1
|
Shu C, Yang L, Xu Z, Wu J, Chen H, Cui B, Wang Z, Xiao X, Song S, Zhang Y. Research on the castor oil pressing extraction mechanism based on multi-physics coupling simulation. J Food Sci 2024; 89:6507-6522. [PMID: 39192487 DOI: 10.1111/1750-3841.17306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Castor oil has been widely used in various fields due to its properties, leading to large attention for its extraction mechanism. To research the castor oil extraction mechanism during pressing, a self-developed uniaxial compression device combined with an in situ observation is established. The effects of pressure, loading speed, and creep time are investigated, and a finite element model coupling with multi-physics is established for castor oil pressing extraction, verified by the seed cake experimental compression strain matching with numerical simulation under the same condition. Simulation results indicated that the pressing oil extraction process can be divided into two stages, Darcy's speed shows the first sharp decreasing stage and the second gradual increasing stage during porosity and pressure interaction. In the first stage, porosity is dominant on Darcy's speed. With porosity decreasing, the pressure effect on Darcy's speed exceeds porosity in the second stage. With seed thickness increasing, Darcy's speed first increases and then decreases. With loading speed increasing, Darcy's speed increases. Darcy's speed decreases constantly with creep time increasing. This study can provide basic theoretical and practical guidance for oil extraction.
Collapse
Affiliation(s)
- Can Shu
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Liu Yang
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Zilong Xu
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Junfeng Wu
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Huan Chen
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Bo Cui
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Zhicheng Wang
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xuan Xiao
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Shaoyun Song
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
- Hubei Cereals and Oils Machinery Engineering Center, Wuhan, Hubei, China
| | - Yonglin Zhang
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
- Hubei Cereals and Oils Machinery Engineering Center, Wuhan, Hubei, China
| |
Collapse
|
2
|
Kabutey A, Dajbych O, Sedláček A, Mizera Č, Herák D. Application of the Surface Regression Technique for Enhancing the Input Factors and Responses for Processing Coconut Oil under Vertical Compression. Foods 2024; 13:1384. [PMID: 38731753 PMCID: PMC11082987 DOI: 10.3390/foods13091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This study optimized the input processing factors, namely compression force, pressing speed, heating temperature, and heating time, for extracting oil from desiccated coconut medium using a vertical compression process by applying a maximum load of 100 kN. The samples' pressing height of 100 mm was measured using a vessel chamber of diameter 60 mm with a plunger. The Box-Behnken design was used to generate the factors' combinations of 27 experimental runs with each input factor set at three levels. The response surface regression technique was used to determine the optimum input factors of the calculated responses: oil yield (%), oil expression efficiency (%), and energy (J). The optimum factors' levels were the compression force 65 kN, pressing speed 5 mm min-1, heating temperature 80 °C, and heating time 52.5 min. The predicted values of the responses were 48.48%, 78.35%, and 749.58 J. These values were validated based on additional experiments producing 48.18 ± 0.45%, 77.86 ± 0.72%, and 731.36 ± 8.04 J. The percentage error values between the experimental and the predicted values ranged from 0.82 ± 0.65 to 2.43 ± 1.07%, confirming the suitability of the established regression models for estimating the responses.
Collapse
Affiliation(s)
- Abraham Kabutey
- Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, 165 20 Prague, Czech Republic; (O.D.); (A.S.); (Č.M.); (D.H.)
| | | | | | | | | |
Collapse
|
3
|
Kabutey A, Herák D, Mizera Č. Assessment of Quality and Efficiency of Cold-Pressed Oil from Selected Oilseeds. Foods 2023; 12:3636. [PMID: 37835289 PMCID: PMC10573014 DOI: 10.3390/foods12193636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
In this present study, an oil press was used to process 200 g each of sesame, pumpkin, flax, milk thistle, hemp and cumin oilseeds in order to evaluate the amount of oil yield, seedcake, sediments and material losses (oil and sediments). Sesame produced the highest oil yield at 30.60 ± 1.69%, followed by flax (27.73 ± 0.52%), hemp (20.31 ± 0.11%), milk thistle (14.46 ± 0.51%) and pumpkin (13.37 ± 0.35%). Cumin seeds produced the lowest oil yield at 3.46 ± 0.15%. The percentage of sediments in the oil, seedcake and material losses for sesame were 5.15 ± 0.09%, 60.99 ± 0.04% and 3.27 ± 1.56%. Sediments in the oil decreased over longer storage periods, thereby increasing the percentage oil yield. Pumpkin oil had the highest peroxide value at 18.45 ± 0.53 meq O2/kg oil, an acid value of 11.21 ± 0.24 mg KOH/g oil, free fatty acid content of 5.60 ± 0.12 mg KOH/g oil and iodine value of 14.49 ± 0.16 g l/100 g. The univariate ANOVA of the quality parameters against the oilseed type was statistically significant (p-value < 0.05), except for the iodine value, which was not statistically significant (p-value > 0.05). Future studies should analyze the temperature generation, oil recovery efficiency, percentage of residual oil in the seedcake and specific energy consumption of different oilseeds processed using small-large scale presses.
