• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643691)   Today's Articles (509)   Subscriber (50610)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Siam AA, Salehin MM, Alam MS, Ahamed S, Islam MH, Rahman A. Paddy seed viability prediction based on feature fusion of color and hyperspectral image with multivariate analysis. Heliyon 2024;10:e36999. [PMID: 39281510 PMCID: PMC11401164 DOI: 10.1016/j.heliyon.2024.e36999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]  Open
2
Liu F, Yang R, Chen R, Lamine Guindo M, He Y, Zhou J, Lu X, Chen M, Yang Y, Kong W. Digital techniques and trends for seed phenotyping using optical sensors. J Adv Res 2024;63:1-16. [PMID: 37956859 PMCID: PMC11380022 DOI: 10.1016/j.jare.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]  Open
3
Kang Z, Fan R, Zhan C, Wu Y, Lin Y, Li K, Qing R, Xu L. The Rapid Non-Destructive Differentiation of Different Varieties of Rice by Fluorescence Hyperspectral Technology Combined with Machine Learning. Molecules 2024;29:682. [PMID: 38338424 PMCID: PMC10856461 DOI: 10.3390/molecules29030682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]  Open
4
Rathnayake N, Miyazaki A, Dang TL, Hoshino Y. Age Classification of Rice Seeds in Japan Using Gradient-Boosting and ANFIS Algorithms. SENSORS (BASEL, SWITZERLAND) 2023;23:2828. [PMID: 36905032 PMCID: PMC10007270 DOI: 10.3390/s23052828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
5
The impact of high-quality data on the assessment results of visible/near-infrared hyperspectral imaging and development direction in the food fields: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
6
Nirere A, Sun J, Kama R, Atindana VA, Nikubwimana FD, Dusabe KD, Zhong Y. Nondestructive detection of adulterated wolfberry ( Lycium Chinense ) fruits based on hyperspectral imaging technology. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
7
Xu Y, Wu W, Chen Y, Zhang T, Tu K, Hao Y, Cao H, Dong X, Sun Q. Hyperspectral imaging with machine learning for non-destructive classification of Astragalus membranaceus var. mongholicus, Astragalus membranaceus, and similar seeds. FRONTIERS IN PLANT SCIENCE 2022;13:1031849. [PMID: 36523615 PMCID: PMC9745075 DOI: 10.3389/fpls.2022.1031849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
8
Kumar P, Rani A, Singh S, Kumar A. Recent advances on DNA and omics‐based technology in Food testing and authentication: A review. J Food Saf 2022. [DOI: 10.1111/jfs.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
9
Tsuchikawa S, Ma T, Inagaki T. Application of near-infrared spectroscopy to agriculture and forestry. ANAL SCI 2022;38:635-642. [DOI: 10.1007/s44211-022-00106-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022]
10
Schütz D, Riedl J, Achten E, Fischer M. Fourier-transform near-infrared spectroscopy as a fast screening tool for the verification of the geographical origin of grain maize (Zea mays L.). Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
11
Sun J, Zhang L, Zhou X, Yao K, Tian Y, Nirere A. A method of information fusion for identification of rice seed varieties based on hyperspectral imaging technology. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
12
Singh T, Garg NM, Iyengar SRS. Nondestructive identification of barley seeds variety using near‐infrared hyperspectral imaging coupled with convolutional neural network. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
13
Liu W, Zeng S, Wu G, Li H, Chen F. Rice Seed Purity Identification Technology Using Hyperspectral Image with LASSO Logistic Regression Model. SENSORS (BASEL, SWITZERLAND) 2021;21:4384. [PMID: 34206783 PMCID: PMC8271842 DOI: 10.3390/s21134384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
14
Cao Y, Sun J, Yao K, Xu M, Tang N, Zhou X. Nondestructive detection of lead content in oilseed rape leaves based on MRF‐HHO‐SVR and hyperspectral technology. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
15
Ahmad H, Sun J, Nirere A, Shaheen N, Zhou X, Yao K. Classification of tea varieties based on fluorescence hyperspectral image technology and ABC‐SVM algorithm. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
16
Wang Z, Erasmus SW, Liu X, van Ruth SM. Study on the Relations between Hyperspectral Images of Bananas (Musa spp.) from Different Countries, Their Compositional Traits and Growing Conditions. SENSORS (BASEL, SWITZERLAND) 2020;20:E5793. [PMID: 33066269 PMCID: PMC7602010 DOI: 10.3390/s20205793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
17
Weng S, Tang P, Yuan H, Guo B, Yu S, Huang L, Xu C. Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020;234:118237. [PMID: 32200232 DOI: 10.1016/j.saa.2020.118237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 05/28/2023]
18
He P, Wu Y, Wang J, Ren Y, Ahmad W, Liu R, Ouyang Q, Jiang H, Chen Q. Detection of mites Tyrophagus putrescentiae and Cheyletus eruditus in flour using hyperspectral imaging system coupled with chemometrics. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
19
Classical and emerging non-destructive technologies for safety and quality evaluation of cereals: A review of recent applications. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
20
Feng L, Zhu S, Liu F, He Y, Bao Y, Zhang C. Hyperspectral imaging for seed quality and safety inspection: a review. PLANT METHODS 2019;15:91. [PMID: 31406499 PMCID: PMC6686453 DOI: 10.1186/s13007-019-0476-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 08/01/2019] [Indexed: 05/22/2023]
21
He X, Feng X, Sun D, Liu F, Bao Y, He Y. Rapid and Nondestructive Measurement of Rice Seed Vitality of Different Years Using Near-Infrared Hyperspectral Imaging. Molecules 2019;24:E2227. [PMID: 31207950 PMCID: PMC6630334 DOI: 10.3390/molecules24122227] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/13/2019] [Indexed: 11/17/2022]  Open
22
Luo Z, Zhang L, Chen T, Liu M, Chen J, Zhou H, Yao M. Rapid identification of rice species by laser-induced breakdown spectroscopy combined with pattern recognition. APPLIED OPTICS 2019;58:1631-1638. [PMID: 30874195 DOI: 10.1364/ao.58.001631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
23
Ming W, Du J, Shen D, Zhang Z, Li X, Ma JR, Wang F, Ma J. Visual detection of sprouting in potatoes using ensemble-based classifier. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
24
A Short Update on the Advantages, Applications and Limitations of Hyperspectral and Chemical Imaging in Food Authentication. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
25
Variety Identification of Single Rice Seed Using Hyperspectral Imaging Combined with Convolutional Neural Network. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020212] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
26
Su WH, Sun DW. Multispectral Imaging for Plant Food Quality Analysis and Visualization. Compr Rev Food Sci Food Saf 2018;17:220-239. [DOI: 10.1111/1541-4337.12317] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA