1
|
Mussa NJ, Chaijan M, Thongkam P, Wongnen C, Kitpipit W, Çavdar HK, Kim SR, Panpipat W. Rheological and Gelling Properties of Chicken-Mushroom Hybrid Gel for Flexitarian-Friendly Functional Food Applications. Foods 2025; 14:645. [PMID: 40002089 PMCID: PMC11853852 DOI: 10.3390/foods14040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Hybrid gels combining chicken and mushroom offer innovative functional food choices, catering to the growing demand for flexitarian-friendly products. These gels reduce meat content while enhancing dietary fiber, bioactive compounds, and sustainability. This study examined the effects of split gill mushroom (Schizophyllum commune) powder (SGM) substitution (0%, 25%, 50%, and 75%, w/w) for Ligor chicken meat in hybrid gels, focusing on rheological and gelling properties. The 25% SGM gel demonstrated optimal performance in terms of rheology, texture, microstructure, pH, water-holding capacity, and color. At this level, hybrid gels exhibited superior gelation properties, demonstrating elasticity dominance, as indicated by a higher storage modulus (G') than loss modulus (G″), along with stable cohesiveness and unaffected springiness (p > 0.05). However, hardness, gumminess, and chewiness were significantly lower than the control (p < 0.05). Higher SGM levels (50-75%) markedly weakened the gels, reducing viscoelasticity, increasing porosity and water release, and causing discoloration. These findings highlight 25% SGM as an optimal level for hybrid meat gels, maintaining product quality while promoting sustainability in the meat industry.
Collapse
Affiliation(s)
- Ngassa Julius Mussa
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.J.M.); (M.C.); (P.T.); (C.W.); (W.K.)
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.J.M.); (M.C.); (P.T.); (C.W.); (W.K.)
| | - Porntip Thongkam
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.J.M.); (M.C.); (P.T.); (C.W.); (W.K.)
| | - Chantira Wongnen
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.J.M.); (M.C.); (P.T.); (C.W.); (W.K.)
| | - Warangkana Kitpipit
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.J.M.); (M.C.); (P.T.); (C.W.); (W.K.)
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Hasene Keskin Çavdar
- Department of Food Engineering, Faculty of Engineering, Gaziantep University, TR-27310 Gaziantep, Turkey;
| | - Siriporn Riebroy Kim
- Food and Nutrition Program, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand;
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.J.M.); (M.C.); (P.T.); (C.W.); (W.K.)
| |
Collapse
|
2
|
Mussa NJ, Thongkam P, Wongnen C, Panpipat W, Kitipipit W, Cheong LZ, Chaijan M. Exploring the potential of Mon-Pu (Glochidion wallichianum) leaf extract as a natural antioxidant for Ligor chicken meat gel: Impact on gelation functionality and oxidative stability. Poult Sci 2025; 104:104839. [PMID: 39854964 PMCID: PMC11803850 DOI: 10.1016/j.psj.2025.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025] Open
Abstract
This study evaluated the antioxidant potential of Mon-Pu (Glochidion wallichianum Mull. Arg.) leaf extract (MPLE) as a natural antioxidant in Ligor chicken meat gels. The investigation focused on the impacts on gelation functionality and oxidative stability during refrigerated storage. MPLE with 21.16 mg/100 g of extractable phenolic compounds and antioxidant potency (DPPH• scavenging activity, ABTS•+scavenging activity, and ferric reducing antioxidant power (FRAP) at 2.79, 21.13, and 3.20 mmole TE/g, respectively) was applied during thermal-induced gel preparation at different concentrations (0 %, 0.01 %, 0.1 %, and 1 %) in comparison with 1 % gallic acid, a reported key phenolic compound in MPLE, based on the total weight of the meat sample. MPLE at concentrations of 0.1-1 % effectively reduced lipid oxidation in Ligor meat gel during storage. Additionally, MPLE at 0.1 % inhibited protein oxidation, preserving the physical and textural qualities of meat gels during processing and refrigerated storage. Notably, MPLE at 0.1 % proved to be the most beneficial, retaining gel properties, enhancing water-holding capacity, stabilizing color, and reducing oxidative degradation. These findings indicate that MPLE, at an optimal concentration of 0.1 %, has significant potential as a natural preservative, providing a safer and more effective alternative to synthetic additives for maintaining gel properties and preserving oxidative stability of chicken meat products, particularly Ligor chicken meat gel.
