1
|
Jyoti S, Jia B, Saksida S, Stryhn H, Price D, Revie CW, Thakur KK. Spatiotemporal patterns of mortality events in farmed Atlantic salmon in British Columbia, Canada, using publicly available data. Sci Rep 2024; 14:32122. [PMID: 39738537 DOI: 10.1038/s41598-024-83876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Monitoring mortality is an essential strategy for fish health management. Commercial marine finfish sites in British Columbia, Canada, are required to report mortality events (MEs) to Fisheries and Oceans Canada (DFO), which makes these data publicly available. This study aimed to analyze the spatial and temporal patterns of ME composition and total MEs. Between June 2011 and June 2022, 561 MEs were reported. The annual incidence ranged from 1.36 (95% CI: 0.55-2.81) MEs per 100 active site-months in 2013 to 17.98 (95% CI: 13.26-23.84) MEs per 100 active site-months in 2022, with a broadly increasing trend over the period under consideration. The primary causes of MEs were low levels of dissolved oxygen, fish health treatments, and harmful algal blooms (HABs). Both HABs and low dissolved oxygen followed similar patterns, increasing from 2014, peaking in 2019, and declining thereafter. Treatment-related MEs were first reported in 2017 and saw a sharp increase in subsequent years, becoming the leading cause of MEs by 2020. Nearly all treatment-related MEs were linked to sea lice treatments, highlighting the urgent need for adaptive strategies to mitigate these impacts. Sites on the west coast of Vancouver Island demonstrated a higher risk of reporting MEs compared to Mainland sites, likely due to their higher levels of exposure to fluctuating oceanographic conditions. Long-term climate change and persistent periods of warming events, such as marine heat waves, are warming the oceans, altering water parameters, and likely increasing the occurrence and severity of HABs and low dissolved oxygen-related MEs. Further studies are needed to quantify the effects of ocean warming on salmon aquaculture and the resulting increase in fish mortalities.
Collapse
Affiliation(s)
- Sumit Jyoti
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3, Canada.
| | - Beibei Jia
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3, Canada
| | - Sonja Saksida
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3, Canada
| | - Henrik Stryhn
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3, Canada
| | - Derek Price
- Aquaculture Management Division, Fisheries and Oceans Canada, 103-2435 Mansfield Drive, Courtenay, BC, V9N 2M2, Canada
| | - Crawford W Revie
- Department of Computer and Information Sciences, University of Strathclyde, Glasgow, G1 1XH, UK
| | - Krishna K Thakur
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3, Canada
| |
Collapse
|
2
|
Fanjara E, Aas GKFH, Cao Y, Kristinova V, Sæbø A, Stene A. Sampling time for different matrices in stress assessment of farmed Atlantic salmon post-smolt. J Steroid Biochem Mol Biol 2024; 242:106542. [PMID: 38735340 DOI: 10.1016/j.jsbmb.2024.106542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
The sustainability of commercial aquaculture production depends critically on prioritizing fish welfare management. Besides monitoring welfare parameters such as fish behaviour and water quality, fish stress level can also provide a reliable measure of the welfare status of farmed fish. Cortisol and 5 of its metabolites (5β-THF, cortisone, 5β-DHE, 5β-THE, β-cortolone) were previously identified by the authors as suitable stress biomarkers of farmed Atlantic salmon. Based on this knowledge, the present study aimed to investigate the time-related dynamics of these metabolites in plasma, skin mucus, bile and faeces over a 72 h- period. The objective was to determine the optimal sampling time for each matrix and to understand the clearance pathway of these metabolites following stress. An experiment was carried out using a total of 90 Atlantic salmon with an average weight of 438 (±132) g. The average sea temperature was 6.9 °C during the experimental period. A control group of 10 fish was first collected before the remaining 80 fish were submitted to a stress of netting and subsequent relocation into two separate cages. From each of these two stress groups, 10 fish were sampled at 1 h, 2 h, 4 h, 6 h and 12 h, 24 h, 48 h, 72 h after the stress event respectively. The concentrations of cortisol and its metabolites were measured at each of the sampling timepoint. The results demonstrated that plasma cortisol metabolites reached the highest concentration 4 h after stress and remained elevated despite the slight decrease for the remaining timepoints. The peak level was observed at 12 h post-stress in skin mucus and 24 h in bile and faeces. The findings suggest that these timepoints are the optimal for sampling Atlantic salmon post-smolt following stressful events in acute stress studies. Furthermore, the results reveal that analysing cortisol and its metabolites, both in free and conjugated forms, rather than free cortisol provides greater flexibility as their concentrations are less affected by sampling procedure. This study confirms the appropriateness of skin mucus and faeces as less-invasive sample matrices for fish stress evaluation and provides a basis for further developing low invasive tools for monitoring the welfare of farmed salmonid.
