freshwater ecosystems, recognized fish spoilage bacteria, but less known as fish disease agents. Shewanella spp. isolated from fish living in waters close to effluents of a wastewater treatment plant (WWTP) were not previously characterized. We have tested Shewanella isolates from WWTP-affected waters and related fish. Genotypic characterization identified most strains as S. baltica and S. oneidensis. In order to investigate the sensibility and accuracy of their MALDI-TOF MS identification, they were grown on two culture media enriched by various NaCl concentrations, incubated at different temperatures and duration. We analyzed their antimicrobial susceptibility on a panel of antimicrobial drugs and capacity for biofilm production. With a view to demonstrate their capacity to produce fatty acids, we assessed the impact of different culture media on their lipid profile. We performed zebrafish embryotoxicity tests to simulate the environmental infection of the earliest life stages in S. baltica-contaminated waters. The best MALDI-TOF MS identification scores were for strains cultivated on TSA for 24 h at 22 °C and with supplementation of 1.5% NaCl. Less than 17% of isolates demonstrated antimicrobial resistance. Most isolates were weak biofilm producers. Strain-to-strain variation of MIC and MBC was low. The major fatty acids were C15:0, C16:0, C16:1, C17:1, and iC15:0. Exposure of Danio rerio to different S. baltica concentrations induced severe effects on zebrafish development: decreased heartbeat rate, locomotor activity, and melanin pigmentation. S. baltica passed through chorionic pores of zebrafish.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Snježana Kazazić
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Branka Bilić
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sanja Babić
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Krunoslav Bojanić
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maro Bujak
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivana Tartaro Bujak
- Radiation Chemistry and Dosimetry Laboratory, Ruđer Bošković Institute, Zagreb, Croatia
| | - Margita Jadan
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Slavko Kepec
- Virkom d.o.o., Public Water Supply and Wastewater Services, 33 000, Virovitica, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
4
|
Topić Popović N, Kazazić SP, Bojanić K, Strunjak-Perović I, Čož-Rakovac R. Sample preparation and culture condition effects on MALDI-TOF MS identification of bacteria: A review. MASS SPECTROMETRY REVIEWS 2021. [PMID: 34642960 DOI: 10.1002/mas.21739] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an excellent tool for bacterial identification. It allows high throughput, sensitive and specific applications in clinical diagnostics and environmental research. Currently, there is no optimal standardized protocol for sample preparation and culture conditions to profile bacteria. The performance of MALDI-TOF MS is affected by several variables, such as sample preparation, culture media and culture conditions, incubation time/growth stage, incubation temperature, high salt content, blood in the culture media, and others. This review thus aims to clarify why a uniformed protocol is not plausible, to assess the effects these factors have on MALDI-TOF MS identification score, and discuss possible optimizations for its methodology, in relation to specific bacterial representatives and strain requirements.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Snježana P Kazazić
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruđer Bošković Institute, Zagreb, Croatia
| | - Krunoslav Bojanić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
5
|
Acosta F, Montero D, Izquierdo M, Galindo-Villegas J. High-level biocidal products effectively eradicate pathogenic γ-proteobacteria biofilms from aquaculture facilities. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 532:736004. [PMID: 39175494 PMCID: PMC11338163 DOI: 10.1016/j.aquaculture.2020.736004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 10/03/2020] [Indexed: 08/24/2024]
Abstract
The use of effective biocides as disinfectants is essential in aquaculture facilities. However, while most biocides act effectively on free-living planktonic pathogens, they are seldom useful against biofilms. In this study, we evaluate the biocidal efficacy and antimicrobial specific contact time of three disinfectants, Virkon™Aquatic (VirA), peracetic acid (PerA) and hydrogen peroxide (HydP), on Vibrio anguillarum, V. harveyi, V. alginolyticus, and Photobacterium damselae subspecies piscicida against their both life phases. By using the minimum inhibitory, bactericidal, and eradication concentrations of disinfectants acting on the free-living planktonic state (MIC; MBC) and biofilms (MBIC; MBEC), we determined the in vitro susceptibility of each bacterial strain against three different individual concentrations of VirA, PerA, and HydP added at 1, 5, and 10 min intervals. PerA and VirA had the highest bactericidal efficacies against the free-living planktonic state and biofilm of all bacteria. Kinetically, PerA gave a positive result more quickly in both cases regardless of the strain in question, while the weakest HydP required longer than 10 min to act effectively. Moreover, we conducted a short in vivo safety trial by pouring the suggested MIC of each disinfectant into tanks containing juvenile Gilthead seabream (Sparus aurata). A significant mortality after 24 h was observed pointing to the potential risk a mishap of these chemicals might cause to fish. Nevertheless, collectively, our results support the inclusion of biocides within biosecurity protocols in aquaculture facilities and highlight PerA as the most effective disinfectant for fighting against biofilms produced by V. anguillarum, V. harveyi, V. alginolyticus or P. damselae subsp. piscicida.
Collapse
Affiliation(s)
- Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, 35214, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, 35214, Spain
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, 35214, Spain
| | | |
Collapse
|