1
|
Ma YH, Sheng YD, Zhang D, Liu JT, Tian Y, Li H, Li XF, Li N, Sun P, Siddiqui SA, Sun WW, Zhang L, Shan XF, Wang CF, Qian AD, Zhang DX. Acanthopanax senticosus cultures fermented by Lactobacillus rhamnosus enhanced immune response through improvement of antioxidant activity and inflammation in crucian carp (Carassius auratus). Microb Pathog 2024; 190:106614. [PMID: 38492825 DOI: 10.1016/j.micpath.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1β, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.
Collapse
Affiliation(s)
- Yi-Han Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Di Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun-Tong Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Fei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Na Li
- Ministry of Agriculture and Rural Affairs of Mudanjiang, Mudanjiang, 157020, China
| | - Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | | | - Wu-Wen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Oliver C, Ruiz P, Vidal JM, Carrasco C, Escalona CE, Barros J, Sepúlveda D, Urrutia H, Romero A. Effect of florfenicol on Piscirickettsia salmonis biofilm formed in materials used in salmonid nets, nylon and high-density polyethylene. JOURNAL OF FISH DISEASES 2024; 47:e13862. [PMID: 37776076 DOI: 10.1111/jfd.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Piscirickettsiosis is the most prevalent bacterial disease affecting seawater salmon in Chilean salmon industry. Antibiotic therapy is the first alternative to counteract infections caused by Piscirickettsia salmonis. The presence of bacterial biofilms on materials commonly used in salmon farming may be critical for understanding the bacterial persistence in the environment. In the present study, the CDC Biofilm Reactor® was used to investigate the effect of sub- and over-MIC of florfenicol on both the pre-formed biofilm and the biofilm formation by P. salmonis under the antibiotic stimuli on Nylon and high-density polyethylene (HDPE) surfaces. This study demonstrated that FLO, at sub- and over-MIC doses, decreases biofilm-embedded live bacteria in the P. salmonis isolates evaluated. However, it was shown that in the P. salmonis Ps007 strain the presence of sub-MIC of FLO reduced its biofilm formation on HDPE surfaces; however, biofilm persists on Nylon surfaces. These results demonstrated that P. salmonis isolates behave differently against FLO and also, depending on the surface materials. Therefore, it remains a challenge to find an effective strategy to control the biofilm formation of P. salmonis, and certainly other marine pathogens that affect the sustainability of the Chilean salmon industry.
Collapse
Affiliation(s)
- Cristian Oliver
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ruiz
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Talcahuano, Chile
| | - José Miguel Vidal
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Investigación y Desarrollo, Ecombio Limitada, Concepción, Chile
| | - Carlos Carrasco
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Carla Estefanía Escalona
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Barros
- Departamento de Investigación y Desarrollo, Micbiotech Spa, Concepción, Chile
| | - Daniela Sepúlveda
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Homero Urrutia
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research, (INCAR), Concepción, Chile
| |
Collapse
|
3
|
Rahman MA, Ashrafudoulla M, Akter S, Park SH, Ha SD. Probiotics and biofilm interaction in aquaculture for sustainable food security: A review and bibliometric analysis. Crit Rev Food Sci Nutr 2023:1-17. [PMID: 37599629 DOI: 10.1080/10408398.2023.2249114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Aquaculture is one of the most significant food sources from the prehistoric period. As aquaculture intensifies globally, the prevalence and outbreaks of various pathogenic microorganisms cause fish disease and heavy mortality, leading to a drastic reduction in yield and substantial economic loss. With the modernization of the aquaculture system, a new challenge regarding biofilms or bacterial microenvironments arises worldwide, which facilitates pathogenic microorganisms to survive under unfavorable environmental conditions and withstand various treatments, especially antibiotics and other chemical disinfectants. However, we focus on the mechanistic association between those microbes which mainly form biofilm and probiotics in one of the major food production systems, aquaculture. In recent years, probiotics and their derivatives have attracted much attention in the fisheries sector to combat the survival strategy of pathogenic bacteria. Apart from this, Bibliometric analysis provides a comprehensive overview of the published literature, highlighting key research themes, emerging topics, and areas that require further investigation. This information is valuable for researchers, policymakers, and stakeholders in determining research priorities and allocating resources effectively.