Collapse
Affiliation(s)
- Ernestine Fanjara
- Department of Biological Sciences Aalesund, Norwegian University of Science and Technology, NTNU in Aalesund P.O. box 1517, Aalesund N-6025, Norway; Innolipid AS, Tonningsgate 17, Aalesund N-6006, Norway.
| | - Grete K F H Aas
- Department of Biological Sciences Aalesund, Norwegian University of Science and Technology, NTNU in Aalesund P.O. box 1517, Aalesund N-6025, Norway
| | - Yanran Cao
- Department of Biological Sciences Aalesund, Norwegian University of Science and Technology, NTNU in Aalesund P.O. box 1517, Aalesund N-6025, Norway
| | | | - Asgeir Sæbø
- Innolipid AS, Tonningsgate 17, Aalesund N-6006, Norway
| | - Anne Stene
- Department of Biological Sciences Aalesund, Norwegian University of Science and Technology, NTNU in Aalesund P.O. box 1517, Aalesund N-6025, Norway
| |
Collapse
|
3
|
Vatne NA, Wessel Ø, Trengereid H, Haugsland S, Rimstad E, Stormoen M. Introduction and temporospatial tracing of piscine orthoreovirus-1 (PRV-1) in Norwegian farmed Atlantic salmon (Salmo salar) after local fallowing. JOURNAL OF FISH DISEASES 2024; 47:e13978. [PMID: 38840479 DOI: 10.1111/jfd.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Piscine orthoreovirus-1 (PRV-1) is a prevalent agent in Atlantic salmon (Salmo salar) and the causative agent of heart and skeletal muscle inflammation (HSMI), an important disease in farmed Atlantic salmon. Investigations into the introduction and dissemination routes of PRV-1 in a field setting have been limited. This study aimed to better understand PRV-1 infections and HSMI-associated mortality under field conditions. We tracked introduction and spread of PRV-1 over one production cycle in a geographically isolated region in Norwegian aquaculture. From five sites, a total of 32 virus isolates were sequenced and genogrouped. The results indicated multiple introductions of PRV-1 to the area, but also revealed a high level of genetic homogeneity among the virus variants. The variants differed from that of the previous production cycle at two out of three sites investigated, suggesting that synchronized fallowing can be a useful tool for preventing dissemination of PRV-1 between generations of fish. Exposure to PRV-1 at the freshwater stage was identified as a potential source of introduction. A low level of HSMI-associated mortality was observed at all sites, with the onset of mortality showing some variation across PRV-1 genogroups. However, the study highlighted the complexity of associating viral genogroups with mortality in a field setting. Overall, this study contributes valuable insights into PRV-1 dynamics in a real-world aquaculture setting, offering potential strategies for disease management and prevention.
