1
|
Fracari PR, Massia AG, Laroque DA, Santos BAD, Cichoski AJ, Carciofi BAM, Campagnol PCB. Pulsed Light Treatment Effect on Color, Oxidative Stability, and Listeria monocytogenes Population of Sliced Mortadella. Foods 2024; 13:2976. [PMID: 39335904 PMCID: PMC11431120 DOI: 10.3390/foods13182976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
This study evaluated the effects of high-intensity pulsed light (PL) on sliced mortadella, assessing how the parameters pulse width (1260 to 2520 µs) and number of pulses (one to three) influence color, oxidative stability, and Listeria monocytogenes population. The different PL parameters generated a fluence ranging from 2.64 to 6.57 J/cm2 and irradiance ranging from 1046.9 to 1738.8 W/cm2. The PL slightly increased the temperature and pH of the samples, and this elevation was well correlated to the higher number of pulses and higher fluence. The color parameter a* was reduced while b* values increased after PL application, with these effects being more significant in treatments with a higher number of pulses and higher fluence. The highest values of TBARS were found in treatments with higher fluence (5.28 and 6.57 J/cm2), which were characterized by the attribute "oxidized color" in sensory evaluation. The different PL conditions reduced the count of L. monocytogenes by up to 1.44 Log CFU/cm2. The treatment with a pulse width of 1260 µs, two pulses, fluence of 4.38 J/cm2, and irradiance of 1738.3 W/cm2 achieved the same efficacy in pathogen reduction as the treatments with higher fluence. Moreover, these PL conditions had a minimal impact on the color and oxidative stability of mortadella, demonstrating an effective balance between microbiological safety and quality preservation.
Collapse
Affiliation(s)
- Priscila Rossato Fracari
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Ana Guimarães Massia
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Denise Adamoli Laroque
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Bibiana Alves Dos Santos
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Alexandre José Cichoski
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Bruno Augusto Mattar Carciofi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Department of Biological and Agricultural Engineering, University of California Davis, Davis, CA 95616, USA
| | | |
Collapse
|
2
|
Peng Z, Zhang Y, Ai Z, Pandiselvam R, Guo J, Kothakota A, Liu Y. Current physical techniques for the degradation of aflatoxins in food and feed: Safety evaluation methods, degradation mechanisms and products. Compr Rev Food Sci Food Saf 2023; 22:4030-4052. [PMID: 37306549 DOI: 10.1111/1541-4337.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
Aflatoxins are the most toxic natural mycotoxins discovered so far, posing a serious menace to the food safety and trading economy of the world, especially developing countries. How to effectively detoxify has persistently occupied a place on the list of "global hot-point" concerns. Among the developed detoxification methods, physical methods, as the authoritative techniques for aflatoxins degradation, could rapidly induce irreversible denaturation of aflatoxins. This review presents a brief overview of aflatoxins detection and degradation product structure identification methods. Four main safety evaluation methods for aflatoxins and degradation product toxicity assessment are highlighted combined with an update on research of aflatoxins decontamination in the last decade. Furthermore, the latest applications, degradation mechanisms and products of physical aflatoxin decontamination techniques including microwave heating, irradiation, pulsed light, cold plasma and ultrasound are discussed in detail. Regulatory issues related to "detoxification" are also explained. Finally, we put forward the challenges and future work in studying aflatoxin degradation based on the existing research. The purpose of supplying this information is to help researchers have a deeper understanding on the degradation of aflatoxins, break through the existing bottleneck, and further improve and innovate the detoxification methods of aflatoxins.
Collapse
Affiliation(s)
- Zekang Peng
- College of Engineering, China Agricultural University, Beijing, China
| | - Yue Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Ziping Ai
- College of Engineering, China Agricultural University, Beijing, China
| | - Ravi Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Jiale Guo
- College of Engineering, China Agricultural University, Beijing, China
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Transcriptomic analysis reveals the inhibition mechanism of pulsed light on fungal growth and ochratoxin A biosynthesis in Aspergillus carbonarius. Food Res Int 2023; 165:112501. [PMID: 36869509 DOI: 10.1016/j.foodres.2023.112501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/28/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Pulsed light (PL) technology has a good effect on the control of fungi in postharvest fruit. In this present work, PL inhibited the growth of Aspergillus carbonarius in a dose-dependent manner, the mycelial growth decreased by 4.83 %, 13.91 % and 30.01 % at a fluence of 4.5 J·cm-2 (PL5), 9 J·cm-2 (PL10) and 13.5 J·cm2 (PL15), respectively. When inoculated with PL15 treated A. carbonarius, the scab diameter of the pears, ergosterol and OTA content was reduced by 23.2 %, 27.9 % and 80.7 % after 7 days, respectively. The third-generation sequencing technique was applied to study the transcriptome response of A. carbonarius treated with PL. Compared with the blank control, a total number of 268 and 963 differentially expressed genes (DEGs) were discovered in the group of PL10 and PL15, respectively. To be specific, a large amount of DEGs involved in DNA metabolism were up-regulated, while most of DEGs related to cell integrity, energy and glucose metabolism, ochratoxin A (OTA) biosynthesis and transport were down-regulated. In addition, the stress response of A. carbonarius was imbalanced, including up-regulation of Catalase and PEX12 and down-regulation of taurine and subtaurine metabolism, alcohol dehydrogenase and glutathione metabolism. Meanwhile, the results of transmission electron microscopy, mycelium cellular leakage and DNA electrophoresis indicated that PL15 treatment caused mitochondrial swelling, the destroyed cell membrane permeability and imbalance of DNA metabolism. The expression of P450 and Hal involved in OTA biosynthesis pathway were down-regulated in PL treated samples detected by qRT-PCR. In conclusion, this study reveals the molecular mechanism of pulsed light on inhibiting the growth, development and toxin production of A. carbonarius.
Collapse
|
4
|
Abou Dib A, Assaf JC, El Khoury A, El Khatib S, Koubaa M, Louka N. Single, Subsequent, or Simultaneous Treatments to Mitigate Mycotoxins in Solid Foods and Feeds: A Critical Review. Foods 2022; 11:3304. [PMCID: PMC9601460 DOI: 10.3390/foods11203304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins in solid foods and feeds jeopardize the public health of humans and animals and cause food security issues. The inefficacy of most preventive measures to control the production of fungi in foods and feeds during the pre-harvest and post-harvest stages incited interest in the mitigation of these mycotoxins that can be conducted by the application of various chemical, physical, and/or biological treatments. These treatments are implemented separately or through a combination of two or more treatments simultaneously or subsequently. The reduction rates of the methods differ greatly, as do their effect on the organoleptic attributes, nutritional quality, and the environment. This critical review aims at summarizing the latest studies related to the mitigation of mycotoxins in solid foods and feeds. It discusses and evaluates the single and combined mycotoxin reduction treatments, compares their efficiency, elaborates on their advantages and disadvantages, and sheds light on the treated foods or feeds, as well as on their environmental impact.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Jean Claude Assaf
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| | - André El Khoury
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Correspondence: ; Tel.: +9611421389
| | - Sami El Khatib
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Mohamed Koubaa
- TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Université de Technologie de Compiègne, ESCOM—CS 60319, CEDEX, 60203 Compiègne, France
| | - Nicolas Louka
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| |
Collapse
|