Collapse
Affiliation(s)
- Md Ashikur Rahman
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Shirin Akter
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Si Hong Park
- Food Science and Technology Department, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| |
Collapse
|
4
|
Oliver C, Céspedes C, Santibañez N, Ruiz P, Romero A. Subinhibitory concentrations of florfenicol increase the biofilm formation of Piscirickettsia salmonis. JOURNAL OF FISH DISEASES 2023; 46:591-596. [PMID: 36639965 DOI: 10.1111/jfd.13757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Public health is facing a new challenge due to the increased bacterial resistance to most of the conventional antibacterial agents. Inadequate use of antibiotics in the Chilean aquaculture industry leads to the generation of multidrug resistance bacteria. Many fish pathogenic bacteria produce biofilm upon various sources of stress such as antibiotics, which provides several survival advantages for the bacterial life in community and can constitute a reservoir of pathogens in the marine environment. Being florfenicol a broad-spectrum antibiotic commonly used to treat infections in aquaculture, the aim of this study was to assess whether this antibiotic modulates in vitro the biofilm formation in several isolates of Piscirickettsia salmonis. Standard antibiotic-micro broth 96-flat well plates were used to determinate the minimal inhibitory concentration of florfenicol in eight different P. salmonis isolates. In vitro findings, with P. salmonis growing in the presence and absence of the antibiotic, exhibited a statistically significantly increase (p < .05) in biofilm formation in all the bacterial isolates cultivated with sub-MIC (defined as the half of the minimal inhibitory concentration in the presence of antibiotic) of florfenicol compared with controls (antibiotic-free broth). In conclusion, sub-MIC of florfenicol induced an increased biofilm formation in all P. salmonis isolates tested.
Collapse
Affiliation(s)
- Cristian Oliver
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Constanza Céspedes
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Natacha Santibañez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ruiz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Talcahuano, Chile
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| |
Collapse
|
5
|
De Silva LADS, Heo GJ. Biofilm formation of pathogenic bacteria isolated from aquatic animals. Arch Microbiol 2022; 205:36. [PMID: 36565346 DOI: 10.1007/s00203-022-03332-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 12/25/2022]
Abstract
Bacterial biofilm formation is one of the dynamic processes, which facilitates bacteria cells to attach to a surface and accumulate as a colony. With the help of biofilm formation, pathogenic bacteria can survive by adapting to their external environment. These bacterial colonies have several resistance properties with a higher survival rate in the environment. Especially, pathogenic bacteria can grow as biofilms and can be protected from antimicrobial compounds and other substances. In aquaculture, biofilm formation by pathogenic bacteria has emerged with an increased infection rate in aquatic animals. Studies show that Vibrio anguillarum, V. parahaemolyticus, V. alginolyticus, V. harveyi, V. campbellii, V. fischeri, Aeromonas hydrophila, A. salmonicida, Yersinia ruckeri, Flavobacterium columnare, F. psychrophilum, Piscirickettsia salmonis, Edwardsiella tarda, E. ictaluri, E. piscicida, Streptococcus parauberis, and S. iniae can survive in the environment by transforming their planktonic form to biofilm form. Therefore, the present review was intended to highlight the principles behind biofilm formation, major biofilm-forming pathogenic bacteria found in aquaculture systems, gene expression of those bacterial biofilms and possible controlling methods. In addition, the possibility of these pathogenic bacteria can be a serious threat to aquaculture systems.