Collapse
Affiliation(s)
- Ngassa J Mussa
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Porntip Thongkam
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chantira Wongnen
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Warangkana Kitipipit
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Ling-Zhi Cheong
- School of Agriculture, Food and Ecosystem, University of Melbourne, Parkville, VIC 3010, Australia
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
3
|
Shiravani Z, Aliakbarlu J, Moradi M. Application of bacterial nanocellulose film loaded with sodium nitrite, sumac, and black carrot extracts to reduce sodium nitrite, extend shelf life, and inhibit Clostridium perfringens in cooked beef ham. Int J Biol Macromol 2024; 280:135841. [PMID: 39307512 DOI: 10.1016/j.ijbiomac.2024.135841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
This study aimed to develop innovative bacterial nanocellulose (BNC) films incorporated with sodium nitrite (SN), sumac extract (SE), and black carrot extract (BCE) to reduce sodium nitrite, extend shelf life, and inhibit Clostridium perfringens in cooked beef ham. The ham covered with BNC film immersed in SE (10 % w/v) + BCE (5 % w/v) + SN (125 ppm) (SE10BCE5SN125) exhibited the lowest microbial load (4.39, 4.32, 3.83, and 4.6 log cycles reductions in total viable count, lactic acid bacteria, Enterobacteriaceae, and C. perfringens, respectively) and the lowest oxidation rate (70 % reduction compared to control) on day 28 of storage. The samples covered with SE10BCE5SN125 film had also the lowest level of residual nitrite (64 % lower compered to positive control). Positive control (ham containing 120 ppm SN) and ham covered with SE10BCE5SN125 film had the highest redness. It was concluded that the films developed in this study have the potential to reduce the use of sodium nitrite in beef ham production.
Collapse
Affiliation(s)
- Zolaikha Shiravani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Javad Aliakbarlu
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
García Salas A, Bárcena-Gama JR, Ventura J, Muñoz-García C, Escobar-España JC, Crosby MM, Hernandez D. Bioaccessibility of condensed tannins and their effect on the physico-chemical characteristics of lamb meat. PeerJ 2024; 12:e17572. [PMID: 38952978 PMCID: PMC11216205 DOI: 10.7717/peerj.17572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024] Open
Abstract
The bioaccessibility of tannins as antioxidants in meat is essential to maximise their effectiveness in protecting the product. This property determines the amount of tannins available to interact with meat components, inhibiting lipid and protein oxidation and, consequently, prolonging shelf life and preserving the sensory quality of the product. The objective of this study was to evaluate the bioaccessibility of condensed tannins (CT) from Acacia mearnsii extract (AME) and their effect on the physico-chemical characteristics of fattened lamb meat. Thirty-six Dorset × Hampshire lambs (3 months old and 20.8 ± 3.3 kg live weight) were used. The lambs were distributed equally (n = 9) into four treatments: T1, T2, T3 and T4, which included a basal diet plus 0%, 0.25%, 0.5% and 0.75% of CT from AME, respectively. At the end of the fattening period, bioaccessibility was evaluated, the animals were slaughtered and a sample of the longissimus dorsi (LD) muscle was collected to assess colour, lipid oxidation, cooking weight loss and shear force on days 1, 4, 7 and 14 of shelf-life, in samples preserved at -20 °C. In addition, the long chain fatty acid profile was analysed. A completely randomised design was used, and the means were compared with Tukey's test (P < 0.05). The mean lightness (L*), yellowness (b*) and hue (H*) values were higher for T3 and T4. The addition of CT did not affect (P > 0.05) redness (a*), cooking weight loss (CWL) or shear force (SF). T4 decreased (P < 0.05) stearic acid and increased cis-9 trans-12 conjugated linoleic acid (CLA). Bioaccessibility was higher in the supplemented groups (T1 < T2, T3 and T4). In conclusion, supplementing CT from AME in the diet of lambs did not reduce lipid oxidation, but T3 or T4 improved some aspects of meat colour and CLA deposition.