Collapse
Affiliation(s)
- Abraham Kabutey
- Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, 165 20 Prague, Czech Republic; (D.H.); (Č.M.)
| | | | | |
Collapse
|
4
|
Extraction of Oils and Phytochemicals from Camellia oleifera Seeds: Trends, Challenges, and Innovations. Processes (Basel) 2022. [DOI: 10.3390/pr10081489] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Camellia seed oil, extracted from the seeds of Camellia oleifera Abel., is popular in South China because of its high nutritive value and unique flavor. Nowadays, the traditional extraction methods of hot pressing extraction (HPE) and solvent extraction (SE) are contentious due to low product quality and high environmental impact. Innovative methods such as supercritical fluid extraction (SCFE) and aqueous extraction (AE) are proposed to overcome the pitfalls of the traditional methods. However, they are often limited to the laboratory or pilot scale due to economic or technical bottlenecks. Optimization of extraction processes indicates the challenges in finding the optimal balance between the yield and quality of oils and phytochemicals, as well as the environmental and economic impacts. This article aims to explore recent advances and innovations related to the extraction of oils and phytochemicals from camellia seeds, and it focuses on the pretreatment and extraction processes, as well as their complex effects on nutritional and sensory qualities. We hope this review will help readers to better understand the trends, challenges, and innovations associated with the camellia industry.
Collapse
|
5
|
Composition, bioactive substances, extraction technologies and the influences on characteristics of Camellia oleifera oil: A review. Food Res Int 2022; 156:111159. [DOI: 10.1016/j.foodres.2022.111159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/31/2022]
|
6
|
Ghiasi P, Sohrabi O, Rahmati E, Najafi G, Mohamed M, Ghasemnezhad A. Modeling for extraction of oil from walnut and sesame using batch flow cold press oil extraction system. Food Sci Nutr 2022; 10:1211-1221. [PMID: 35432957 PMCID: PMC9007284 DOI: 10.1002/fsn3.2773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/15/2022] [Accepted: 01/22/2022] [Indexed: 11/12/2022] Open
Abstract
In this study, a batch flow oil extraction system was used for extraction of oil from walnut (Juglans regia L.) and Sesamum (Indicum sesame). Sample mass (g), applied pressure (MPa), and processing temperature of oil (°C) were selected as independent variables and oil extraction mass percentage and oil analysis as dependent variables. Response surface methodology was employed for conducting statistical analysis, modeling, and data optimization. The results revealed that the highest percentage of oil extraction for walnut was obtained at a pressure of 10.5 MPa, a temperature of 31.5°C, and a sample weight of 8 g, with a value of 25.36%. Also, the highest percentage of oil extraction for Sesamum was obtained at the pressure of 13.88 MPa, the temperature of 31.5°C, and a sample value of 20 g with a value of 22.4%. Optimal level of independent variables for walnut and sesame were 8.03 g, 10.41 MPa, and 27.37°C; 20 g, 13.88 MPa, and 27°C, respectively. In this optimum condition, the amount of sesame and walnut peroxide was 10 ± 0.03 and 1.9 ± 0.07 (meq O2/kg), respectively. Likewise, the amount of acid for sesame and walnut was 1.53 ± 0.05 and 0.06 ± 0.02 g/%, separately. Linoleic acid (42.7–51.15), oleic acid (38.6–24.03), palmitic acid (10.87–8.21), and stearic acid (5.5–3.39) were the most common fatty acid components in sesame and walnuts, respectively.
Collapse
Affiliation(s)
- Pedram Ghiasi
- Department of Biosystems Engineering Tarbiat Modares University (TMU) Tehran Iran
| | - Omid Sohrabi
- Department of Horticultural Science University of Guilan Guilan Iran
| | - Edris Rahmati
- Department of Biosystems Engineering Tarbiat Modares University (TMU) Tehran Iran
| | - Gholamhassan Najafi
- Department of Biosystems Engineering Tarbiat Modares University (TMU) Tehran Iran
| | - Mazlan Mohamed
- Advanced Material Research Cluster Faculty of Bioengineering and Technology University of Malaysia Kelantan Jeli Kelantan Malaysia
| | - Azim Ghasemnezhad
- Department of Horticulture Faculty of Plant Production Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|
7
|
Using Box–Behnken Design Coupled with Response Surface Methodology for Optimizing Rapeseed Oil Expression Parameters under Heating and Freezing Conditions. Processes (Basel) 2022. [DOI: 10.3390/pr10030490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effect of heating and freezing pretreatments on rapeseed oil yield and the volume of oil energy under uniaxial compression loading was investigated. Four separate experiments were carried out to achieve the study objective. The first and second experiments were performed to determine the compression parameters (deformation, mass of oil, oil yield, oil expression efficiency, energy, volume of oil and volume of oil energy). The third and fourth experiments identified the optimal factors (heating temperatures: 40, 60 and 80 °C, freezing temperatures: −2, −22 and −36 °C, heating times: 15, 30 and 45 min and speeds: 5, 10 and 15 mm/min) using the Box–Behnken design via the response surface methodology where the oil yield and volume of oil energy were the main responses. The optimal operating factors for obtaining a volume of oil energy of 0.0443 kJ/mL were a heating temperature of 40 °C, heating time of 45 min and speed of 15 mm/min. The volume of oil energy of 0.169 kJ/mL was reached at the optimal conditions of a freezing temperature of −36 °C, freezing time of 37.5 min and speed of 15 mm/min. The regression model established was adequate for predicting the volume of oil energy only under heating conditions.