Collapse
Affiliation(s)
- L A D S De Silva
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
6
|
Kroniger T, Mehanny M, Schlüter R, Trautwein-Schult A, Köllner B, Becher D. Effect of Iron Limitation, Elevated Temperature, and Florfenicol on the Proteome and Vesiculation of the Fish Pathogen Aeromonas salmonicida. Microorganisms 2022; 10:microorganisms10091735. [PMID: 36144337 PMCID: PMC9503180 DOI: 10.3390/microorganisms10091735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
We analyzed the proteomic response of the Gram-negative fish pathogen A. salmonicida to iron limitation, an elevated incubation temperature, and the antibiotic florfenicol. Proteins from different subcellular fractions (cytosol, inner membrane, outer membrane, extracellular and outer membrane vesicles) were enriched and analyzed. We identified several iron-regulated proteins that were not reported in the literature for A. salmonicida before. We could also show that hemolysin, an oxidative-stress-resistance chaperone, a putative hemin receptor, an M36 peptidase, and an uncharacterized protein were significantly higher in abundance not only under iron limitation but also with an elevated incubation temperature. This may indicate that these proteins involved in the infection process of A. salmonicida are induced by both factors. The analysis of the outer membrane vesicles (OMVs) with and without applied stresses revealed significant differences in the proteomes. OMVs were smaller and contained more cytoplasmic proteins after antibiotic treatment. After cultivation with low iron availability, several iron-regulated proteins were found in the OMVs, indicating that A. salmonicida OMVs potentially have a function in iron acquisition, as reported for other bacteria. The presence of iron-regulated transporters further indicates that OMVs obtained from ‘stressed’ bacteria might be suitable vaccine candidates that induce a protective anti-virulence immune response.
Collapse
Affiliation(s)
- Tobias Kroniger
- Institute of Microbiology, Department of Microbial Proteomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany
| | - Mina Mehanny
- Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, 17489 Greifswald, Germany
| | - Anke Trautwein-Schult
- Institute of Microbiology, Department of Microbial Proteomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany
| | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Dörte Becher
- Institute of Microbiology, Department of Microbial Proteomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-420-5903
| |
Collapse
|
7
|
Vidal JM, Ruiz P, Carrasco C, Barros J, Sepúlveda D, Ruiz-Tagle N, Romero A, Urrutia H, Oliver C. Piscirickettsia salmonis forms a biofilm on nylon surface using a CDC Biofilm Reactor. JOURNAL OF FISH DISEASES 2022; 45:1099-1107. [PMID: 35543448 DOI: 10.1111/jfd.13632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Research into Piscirickettsia salmonis biofilms on materials commonly used in salmon farming is crucial for understanding its persistence and virulence. We used the CDC Biofilm Reactor to investigate P. salmonis (LF-89 and EM-90) biofilm formation on Nylon, Stainless steel (316L), Polycarbonate and High-Density Polyethylene (HDPE) surfaces. After 144 h of biofilm visualization by scanning confocal laser microscopy under batch growth conditions, Nylon coupons generated the greatest biofilm formation and coverage compared to Stainless steel (316L), Polycarbonate and HDPE. Additionally, P. salmonis biofilm formation on Nylon was significantly greater (p ≤ .01) than Stainless steel (316L), Polycarbonate and HDPE at 288 h. We used Nylon coupons to determine the kinetic parameters of the planktonic and biofilm phases of P. salmonis. The two strains had similar latencies in the planktonic phase; however, LF-89 maximum growth was 2.5 orders of magnitude higher (Log cell ml-1 ). Additionally, LF-89 had a specified growth rate (µmax) of 0.0177 ± 0.006 h-1 and a generation time of 39.2 h. This study contributes to a deeper understanding of the biofilm formation by P. salmonis and elucidates the impact of the biofilm on aquaculture systems.