Collapse
Affiliation(s)
- Alejandro García Salas
- Department of Animal Production, Autonomous Agrarian University Antonio Narro, Saltillo, Coahuila, Mexico
| | | | - Joel Ventura
- Department of Animal Production, Autonomous Agrarian University Antonio Narro, Saltillo, Coahuila, Mexico
| | - Canuto Muñoz-García
- Faculty of Veterinary Medicine and Zootechnics No. 1, Autonomous University of Guerrero, Guerrero, Guerrero, Mexico
| | - José Carlos Escobar-España
- Faculty of Agricultural Sciences, Campus IV, Autonomous University of Chiapas, Huehuetan, Chiapas, Mexico
| | | | - David Hernandez
- Livestock Program, Colegio de Postgraduados, Texcoco, Mexico State, México
| |
Collapse
|
5
|
Wang S, Nie S, Gan R, Zhu F. Properties of cheese and ground beef in the presence of staghorn sumac. EFOOD 2023. [DOI: 10.1002/efd2.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Affiliation(s)
- Sunan Wang
- Canadian Food and Wine Institute, Niagara College Ontario Canada
- School of Chemical Sciences The University of Auckland Auckland New Zealand
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang China
| | - Ren‐You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture Chinese Academy of Agricultural Sciences Chengdu China
| | - Fan Zhu
- School of Chemical Sciences The University of Auckland Auckland New Zealand
| |
Collapse
|
6
|
Serdaroğlu M, Can H, Sarı B, Kavuşan HS, Yılmaz FM. Effects of natural nitrite sources from arugula and barberry extract on quality characteristic of heat-treated fermented sausages. Meat Sci 2023; 198:109090. [PMID: 36610293 DOI: 10.1016/j.meatsci.2022.109090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
This study was designed to compare the effects of natural nitrite sources from the arugula leaves (arugula extract and pre-converted arugula extract) and the use of barberry extract (BE) in heat-treated fermented sausage formulations. Eight different sausages were manufactured as follows: pre-converted arugula extract (PA), arugula extract (A), pre-converted arugula extract + BE (PAB), arugula extract + BE (AB), nitrite +BE (POB), no nitrite+ BE (NEB), also positive and negative control groups were prepared with (POC) or without nitrite (NEC). The addition of arugula and barberry extracts reduced the residual nitrite content, in fact PAB had the lowest value with a reduction ratio of 47%. The addition of BE lowered the lipid oxidation compared to other counterparts. The use of arugula extract or pre-converted arugula extract resulted in a lower carbonylation than nitrite free samples. The use of natural extracts lowered the a* and b* values compared to control. At the end of the storage, no differences were observed on the overall acceptability of all samples. Combined use of barberry extract with arugula and pre-converted arugula extracts could be used as alternative novel curing agent in heat-treated fermented sausages.
Collapse
Affiliation(s)
- Meltem Serdaroğlu
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, Izmir, Turkey.
| | - Hilal Can
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, Izmir, Turkey
| | - Burcu Sarı
- Gastronomy and Culinary Arts, School of Applied Sciences, Kapadokya University, Nevşehir, Turkey
| | - Hülya Serpil Kavuşan
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, Izmir, Turkey
| | - Fatih Mehmet Yılmaz
- Aydın Adnan Menderes University, Engineering Faculty, Food Engineering Department, Aydın, Turkey
| |
Collapse
|
7
|
Effects of barberry extract and alginate coating enriched with cinnamaldehyde and nisin on the microbiological, chemical and sensory properties of chicken meat. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Purgatorio C, Serio A, Chaves-López C, Rossi C, Paparella A. An overview of the natural antimicrobial alternatives for sheep meat preservation. Compr Rev Food Sci Food Saf 2022; 21:4210-4250. [PMID: 35876396 DOI: 10.1111/1541-4337.13004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 01/28/2023]
Abstract
Sheep meat is consumed and appreciated all over the world for its nutritional value and flavor. However, this meat is very perishable and easily subjected to the action of both spoilage and pathogenic microorganisms. For this reason, in combination with cold storage, effective preservation techniques are required. There is increasing interest in the application of natural antimicrobials, such as essential oils, extracts, spices, and by-products of the food industry. This review analyses the studies on natural antimicrobials in sheep meat and sheep meat products and gathers evidence about the encouraging results achieved on the reduction and/or elimination of spoilage and pathogenic microorganisms. The use of these natural antimicrobial alternatives might open up important perspectives for industrial application, considering that this specific meat is often traded over long distances. In fact, on the basis of scientific literature, natural antimicrobials can be considered a sustainable and affordable alternative to extend the shelf life of sheep meat and guarantee its safety, although many factors need to be further investigated, such as the sensory impact, potential toxicity, and economic aspects. For all these issues, investigated in some of the studies reviewed here, it is fundamental to obtain the antimicrobial effect with the minimum amount of effective substance to avoid sensory modifications, toxic effects, and unbearable costs. This study sets foundations for the possible direction of future studies, which will contribute to identify effective solutions for industrial applications of natural antimicrobials in the sheep meat industry.
Collapse
Affiliation(s)
- Chiara Purgatorio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
9
|
Active packaging nanocomposite gelatin-based films as a carrier of nano TiO2 and cumin essential oil: the effect on quality parameters of fresh chicken. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01169-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Serra V, Salvatori G, Pastorelli G. Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products. Animals (Basel) 2021; 11:ani11020401. [PMID: 33562524 PMCID: PMC7914517 DOI: 10.3390/ani11020401] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Polyphenols are secondary plant metabolites mainly known for their antioxidant properties. Their use as feed additives in the nutrition of farm animals is becoming increasingly popular as they are particularly exposed to oxidative stress which is reflected in a lipoperoxidation of the final product. For this reason, it is essential to preserve the quality and the safety of meat and milk products by attenuating oxidative deterioration. Moreover, polyphenols present the advantage of being more acceptable to the consumers than synthetic counterparts, as they are considered to be “non-toxic”. The present review presents an overview of several studies focused on the dietary supplementation of polyphenols to monogastric and ruminants, as well as their direct addition to meat and dairy products, with particular emphasis on their antioxidant effects on the final product. Abstract The growing interest in producing healthier animal products with a higher ratio of polyunsaturated to saturated fatty acids, is associated with an increase in lipoperoxidation. For this reason, it is essential to attenuate oxidative deterioration in the derived products. Natural antioxidants such as polyphenols represent a good candidate in this respect. The first part of the review highlights the occurrence, bioavailability, and the role of polyphenols in food-producing animals that, especially in intensive systems, are exposed to stressful situations in which oxidation plays a crucial role. The second part offers an overview of the effects of polyphenols either supplemented to the diet of monogastric and ruminants or added directly to meat and dairy products on the physicochemical and sensorial properties of the product. From this review emerges that polyphenols play an important, though not always clear, role in the quality of meat and meat products, milk and dairy products. It cannot be ruled out that different compounds or amounts of polyphenols may lead to different results. However, the inclusion of agro-industrial by-products rich in polyphenols, in animal feed, represents an innovative and alternative source of antioxidants as well as being useful in reducing environmental and economic impact.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy
- Correspondence: (V.S.); (G.P.); Tel.: +39-0250-334-576 (V.S. & G.P.)
| | - Giancarlo Salvatori
- Department of Medicine and Sciences for Health “V. Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy;
| | - Grazia Pastorelli
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy
- Correspondence: (V.S.); (G.P.); Tel.: +39-0250-334-576 (V.S. & G.P.)
| |
Collapse
|
11
|
Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants (Basel) 2021; 10:antiox10010073. [PMID: 33430013 PMCID: PMC7828031 DOI: 10.3390/antiox10010073] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Rhus coriaria L. (Anacardiaceae), commonly known as sumac, is a commonly used spice, condiment, and flavoring agent, especially in the Mediterranean region. Owing to its bountiful beneficial values, sumac has been used in traditional medicine for the management and treatment of many ailments including hemorrhoids, wound healing, diarrhea, ulcer, and eye inflammation. This plant is rich in various classes of phytochemicals including flavonoids, tannins, polyphenolic compounds, organic acids, and many others. By virtue of its bioactive, Rhus coriaria possesses powerful antioxidant capacities that have ameliorative and therapeutic benefits for many common diseases including cardiovascular disease, diabetes, and cancer. This review describes the phytochemical properties of R. coriaria and then focuses on the potent antioxidant capacities of sumac. We then dissect the cellular and molecular mechanisms of sumac’s action in modulating many pathophysiological instigators. We show how accumulating evidence supports the antibacterial, antinociceptive, antidiabetic, cardioprotective, neuroprotective, and anticancer effects of this plant, especially that toxicity studies show that sumac is very safe to consume by humans and has little toxicity. Taken together, the findings we summarize here support the utilization of this plant as an attractive target for drug discovery.
