1
|
Wen L, Wu ZW, Lin LW, Al-Romaima A, Peng XR, Qiu MH. Structural characterizations and α-glucosidase inhibitory activities of four Lepidium meyenii polysaccharides with different molecular weights. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:18. [PMID: 37278859 DOI: 10.1007/s13659-023-00384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Four polysaccharides (MCPa, MCPb, MCPc, MCPd) were obtained from Lepidium meyenii Walp. Their structures were characterized by chemical and instrumental methods including total sugar, uronic acid and protein content determination, UV, IR and NMR spectroscopy, as well as monosaccharide composition determination and methylation analyses. Four polysaccharides were a group of glucans with different molecular weights ranging from 3.12 to 14.4 kDa, and shared a similar backbone chain consisting of (1→4)-glucose linkages with branches attached to C-3 and C-6. Furthermore, bioactivity assay showed that MCPs had concentration-dependent inhibitory activity on α-glucosidase. MCPb (Mw = 10.1 kDa) and MCPc (Mw = 5.62 kDa) with moderate molecular weights exhibited higher inhibitory activity compared with MCPa and MCPd.
Collapse
Affiliation(s)
- Luan Wen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhou-Wei Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Li-Wu Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
2
|
Cui Y, Liu X, Yi J, Kang Q, Hao L, Lu J. Cognition of polysaccharides from confusion to clarity: when the next "omic" will come? Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34845952 DOI: 10.1080/10408398.2021.2007045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
With the accelerated pace of modern life, people are facing more and more health pressure. The study of polysaccharides seemed a good choice as a potential treasure trove. Polysaccharides, one of the four basic substances (proteins, nucleic acids, lipids and carbohydrates) that constitute life activities, are obviously an underrated macromolecular substance with great potential. Compared with protein and nucleic acid, the research of polysaccharides is still in the primary stage. The relationship between structure and function of polysaccharides is not clear. In this review, we highlighted the main methods of extraction, purification and structure identification of polysaccharides; summarized their biological activities including immunoregulation, hypoglycemic, anti-tumor, anti-virus, anti-coagulation, and so on. Particularly, the relationship between their structures and activities was described. In addition, the applications of polysaccharides in health food, medicine and cosmetics were also reviewed. This review can help polysaccharide researchers quickly understand the whole process of polysaccharides research, and also provide a reference for the comprehensive utilization of polysaccharides. We need to standardize the research of polysaccharides to make the experimental data more universal, and take it as important references in the review process. Glycomic may appear as the next "omic" after genomic and proteomic in the future. This review provides support for the advancement of glycomics.
Collapse
Affiliation(s)
- Yinxin Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,School of Chemical Engineering, Joint Research Center for Biology, Zhengzhou University, Zhengzhou, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Yang Y, Guo T, Xu J, Xiong Y, Cui X, Ke Y, Wang C. Micelle nanovehicles for co-delivery of Lepidium meyenii Walp. (maca) polysaccharide and chloroquine to tumor-associated macrophages for synergistic cancer immunotherapy. Int J Biol Macromol 2021; 189:577-589. [PMID: 34450149 DOI: 10.1016/j.ijbiomac.2021.08.155] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023]
Abstract
Here, we fabricated amphiphilic polysaccharide micelles for synergistic cancer immunotherapy targeting tumor-associated macrophages (TAMs). Lepidium meyenii Walp. (maca) polysaccharide (MP), a naturally derived macromolecule with a strong TAM-remodeling effect, was grafted on a hydrophobic poly(lactic-co-glycolic acid) (PLGA) segment, with a disulfide bond for redox-sensitive linkage. The amphiphilic polysaccharide derivatives could self-assemble into core (PLGA)-shell (MP)-structured micelles and encapsulate chloroquine (CQ) into the hydrophobic core. By using a 4T1-M2 macrophage co-culture model and a 4T1 tumor xenograft mouse model, we showed that the prepared micelles could co-deliver MP and CQ to the tumor sites and selectively accumulate at TAMs because of the specific properties of MP. Furthermore, the nanoparticles exerted synergistic tumor immunotherapeutic and antimetastatic effects, which might be attributable to the enhanced cell internalization of the micelles and the multiple regulatory mechanisms of MP and CQ. Thus, immunomodulatory MP may be a promising biomaterial for cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China
| | - Tingting Guo
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China
| | - Junwei Xu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yin Xiong
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China
| | - Yang Ke
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming 650500, China.