Collapse
Affiliation(s)
- Nina A Vatne
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Øystein Wessel
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Marit Stormoen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
4
|
R C, E KS, F A, M S, E A, C R P, W P, K A G, A W. Adaptation in landlocked Atlantic salmon links genetics in wild and farmed salmon to smoltification. BMC Genom Data 2024; 25:78. [PMID: 39215221 PMCID: PMC11363631 DOI: 10.1186/s12863-024-01263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Increased knowledge of heritable traits in Atlantic Salmon (Salmo salar) is important to overcome bottlenecks in salmonid aquaculture. Atlantic salmonid populations, both landlocked and anadromous, represent an interesting model to gain insight into anadromy related traits, most notably, the probability to smoltify. While a previous study has identified several genomic regions diverging between anadromous and landlocked populations across the species range, the present study explores these data further with the aim to uncover if some of these genomic regions are linked to beneficial genetic traits associated with smoltification. In this study 17 of these loci were monitored in 669 anadromous salmon originating from 36 full-sibling families that had been reared under common garden conditions. The Smolt Index was calculated, using multiple visual markers, and provided a means of assessing smoltification stage. One SNP, located in Ssa04, showed a significant association with probability to smoltify, where individuals homozygous for the landlocked variant (LL) displayed a decrease in probability of smoltifying after one winter when compared with the homozygous for the anadromous variant (AA). This effect was independent of individual fish size. A separate common garden study comprising 200 individuals from either anadromous or landlocked strains showed that expression levels of ncor1, a thyroid mediator hormone located on the same chromosomal region (Ssa04), were significantly reduced in landlocked individuals post smoltification but remained constant in their anadromous counterparts. This study therefore suggests that while size is still the most important trigger for the induction of smoltification, there may also be an additional genetic component or trigger that has been 'lost' during the years deprived of SW transfer. In conclusion, the LL genotype identified here could potentially be used by the industry to delay smoltification and may also represent one of the first clues to the genetic regulation of smoltification in Atlantic salmon.
Collapse
Affiliation(s)
- Cairnduff R
- Institute of Marine Research, Bergen, Norway.
| | | | - Ayllon F
- Institute of Marine Research, Bergen, Norway
| | - Solberg M
- Institute of Marine Research, Bergen, Norway
| | - Andersson E
- Institute of Marine Research, Bergen, Norway
| | - Primmer C R
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Sciences (hiLIFE), University of Helsinki, Helsinki, Finland
| | - Perry W
- Cardiff University, Cardiff, UK
| | - Glover K A
- Institute of Marine Research, Bergen, Norway
| | - Wargelius A
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
5
|
Barnes AP, Sparks N, Helgesen IS, Soliman T. Financial impacts of a housing order on commercial free range egg layers in response to highly pathogenic avian influenza. Prev Vet Med 2024; 228:106209. [PMID: 38714017 DOI: 10.1016/j.prevetmed.2024.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
Recent annual outbreaks of Highly Pathogenic Avian Influenza (HPAI) have led to mandatory housing orders on commercial free-range flocks. Indefinite periods of housing, after poultry have had access to range, could have production and financial consequences for free range egg producers. The impact of these housing orders on the performance of commercial flocks is seldom explored at a business level, predominantly due to the paucity of commercially sensitive data. The aim of this paper is to assess the financial and production impacts of a housing order on commercial free-range egg layers. We use a unique data set showing week by week performance of layers gathered from 9 UK based farms over the period 2020-2022. These data cover an average of 100,000 laying hens and include two imposed housing orders, in 2020/2021 and in 2021/22. We applied a random intercept linear regression to assess impacts on physical outputs and inputs, bird mortality and the impacts on revenue, feed costs and margin over feed cost. Feed use and feed costs per bird increased during the housing order which is a consequence of increased control over diet intake in housed compared to ranged birds. An increase in revenue was also found, ostensibly due to a higher proportion of large eggs produced, leading to a higher margin over feed cost. Overall, these large commercial poultry sheds were able to mitigate some of the potential adverse economic effects of housing orders. Potential negative impacts may occur dependant on the duration of the housing order and those farms with less control over their input costs.
Collapse
Affiliation(s)
- Andrew P Barnes
- Department of Rural Economy, Environment and Society, SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, UK.
