1
|
Yan ZF, Chen JY, Yang J, Yuan S, Qiao XY, Xu B, Su LQ. Enhancement of the flavor and functional characteristics of cod protein isolate using an enzyme-microbe system. Food Funct 2024; 15:10717-10731. [PMID: 39380384 DOI: 10.1039/d4fo02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cod protein isolate (CPI), a by-product of the cod processing industry, represents a novel source of high value-added products. However, off-flavors in cod protein such as bitterness and fishy odor reduce its acceptability to consumers. Here, CPI was first debittered using aminopeptidase from Streptomyces canus (ScAPase) and then deodorized through probiotic fermentation. This is the first reported demonstration of complete removal of the bitterness of CPI using ScAPase. Subsequently, Syn3 and Syn4, as aromatic CPI (ACPI), were prepared from debittered CPI (DCPI) via fermentation with Lactobacillus acidophilus and Bifidobacterium longum, respectively. These products, DCPI and ACPI, were characterized by the absence of bitterness and fishy odor, along with a strong aromatic scent and high overall acceptability. Additionally, these products exhibited improved physicochemical properties, including enhanced oil-holding capacity, emulsifying activity, and resistance to digestion, compared to untreated CPI. However, significant differences were observed in their radical scavenging activities. The highest scavenging activity was detected in Syn3 against DPPH˙ (63.5%) and ˙OH (79.2%), in DCPI against O2- (32.0%), and in post-digestion Syn4 against ABTS˙+ (95.2%). Furthermore, after digestion treatment, these products significantly promoted the proliferation of probiotics. Notably post-digestion Syn4 showed the most substantial proliferation effect on Lactobacillus reuteri, Lactobacillus rhamnosus, and Bifidobacterium breve compared to other post-digestion samples. These results indicate that the treated CPI has the potential for applications in health food products.
Collapse
Affiliation(s)
- Zheng-Fei Yan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jia-Yu Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Yang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Shuai Yuan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xue-Yi Qiao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Bo Xu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Ling-Qia Su
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
2
|
Bai W, Mai R, Guo S, Li X, Zhao W, Yang J. The contribution of inoculated probiotics to increased protein-derived volatile flavor compounds. Food Res Int 2023; 174:113629. [PMID: 37981358 DOI: 10.1016/j.foodres.2023.113629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023]
Abstract
This study aimed to evaluate the contribution and mechanisms of Lactobacillus plantarum and Zygosaccharomyces mellis inoculation to the enhancement of protein-derived volatile flavor compounds (PVFCs) in low-salt dry-cured mackerel (LDCM). The contents of PVFCs (3-methylbutanal and phenylacetaldehyde), intermediates (α-ketoisocaproate and phenylpyruvic acid), precursor (α-ketoisocaproate and phenylpyruvic acid), and key enzyme activities (protease and transaminase) significantly increased (p < 0.05) in probiotic-treated groups. The dominant species in the probiotics-treated groups were the inoculated Lactobacillus plantarum and Zygosaccharomyces mellis, which were the main producer of key enzymes for the generation of PVFCs. Lactobacillus plantarum performed well in protein degradation and amino acid transamination, resulting in generating more 3-methylbutanal and phenylacetaldehyde, while Zygosaccharomyces mellis played a main role in phenylethanol production. The synergistic action of Lactobacillus plantarum and Zygosaccharomyces mellis could promote the formation of 3-methyl-1-butanol.
