1
|
Wang A, Liu N, Zhao J, Niu Y, Chen Y, Zhou J, Liu E, Zhang G. Development of a double-antibody sandwich enzyme-linked immunosorbent assay for rapid detection of VZV. J Virol Methods 2024; 324:114874. [PMID: 38154579 DOI: 10.1016/j.jviromet.2023.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Varicella zoster virus (VZV) is the pathogen of varicella and herpes zoster, it is necessary to develop a rapid, sensitive and specific detection method for the prevention and control of related diseases. METHODS We inserted the gB protein extracellular region gene (gB-ex, 1-2208 bp) of VZV into lentivirus vector, and then obtained the recombinant gB protein through mammalian expression system. BALB/c mice were immunized multiple times with purified gB protein as immunogen. Then four strains of high affinity monoclonal antibodies targeting gB protein were prepared by cell fusion technique. Monoclonal antibodies 5G4 and HRP-4E9 were selected as capture and detection antibodies respectively, and a double-antibody sandwich ELISA method was established for detection. RESULTS The detection limit of the DAS-ELISA was 156 PFU/mL, and there was no cross-reaction with Herpes simplex virus-1/Herpes simplex virus-2/Pseudorabies virus. The coefficients of variation of intra-assay and inter-assay repeatability were less than 5%. CONCLUSIONS In this study, a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was established for the detection of VZV. The assay has good sensitivity, specificity and repeatability, which provides strong technical support and product guarantee for the rapid clinical detection of VZV.
Collapse
Affiliation(s)
- Aiping Wang
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Na Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Jianguo Zhao
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871 China
| | - Yan Niu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Yumei Chen
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Jingming Zhou
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Enping Liu
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Gaiping Zhang
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China; School of Advanced Agricultural Sciences, Peking University, Beijing, 100871 China.
| |
Collapse
|
2
|
Zheng Y, Zhou Y, Zhao L, Li J, Lu L, Jiang Y. Development of a lateral flow immuno-chromatic strip assay for the detection of cyprinid herpesvirus 3 (CyHV-3). JOURNAL OF FISH DISEASES 2023; 46:1065-1071. [PMID: 37409374 DOI: 10.1111/jfd.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the main pathogen of koi herpesvirus disease (KHVD), which has caused serious damage to the ornamental and food-producing carp industry. Effective and rapid on-site detection methods are needed for early diagnosis of CyHV-3. A lateral flow immuno-chromatographic assay (LFIA) using two specific anti-CyHV-3 monoclonal antibodies has been developed and validated for on-site detection of CyHV-3. MAb 3C9 was used to bio-conjugate CyHV-3 antigen with colloidal gold, and MAb 2A8 was used to capture antigen bound colloidal gold on the test line. The control line was lined with goat anti-mouse IgG to capture unbound colloidal gold to validate performance. The test results can be viewed within 10 min after putting the strip into CyHV-3 virus infection fluid. The lowest limit of detection for the LFIA test was found to be 1.5 × 104 copies/μL and it showed no cross-reactivity with other fish viral pathogens. The specificity of the strip was 100% when spleen and kidney tissues of CyHV-3-infected and healthy koi were validated at the field level. The LFIA strip will be an effective device for the early detection of CyHV-3 in the future.