| | - Nick Sparks
- Department of Rural Economy, Environment and Society, SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, UK
| | - Irmelin S Helgesen
- Department of Economics, NTNU, Postboks 8900, Trondheim, Torgarden 7491, Norway
| | - Tarek Soliman
- Department of Rural Economy, Environment and Society, SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, UK
| |
Collapse
|
6
|
Singh GG, Sajid Z, Mather C. Quantitative analysis of mass mortality events in salmon aquaculture shows increasing scale of fish loss events around the world. Sci Rep 2024; 14:3763. [PMID: 38453975 PMCID: PMC10920753 DOI: 10.1038/s41598-024-54033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Globally, salmon aquaculture promises to contribute to sustainable sources of animal protein for a growing human population. However, the growth of the industry also includes increased reports of mass mortality events-disaster events where large numbers of fish die in short periods of time. As salmon production increases in scale and more technology is used to grow salmon in contexts otherwise not suited for them, there is a possibility for more frequent and more severe mortality events. Despite investigations into specific cases of mass mortality events-no global study has been conducted to see if large scale mortality is increasing in frequency and scale. Using a global dataset of publicly available and government-collated data on salmon mortality events including nations responsible for the majority of salmon aquaculture, we document trends in mortality events, showing that in some of the major salmon producing nations of the world (in particular Norway, Canada, and the UK), mass mortality events have increased in frequency from 2012 to 2022. We also show that the scope of mass mortality events has increased over time-that is, the upper bound of how many fish were killed in a specific mortality event has increased over time. Finally, the expected maximum size of a mass mortality event differs from country to country, but is likely much larger than site and jurisdictional thresholds of concern for animal welfare, early warning thresholds, and capacity to respond to mortality events. The consequences of the increased scale and scope of mass mortality events extend past aquaculture production to include severe consequences to aquaculture companies and to coastal communities who depend on aquaculture. Our results agree with predictions of the concept of "manufactured risk", which suggests that risk emerges from the aggressive use of technology to optimize production in variable environments, and we argue that there is a need for more fine-scale and standard data collection on salmon mortality events, and that future investigations into salmon aquaculture should increase focus on disaster potential and realization.
Collapse
Affiliation(s)
- Gerald G Singh
- Ocean Nexus, School of Environmental Studies, University of Victoria, Victoria, Canada.
| | - Zaman Sajid
- Mary Kay O'Connor Process Safety Center, Texas A&M University, College Station, USA
| | - Charles Mather
- Department of Geography, Memorial University of Newfoundland and Labrador, St. John's, Canada
| |
Collapse
|
7
|
Walde CS, Bang Jensen B, Stormoen M, Asche F, Misund B, Pettersen JM. The economic impact of decreased mortality and increased growth associated with preventing, replacing or improving current methods for delousing farmed Atlantic salmon in Norway. Prev Vet Med 2023; 221:106062. [PMID: 37939576 DOI: 10.1016/j.prevetmed.2023.106062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Impacts of salmon lice is a major concern for a sustainable production of farmed Atlantic salmon in Norway. Most treatment methods for removal of salmon lice have associated increased mortality and decreased growth in a period after delousing, which affects the profitability of the farmer, and causes poor welfare and sustainability. In addition, the variance in mortality and growth, especially after non-medicinal treatment methods, is high, which makes it hard for a farmer to decide which control measure to apply to keep lice levels below the legal limit. In this study, we have applied a stochastic partial budget approach to assess the economic impact of reducing mortality and increasing growth of farmed Atlantic salmon by preventing, replacing and improving current delousing methods in Norway. We have simulated a production cycle of two different smolt-groups to find the outcome (harvested biomass, average end weight of the salmon, number of dead fish and feed consumption) of production cycles without or with two, three or four delousing treatments in the on-growing phase at sea. The results suggest that accounting for the biological losses associated with lice treatments is important when making choices of delousing strategies. The biological costs of increased mortality and decreased growth associated with especially non-medicinal treatments are expected to be high, but varies substantially. Therefore, the economic benefit of preventing or improving can also be high. The calculations imply that salmon producers could invest a considerable amount in measures for prevention or improvement of thermal treatments before break-even. For example could a farmer use on average 535,313 €/cage/ 1-yearling production in measure to prevent four thermal treatments before it is no longer economical beneficial. Depending on the performance of the four thermal treatments a farmer could use from 319,196-737,934 €/cage/ 1-yearling production on measures of improvement. Replacing one thermal treatment with another immediate treatment method has a minor economic benefit. The results further shows that sales value and feed consumption constitutes the largest share of the change in profit between different treatment regimes. The results from this study also show that not taking into account the risk of mortality and reduced growth associated with the different treatment methods of delousing, could lead to underestimating the benefit of improving, preventing and replacing treatments.
Collapse
Affiliation(s)
| | - Britt Bang Jensen
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Ås 1433, Norway; National Institute of Aquatic Resources, Technical University of Denmark, Denmark
| | - Marit Stormoen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens vei 1, Ås 1433, Norway
| | - Frank Asche
- School of Forest, Fisheries and Geomatics Sciences and Global Food Systems Institute, University of Florida, Gainesville, FL, USA; Department of Safety, Economics and Planning, University of Stavanger, Stavanger, Norway
| | - Bård Misund
- Department of Economics and Finance, University of Stavanger Business School, Stavanger, Norway
| | | |
Collapse
|
8
|
Sánchez F, Lozano-Muñoz I, Muñoz S, Diaz N, Neira R, Wacyk J. Effect of dietary inclusion of microalgae (Nannochloropsis gaditana and Schizochytrium spp) on non-specific immunity and erythrocyte maturity in Atlantic salmon fingerlings. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108975. [PMID: 37488040 DOI: 10.1016/j.fsi.2023.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The parr-smolt transformation in salmonids involves a critical period characterized by systemic changes associated with the fish's immune response. In this context, as a dietary ingredient in functional diets, microalgae offer an alternative due to their nutritional and bioactive compounds that could strengthen the immune status. This study evaluated the effect of a diet supplemented with Schizochytrium spp and Nannochloropsis gaditana on the expression of genes associated with the antibacterial response. Additionally, the study assessed the effect on the leukocyte population and erythrocyte maturity in Salmo salar blood. Fish were fed for 30 days with a microalgal mixture (1:1) at a 10% inclusion. Each diet was randomly assigned to a tank using a completely randomized design (CRD) with four replications. Each tank was stocked with 70 Atlantic salmon fingerlings with an initial mean weight of 78.87 ± 0.84. Transcription levels were quantified and analyzed by qRT-PCR from cell isolates and mucus tissue. Furthermore, cell count and identification of leukocytes and classification of cellular maturity of erythrocytes using a neural network with a multilayer perceptron (MLP) were performed. Our results showed a significant (p < 0.05) increase in fold change expression of C3 (2.54 ± 0.65) and NK-Lysine (6.84 ± 0.94) in erythrocytes of microalgae-supplemented fish. Moreover, a significant increase of 1.59 and 2.35 times in monocytes and immature erythrocytes, respectively, was observed in the same group of fish (p < 0.05). This study's results indicate that dual microalgae (Schizochytrium spp and N. gaditana) supplementation can increase innate humoral antibacterial components, particularly in erythrocyte tissue, and increase phagocytic cells and immature erythrocytes in S. salar blood.
Collapse
Affiliation(s)
- Felipe Sánchez
- Facultad de Ciencias Agronómicas, Departamento de Producción Animal, Laboratorio de Nutrición Animal, Universidad de Chile, Santa Rosa, 11315, La Pintana, CP, 8820808, Santiago, Región Metropolitana, Chile
| | - Ivonne Lozano-Muñoz
- Facultad de Ciencias Agronómicas, Departamento de Producción Animal, Laboratorio de Nutrición Animal, Universidad de Chile, Santa Rosa, 11315, La Pintana, CP, 8820808, Santiago, Región Metropolitana, Chile
| | - Susana Muñoz
- Facultad de Ciencias Agronómicas, Departamento de Producción Animal, Laboratorio de Nutrición Animal, Universidad de Chile, Santa Rosa, 11315, La Pintana, CP, 8820808, Santiago, Región Metropolitana, Chile
| | - Nelson Diaz
- Facultad de Ciencias Agronómicas, Departamento de Producción Animal, Laboratorio de Nutrición Animal, Universidad de Chile, Santa Rosa, 11315, La Pintana, CP, 8820808, Santiago, Región Metropolitana, Chile
| | - Roberto Neira
- Facultad de Ciencias Agronómicas, Departamento de Producción Animal, Laboratorio de Nutrición Animal, Universidad de Chile, Santa Rosa, 11315, La Pintana, CP, 8820808, Santiago, Región Metropolitana, Chile
| | - Jurij Wacyk
- Facultad de Ciencias Agronómicas, Departamento de Producción Animal, Laboratorio de Nutrición Animal, Universidad de Chile, Santa Rosa, 11315, La Pintana, CP, 8820808, Santiago, Región Metropolitana, Chile.