Collapse
|
12
|
Influence of adding cinnamon bark oil on meat quality of ground lamb during storage at 4 °C. Meat Sci 2021; 171:108269. [DOI: 10.1016/j.meatsci.2020.108269] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022]
|
13
|
Jaberi R, Kaban G, Kaya M. The effect of barberry (
Berberis vulgaris
L.) extract on the physicochemical properties, sensory characteristics, and volatile compounds of chicken frankfurters. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rahimeh Jaberi
- Faculty of Agriculture, Department of Food Engineering Atatürk University Erzurum Turkey
| | - Güzin Kaban
- Faculty of Agriculture, Department of Food Engineering Atatürk University Erzurum Turkey
| | - Mükerrem Kaya
- Faculty of Agriculture, Department of Food Engineering Atatürk University Erzurum Turkey
| |
Collapse
|
14
|
Cunha LC, Monteiro MLG, Lorenzo JM, Munekata PE, Muchenje V, de Carvalho FAL, Conte-Junior CA. Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Res Int 2018; 111:379-390. [DOI: 10.1016/j.foodres.2018.05.041] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023]
|
15
|
López-Padilla A, Martín D, Villanueva Bermejo D, Jaime L, Ruiz-Rodriguez A, Restrepo Flórez CE, Rivero Barrios DM, Fornari T. Vaccinium meridionale Swartz extracts and their addition in beef burgers as antioxidant ingredient. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:377-383. [PMID: 28612382 DOI: 10.1002/jsfa.8483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Vaccinium meridionale Swartz (mortiño) constitutes a source of bioactive phytochemicals, but reports related to its efficient and green production are scarce. In this study, pressurized liquid extraction (PLE) and ultrasound-assisted extraction of mortiño were compared. Total phenolic content (TPC) and antioxidant capacity (ABTS•+ ) were determined. Beef burgers with 20 g kg-1 of mortiño (MM) or its PLE extract (ME) were manufactured. Lipid oxidation (TBARS) and instrumental color changes were measured after refrigerated storage. RESULTS High TPC (up to 72 g gallic acid equivalent kg-1 extract) was determined in mortiño extracts, which was positively correlated with antioxidant activity. TBARS values of beef burgers containing either MM or ME did not change after refrigerated storage, whereas lipid oxidation of control burgers increased significantly. The color of burgers with added MM or ME was different (lower b* and a* values) from that of control burgers. However, the evolution of color after storage was similar between control and ME samples. CONCLUSION Mortiño extracts with high TPC can be obtained by PLE. Both mortiño and its PLE extract are able to control lipid oxidation of beef burgers, but the extract is preferred from the color quality point of view. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexis López-Padilla
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) CSIC-UAM, Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Diana Martín
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) CSIC-UAM, Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Villanueva Bermejo
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) CSIC-UAM, Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Jaime
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) CSIC-UAM, Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandro Ruiz-Rodriguez
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) CSIC-UAM, Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Tiziana Fornari
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) CSIC-UAM, Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Pisoschi AM, Pop A, Georgescu C, Turcuş V, Olah NK, Mathe E. An overview of natural antimicrobials role in food. Eur J Med Chem 2017; 143:922-935. [PMID: 29227932 DOI: 10.1016/j.ejmech.2017.11.095] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
Abstract
The present paper aims to review the natural food preservatives with antimicrobial properties emphasizing their importance for the future of food manufacturing and consumers' health. The extraction procedures applied to natural antimicrobials will be considered, followed by the description of some natural preservatives' antimicrobial mechanism of action, including (i) membrane rupture with ATP-ase activity inhibition, (ii) leakage of essential biomolecules from the cell, (iii) disruption of the proton motive force and (iiii) enzyme inactivation. Moreover, a provenance-based classification of natural antimicrobials is discussed by considering the sources of origin for the major natural preservative categories: plants, animals, microbes and fungi. As well, the structure influence on the antimicrobial potential is considered. Natural preservatives could also constitute a viable alternative to address the critical problem of microbial resistance, and to hamper the negative side effects of some synthetic compounds, while meeting the requirements for food safety, and exerting no negative impact on nutritional and sensory attributes of foodstuffs.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Sector 5, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Sector 5, Bucharest, Romania
| | - Cecilia Georgescu
- "Lucian Blaga" University of Sibiu, Faculty of Agriculture Science, Food Industry and Environmental Protection, Dr. I. Ratiu str.7-9, 550012, Sibiu, Romania
| | - Violeta Turcuş
- Vasile Goldiş Western University of Arad, Faculty of Medicine, Department of Life Sciences, Liviu Rebreanu str.91-93, 310414, Arad, Romania
| | - Neli Kinga Olah
- Vasile Goldiş Western University of Arad, Faculty of Medicine, Department of Life Sciences, Liviu Rebreanu str.91-93, 310414, Arad, Romania
| | - Endre Mathe
- Vasile Goldiş Western University of Arad, Faculty of Medicine, Department of Life Sciences, Liviu Rebreanu str.91-93, 310414, Arad, Romania; University of Debrecen, Faculty of Agriculture and Food Sciences and Environmental Management, Institute of Food Technology, Böszörményi út 138, H-4032, Debrecen, Hungary
| |
Collapse
|
17
|
Islam RU, Khan MA, Islam SU. Plant Derivatives as Promising Materials for Processing and Packaging of Meat-Based Products - Focus on Antioxidant and Antimicrobial Effects. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rayees Ul Islam
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences; Aligarh Muslim University; Aligarh 202002 India
| | - Mohammad Ali Khan
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences; Aligarh Muslim University; Aligarh 202002 India
| | - Shahid Ul Islam
- Department of Chemistry; Jamia Millia Islamia (Central University); New Delhi 110025 India
| |
Collapse
|