| |
Collapse
|
4
|
Structural characterization of a novel polysaccharide from Panax notoginseng residue and its immunomodulatory activity on bone marrow dendritic cells. Int J Biol Macromol 2020; 161:797-809. [DOI: 10.1016/j.ijbiomac.2020.06.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
|
5
|
Microwave-assisted extraction of polysaccharides from the marshmallow roots: Optimization, purification, structure, and bioactivity. Carbohydr Polym 2020; 240:116301. [DOI: 10.1016/j.carbpol.2020.116301] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
6
|
A novel acidic polysaccharide from the residue of Panax notoginseng and its hepatoprotective effect on alcoholic liver damage in mice. Int J Biol Macromol 2020; 149:1084-1097. [PMID: 32035151 DOI: 10.1016/j.ijbiomac.2020.02.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
This study presented the first purification and characterization of a hepatoprotective polysaccharide (PNPS-0.5 M) from the residue of Panax notoginseng (Burk.) F.H. Chen. This polysaccharide included a backbone of (4 → 1)-linked GalA and branches of (1→)-linked Araf, (1→)-linked Rhap, and (5 → 1)-linked Araf and had an extremely high molecular weight (2600 kDa). We investigated the hepatoprotective effects of PNPS-0.5 M on mice with alcoholic liver damage (ALD). After administration of PNPS-0.5 M, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), and hepatic malondialdehyde (MDA) were reduced to normal. In contrast, hepatic levels of alcohol dehydrogenase (ADH) and the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were elevated to normal. Further investigations indicated that PNPS-0.5 M activated Nrf2 signaling as a protective mechanism against Cyp2e1 toxicity in ALD mice. Meanwhile, it strengthened the ADH pathway and suppressed the CAT pathway of alcohol metabolism to prevent peroxide accumulation, thereby ameliorating ALD. In the present study, we describe a novel acidic polysaccharide from P. notoginseng with hepatoprotective activity that facilitates the development and utilization of P. notoginseng resources.
Collapse
|
7
|
Xing YY, Xu YQ, Jin X, Shi LL, Guo SW, Yan SM, Shi BL. Optimization extraction and characterization of Artemisia ordosica polysaccharide and its beneficial effects on antioxidant function and gut microbiota in rats. RSC Adv 2020; 10:26151-26164. [PMID: 35519751 PMCID: PMC9055353 DOI: 10.1039/d0ra05063f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/03/2020] [Indexed: 12/27/2022] Open
Abstract
In this study, a novel polysaccharide was isolated from Artemisia ordosica by water-extraction-ethanol-precipitation method. The optimal extraction conditions of Artemisia ordosica polysaccharide (AOP) were determined by single factor investigation and response surface methodology optimization, and were shown as follows: a liquid–solid ratio of 15.4 : 1 mL g−1, extraction time of 4.3 h, extraction temperature of 60 °C. Under the optimal conditions, the extraction yield and the sugar content of the AOP were 5.56% and 52.65%. Gel permeation chromatography coupled to multi-angle laser light scattering, a refractive index detection system and ion-exchange chromatography were used to determine the characterization of AOP. These results indicated that AOP, with a molecular weight of 2.1 kDa (62.6%) and 1.5 kDa (37.4%), had narrow polydispersity and rod conformations, and was composed of arabinose, galactose, glucose, xylose, mannose, galacturonic acid and glucuronic acid with molar ratio of 6.87 : 10.67 : 54.13 : 2.49 : 18.37 : 4.83 : 2.64 : 2.64. In addition, AOP exerted antioxidant ability in vitro and in vivo (rats). Moreover, AOP significantly modulated the composition of cecal microbiota population. Therefore, AOP is expected to be a functional ingredient for health improvement through improving antioxidant ability and modulating gut health. Artemisia ordosica polysaccharide is expected to be functional ingredient for health improvement through improving antioxidant ability and modulating gut health.![]()
Collapse
Affiliation(s)
- Y. Y. Xing
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - Y. Q. Xu
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - X. Jin
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - L. L. Shi
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - S. W. Guo
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - S. M. Yan
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - B. L. Shi
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| |
Collapse
|