Collapse
|
8
|
Huang Z, Du M, Qian X, Cui H, Tong P, Jin H, Feng Y, Zhang J, Wu Y, Zhou S, Xu L, Xie L, Jin J, Jin Q, Jiang Y, Wang X. Oxidative stability, shelf life and stir‐frying application of
Torreya grandis
seed oil. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zicheng Huang
- State Key Lab of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi China
| | - Meijun Du
- State Key Lab of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi China
| | - Xueqin Qian
- State Key Lab of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi China
| | - Haochi Cui
- State Key Lab of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi China
| | - Pinzhang Tong
- Zhejiang Torreya Industry Association Zhuji City Torreya Museum No. 8, Torreya Road, Huandong Street Zhuji China
| | - Hangbiao Jin
- Zhejiang Torreya Industry Association Zhuji City Torreya Museum No. 8, Torreya Road, Huandong Street Zhuji China
| | - Yongcai Feng
- Zhejiang Xujing Health Technology Co., Ltd. No. 2, Wuzao West Road, Wuzao Industrial Zone Huangshan Town, Zhuji China
| | - Jianfang Zhang
- Zhejiang Xujing Health Technology Co., Ltd. No. 2, Wuzao West Road, Wuzao Industrial Zone Huangshan Town, Zhuji China
| | - Yuejun Wu
- Zhejiang Gongxiang Agricultural Development Co., Ltd. No. 3 Zhaoshan Road, Jiyang Street Zhuji China
| | - Shengmin Zhou
- Wilmar (Shanghai) Biotechnology Research & Development Center Co, Ltd. Shanghai China
| | - Lirong Xu
- State Key Lab of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi China
- Institute of Nutrition and Health Qingdao University Qingdao China
| | - Liangliang Xie
- State Key Lab of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi China
| | - Jun Jin
- State Key Lab of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi China
| | - Yuanrong Jiang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co, Ltd. Shanghai China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi China
| |
Collapse
|
9
|
Optimizing Uniaxial Oil Extraction of Bulk Rapeseeds: Spectrophotometric and Chemical Analyses of the Extracted Oil under Pretreatment Temperatures and Heating Intervals. Processes (Basel) 2021. [DOI: 10.3390/pr9101755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Optimizing the operating factors in edible oil extraction requires a statistical technique such as a response surface methodology for evaluating their effects on the responses. The examined input factors in this study were the diameter of pressing vessel, VD (60, 80, and 100 mm), temperature, TPR (40, 60, and 80 °C), and heating time, HTM (30, 60 and 90 min). The combination of these factors generated 17 experimental runs where the mass of oil, oil yield, oil extraction efficiency, and deformation energy were calculated. Based on the response surface regression analysis, the combination of the optimized factors was VD: 100 (+1) mm; TPR: 80 °C (+1) and HTM: 60 (0) min); VD: 60 (–1) mm; TPR: 80 °C (+1) and HTM: 75 (+0.5) min and VD: 100 (+1) mm; TPR: 80 °C (+1) and HTM: 90 (+1). The absorbance and transmittance values significantly (p < 0.05) correlated with the wavelength and temperature, but they did not correlate significantly (p > 0.05) with heating time. The peroxide value did not correlate significantly with temperature, however, it correlated significantly with heating time. Neither the acid value nor the free fatty acid value correlated with both temperature and heating time. The findings of the present study are part of our continuing research on oilseeds’ processing optimization parameters.
Collapse
|
10
|
Modelling and Optimization of Processing Factors of Pumpkin Seeds Oil Extraction under Uniaxial Loading. Processes (Basel) 2021. [DOI: 10.3390/pr9030540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present study, a Box–Behnken design of response surface methodology (RSM) was employed to optimize the processing factors (force: 100, 150, and 200 kN; speed: 3, 5, and 7 mm/min; and temperature: 40, 60, and 80 °C) for extracting pumpkin seeds oil under uniaxial compression. The design generated 15 experiments including twelve combinations of factors and three replicates at the center point. The responses: oil yield (%), oil expression efficiency (%), and energy (J) were calculated, and the regression models determined were statistically analyzed and validated. The optimum factors combination: 200 kN, 4 mm/min and 80 °C predicted the oil yield of 20.48%, oil expression efficiency of 60.90%, and energy of 848.04 J. The relaxation time of 12 min at the optimum factors increased the oil efficiency to 64.53%. The lower oil point force was determined to be 57.32 kN for estimating the maximum oil output. The tangent curve and generalized Maxwell models adequately (R2 = 0.996) described the compression and relaxation processes of pumpkin seeds oil extraction. Peroxide value increased with temperatures. The study provides detailed information useful for processing different bulk oilseeds under uniaxial loading for optimizing the mechanical oil pressing in large-scale oil production.
Collapse
|