Collapse
Affiliation(s)
- José Miguel Vidal
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Investigación y Desarrollo, Ecombio limitada, Concepción, Chile
| | - Pamela Ruiz
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Talcahuano, Chile
| | - Carlos Carrasco
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Javier Barros
- Departamento de Investigación y Desarrollo, Micbiotech spa, Concepción, Chile
| | - Daniela Sepúlveda
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Nathaly Ruiz-Tagle
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research, INCAR, Concepción, Chile
| | - Homero Urrutia
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Cristian Oliver
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
8
|
Zhang L, Jin S, Feng C, Song H, Raza SHA, Yu H, Zhang L, Chi T, Qi Y, Zhang D, Qian A, Liu N, Shan X. Aeromonas veronii virulence and adhesion attenuation mediated by the gene aodp. JOURNAL OF FISH DISEASES 2022; 45:231-247. [PMID: 34875118 DOI: 10.1111/jfd.13544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 05/13/2023]
Abstract
Aeromonas veronii (A. veronii) is an opportunistic pathogen of fish-human-livestock, which poses a threat to the development of aquaculture. Based on our previous studies on proteomics and genomics, we found out that the aodp gene may be related to the virulence of A. veronii TH0426. However, aodp gene encodes a hypothetical protein with an unknown function, and its role in A. veronii TH0426 is not clear. Here, we first constructed a mutant strain (△-aodp) to investigate the functional role of aodp in A. veronii TH0426. Compared with the wild strain A. veronii TH0426, the growth rate of strain △-aodp was slower and was resistant to neomycin and kanamycin, but sensitive to cephalexin. The swimming and swarming ability of △-aodp strain decreased, and the pathogenicity to mice decreased by 15.84-fold. Besides, the activity of caspase-3 in EPCs infected with △-aodp strain was 1.49-fold lower than that of the wild strain. We examined 20 factors closely related to A. veronii virulence, among them 17 genes were down-regulated as a result of aodp deficiency. This study laid a foundation for further studies on the pathogenesis of A. veronii.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shengnan Jin
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chao Feng
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Haichao Song
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | | | - Huabo Yu
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Liang Zhang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Teng Chi
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yanling Qi
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dongxing Zhang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Aidong Qian
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ning Liu
- Department of Veterinary Medicine, China Agriculture University, Beijing, China
| | - Xiaofeng Shan
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Prior BS, Lange MD, Salger SA, Reading BJ, Peatman E, Beck BH. The effect of piscidin antimicrobial peptides on the formation of Gram-negative bacterial biofilms. JOURNAL OF FISH DISEASES 2022; 45:99-105. [PMID: 34590712 DOI: 10.1111/jfd.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Fish-derived antimicrobial peptides are an important part of the innate immune system due to their potent antimicrobial properties. Piscidins are a class of antimicrobial peptides first described in hybrid striped bass (Morone chrysops x Morone saxatilis) but have also been identified in many other fish species. Previous work demonstrated the broad antimicrobial activity of piscidins against Gram-negative and Gram-positive bacterial species. This study sought to determine the extent to which class I (striped bass piscidin 1, white bass piscidin 1 and striped bass/white bass piscidin 3) and class II (striped bass piscidin 4 and white bass piscidin 5) piscidins inhibit biofilm formation of different Gram-negative bacteria. In general, the class I and II piscidins demonstrate potent activity against Escherichia coli and Flavobacterium columnare biofilms. The class II piscidins showed more activity against E. coli and F. columnare isolates than did the class I piscidins. The piscidins in general were much less effective against inhibiting Aeromonas hydrophila and A. veronii biofilm growth. Only the class I piscidins showed significant growth inhibition among the Aeromonas spp. examined.
Collapse
Affiliation(s)
- Benjamin S Prior
- School of Fisheries, Aquaculture, and Aquatic Sciences, Aquatic Genetics and Genomics, Auburn University, Auburn, AL, USA
| | - Miles D Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| | | | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Aquatic Genetics and Genomics, Auburn University, Auburn, AL, USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| |
Collapse
|
10
|
De Silva LADS, Wickramanayake MVKS, Heo GJ. Virulence and antimicrobial resistance potential of Aeromonas spp. associated with shellfish. Lett Appl Microbiol 2021; 73:176-186. [PMID: 33891720 DOI: 10.1111/lam.13489] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
Aeromonas spp. are associated with seafood-related outbreaks worldwide. In seafood industry, shellfish play a major role in global seafood production. With this emerging trend of shellfish consumption, shellfish-related bacterial infections are being reported frequently. Aeromonas spp. are natural contaminants found in shellfish. Although 36 species have been identified, some species including Aeromonas hydrophila, Aeromonas caviae and Aeromonas veronii biotype sobria have dragged major attention as foodborne pathogenic bacteria. The ability to elaborate a variety of virulence factors of Aeromonas spp. contributes to the pathogenic activities. Also, emerging antimicrobial resistance in Aeromonas spp. has become a huge challenge in seafood industry. Furthermore, multidrug resistance increases the risk of consumer health. Studies have supplied pieces of evidence about the emerging health risk of Aeromonas spp. isolated from seafood. Therefore, the present review was intended to highlight the prevalence, virulence and antimicrobial resistance of Aeromonas spp. isolated from various types of shellfish.
Collapse
Affiliation(s)
- L A D S De Silva
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - M V K S Wickramanayake
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - G-J Heo
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|