| |
Collapse
|
9
|
Tvete IF, Aldrin M, Jensen BB. Towards better survival: Modeling drivers for daily mortality in Norwegian Atlantic salmon farming. Prev Vet Med 2023; 210:105798. [PMID: 36402048 DOI: 10.1016/j.prevetmed.2022.105798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Mortality in the production of farmed salmonids is a major constraint to the sustainability of this form of animal husbandry. We have developed a model for the daily mortality in salmon farming over a full production cycle from stocking to harvest, considering different environmental and production factors. These factors included sea temperature, salinity, day within year, fish weight at stocking, stocking day, four types of lice treatments and the possible occurrence of pancreas disease (PD). We considered a generalized additive model following full production cycles, allowing for non-linear descriptions of how relevant factors relate to the daily mortality. We saw a high overall mortality rate immediately after stocking, which decreased the first three months in the cycle and thereafter increased. We found that the total mortality could be reduced by 21% if avoiding all lice treatments, and similarly reduced by 20% if no PD infections occurred. If avoiding jointly PD and all lice treatments, the accumulated mortality could be reduced by 34%. A single thermal or hydrogen peroxide treatment was associated with a mortality of around 1.6% and 1.3%, respectively. This modeling approach gave a unique opportunity to model how different factors interact on the overall global mortality and can easily be extended by other factors, such as additional fish diseases.
Collapse
Affiliation(s)
- Ingunn Fride Tvete
- The Norwegian Computing Center, Mailbox 114 Blindern, 0314 Oslo, Norway.
| | - Magne Aldrin
- The Norwegian Computing Center, Mailbox 114 Blindern, 0314 Oslo, Norway.
| | | |
Collapse
|
10
|
Shwe A, Krasnov A, Visnovska T, Ramberg S, Østbye TKK, Andreassen R. Differential Expression of miRNAs and Their Predicted Target Genes Indicates That Gene Expression in Atlantic Salmon Gill Is Post-Transcriptionally Regulated by miRNAs in the Parr-Smolt Transformation and Adaptation to Sea Water. Int J Mol Sci 2022; 23:ijms23158831. [PMID: 35955964 PMCID: PMC9369087 DOI: 10.3390/ijms23158831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Smoltification (parr-smolt transformation) is a complex developmental process consisting of developmental changes that lead to remodeling of the Atlantic salmon gill. Here, the expression changes of miRNAs and mRNAs were studied by small-RNA sequencing and microarray analysis, respectively, to identify miRNAs and their predicted targets associated with smoltification and subsequent sea water adaptation (SWA). In total, 18 guide miRNAs were identified as differentially expressed (gDE miRNAs). Hierarchical clustering analysis of expression changes divided these into one cluster of 13 gDE miRNAs with decreasing expression during smoltification and SWA that included the miRNA-146, miRNA-30 and miRNA-7132 families. Another smaller cluster that showed increasing expression consisted of miR-101a-3p, miR-193b-5p, miR-499a-5p, miR-727a-3p and miR-8159-5p. The gDE miRNAs were predicted to target 747 of the genes (DE mRNAs), showing expression changes in the microarray analysis. The predicted targets included genes encoding NKA-subunits, aquaporin-subunits, cystic fibrosis transmembrane conductance regulator and the solute carrier family. Furthermore, the predicted target genes were enriched in biological processes associated with smoltification and SWA (e.g., immune system, reactive oxygen species, stress response and extracellular matrix organization). Collectively, the results indicate that remodeling of the gill involves the post-transcriptional regulation of gene expression by the characterized gDE miRNAs.
Collapse
Affiliation(s)
- Alice Shwe
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Aleksei Krasnov
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway
| | - Sigmund Ramberg
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Tone-Kari K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Rune Andreassen
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
- Correspondence:
| |
Collapse
|