Collapse
Affiliation(s)
- Yihua Zheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| | - Yi Zhou
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| | - Lupin Zhao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| | - Jiaxun Li
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yousheng Jiang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Tao S, Zhao X, Bao D, Liu X, Zhang W, Zhao L, Tang Y, Wu H, Ye H, Yang Y, Deng D. SARS-Cov-2 Spike-S1 Antigen Test Strip with High Sensitivity Endowed by High-Affinity Antibodies and Brightly Fluorescent QDs/Silica Nanospheres. ACS APPLIED MATERIALS & INTERFACES 2023; 15:27612-27623. [PMID: 37265327 DOI: 10.1021/acsami.3c03434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The extensive research into developing novel strategies for detecting respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in clinical specimens, especially the sensitive point-of-care testing method, is still urgently needed to reach rapid screening of viral infections. Herein, a new lateral flow immunoassay (LFIA) platform was reported for the detection of SARS-CoV-2 spike-S1 protein antigens, in which four sensitive and specific SARS-CoV-2 mouse monoclonal antibodies (MmAbs) were tailored by using quantum dot (QD)-loaded dendritic mesoporous silica nanoparticles modified further for achieving the -COOH group surface coating (named Q/S-COOH nanospheres). Importantly, compact QD adsorption was achieved in mesoporous channels of silica nanoparticles on account of highly accessible central-radial pores and electrostatic interactions, leading to significant signal amplification. As such, a limit of detection for SARS-CoV-2 spike-S1 testing was found to be 0.03 ng/mL, which is lower compared with those of AuNPs-LFIA (traditional colloidal gold nanoparticles, Au NPs) and enzyme-linked immunosorbent assay methods. These results show that optimizing the affinity of antibody and the intensity of fluorescent nanospheres simultaneously is of great significance to improve the sensitivity of LFIA.
Collapse
Affiliation(s)
- Shiyi Tao
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 211198, China
- China Regional Research Centre, International Centre for Genetic Engineering and Biotechnology, Taizhou 225300, China
| | - Xiaomin Zhao
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dongping Bao
- China Regional Research Centre, International Centre for Genetic Engineering and Biotechnology, Taizhou 225300, China
| | - Xuecheng Liu
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Liying Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yujiao Tang
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Hongbin Wu
- Jiangsu Huatai Vaccine Engineering Technology Research Co., Ltd., Taizhou 225300, China
| | - Huayue Ye
- Jiangsu Huatai Vaccine Engineering Technology Research Co., Ltd., Taizhou 225300, China
| | - Yili Yang
- China Regional Research Centre, International Centre for Genetic Engineering and Biotechnology, Taizhou 225300, China
| | - Dawei Deng
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Cao L, Kong X, Zhang Y, Suo X, Li X, Duan Y, Yuan C, Zheng H, Wang Q. Development of a novel double-antibody sandwich quantitative ELISA for detecting SADS-CoV infection. Appl Microbiol Biotechnol 2023; 107:2413-2422. [PMID: 36809389 PMCID: PMC9942060 DOI: 10.1007/s00253-023-12432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging swine enteric alphacoronavirus that can cause acute diarrhea, vomiting, dehydration, and death of newborn piglets. In this study, we developed a double-antibody sandwich quantitative enzyme-linked immunosorbent assay (DAS-qELISA) for detection of SADS-CoV by using an anti-SADS-CoV N protein rabbit polyclonal antibody (PAb) and a specific monoclonal antibody (MAb) 6E8 against the SADS-CoV N protein. The PAb was used as the capture antibodies and HRP-labeled 6E8 as the detector antibody. The detection limit of the developed DAS-qELISA assay was 1 ng/mL of purified antigen and 101.08TCID50/mL of SADS-CoV, respectively. Specificity assays showed that the developed DAS-qELISA has no cross-reactivity with other swine enteric coronaviruses, such as porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV). Three-day-old piglets were challenged with SADS-CoV and collected anal swab samples which were screened for the presence of SADS-CoV by using DAS-qELISA and reverse transcriptase PCR (RT-PCR). The coincidence rate of the DAS-qELISA and RT-PCR was 93.93%, and the kappa value was 0.85, indicating that DAS-qELISA is a reliable method for applying antigen detection of clinical samples. KEY POINTS: • The first double-antibody sandwich quantitative enzyme-linked immunosorbent assay for detection SADS-CoV infection. • The custom ELISA is useful for controlling the SADS-CoV spread.
Collapse
Affiliation(s)
- Liyan Cao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangyu Kong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yu Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xuepeng Suo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangtong Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yueyue Duan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Cong Yuan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Qi Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Chengdu National Agricultural Science and Technology Center, Chengdu, China.
| |
Collapse
|