Collapse
Affiliation(s)
- Weidong Bai
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Beijing, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Ruijie Mai
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Siqi Guo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiangluan Li
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Beijing, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenhong Zhao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Beijing, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Juan Yang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Beijing, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
3
|
Zavistanaviciute P, Ruzauskas M, Antanaitis R, Televicius M, Lele V, Santini A, Bartkiene E. Antimicrobial and Mycotoxin Reducing Properties of Lactic Acid Bacteria and Their Influence on Blood and Feces Parameters of Newborn Calves. Animals (Basel) 2023; 13:3345. [PMID: 37958101 PMCID: PMC10648343 DOI: 10.3390/ani13213345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to evaluate the influence of in acid whey (AW) multiplied Lactiplantibacillus plantarum LUHS135 (L.pl135), Lacticaseibacillus paracasei LUHS244 (L.pc244), and their biomass combination on newborn calves' feces and blood parameters. Additionally, the antimicrobial and mycotoxin-reducing properties and the resistance to antibiotics of the tested lactic acid bacteria (LAB) strains were analyzed. In order to ensure effective biomass growth in AW, technological parameters for the supplement preparation were selected. Control calves were fed with a standard milk replacer (SMR) and treated groups (from the 2nd day of life until the 14th day) were supplemented with 50 mL of AWL.pl135, AWL.pc244, and AWL.pl135×L.pc244 (25 mL AWL.pl135 + 25 mL AWL.pc244) in addition to SMR. It was established that L.pl135 and L.pc244 possess broad antimicrobial activities, are non-resistant to the tested antibiotics, and reduce mycotoxin concentrations in vitro. The optimal duration established for biomass growth was 48 h (LAB count higher than 7.00 log10 CFU mL-1 was found after 48 h of AW fermentation). It was established that additional feeding of newborn calves with AWL.pl135, AWL.pc244, and AWL.pl135×L.pc244 increased lactobacilli (on average by 7.4%), and AWL.pl135 and AWL.pc244 reduced the numbers of Enterobacteriaceae in calves' feces. The tested supplements also reduced the lactate concentration (on average, by 42.5%) in calves' blood. Finally, the tested supplements had a positive influence on certain health parameters of newborn calves; however, further research is needed to validate the mechanisms of the beneficial effects.
Collapse
Affiliation(s)
- Paulina Zavistanaviciute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Faculty of Veterinary, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Ramunas Antanaitis
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (R.A.); (M.T.)
| | - Mindaugas Televicius
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (R.A.); (M.T.)
| | - Vita Lele
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Elena Bartkiene
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
4
|
Wang Y, Chen Q, Li L, Chen S, Zhao Y, Li C, Xiang H, Wu Y, Sun-Waterhouse D. Transforming the fermented fish landscape: Microbiota enable novel, safe, flavorful, and healthy products for modern consumers. Compr Rev Food Sci Food Saf 2023; 22:3560-3601. [PMID: 37458317 DOI: 10.1111/1541-4337.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 09/13/2023]
Abstract
Regular consumption of fish promotes sustainable health while reducing negative environmental impacts. Fermentation has long been used for preserving perishable foods, including fish. Fermented fish products are popular consumer foods of historical and cultural significance owing to their abundant essential nutrients and distinct flavor. This review discusses the recent scientific progress on fermented fish, especially the involved flavor formation processes, microbial metabolic activities, and interconnected biochemical pathways (e.g., enzymatic/non-enzymatic reactions associated with lipids, proteins, and their interactions). The multiple roles of fermentation in preservation of fish, development of desirable flavors, and production of health-promoting nutrients and bioactive substances are also discussed. Finally, prospects for further studies on fermented fish are proposed, including the need of monitoring microorganisms, along with the precise control of a fermentation process to transform the traditional fermented fish to novel, flavorful, healthy, and affordable products for modern consumers. Microbial-enabled innovative fermented fish products that consider both flavor and health benefits are expected to become a significant segment in global food markets. The integration of multi-omics technologies, biotechnology-based approaches (including synthetic biology and metabolic engineering) and sensory and consumer sciences, is crucial for technological innovations related to fermented fish. The findings of this review will provide guidance on future development of new or improved fermented fish products through regulating microbial metabolic processes and enzymatic activities.
Collapse
Affiliation(s)
- Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qian Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Zhang Z, Wu R, Xu W, Cocolin L, Liang H, Ji C, Zhang S, Chen Y, Lin X. Combined effects of lipase and Lactiplantibacillus plantarum 1-24-LJ on physicochemical property, microbial succession and volatile compounds formation in fermented fish product. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2304-2312. [PMID: 36636889 DOI: 10.1002/jsfa.12445] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Studies have shown that either the addition of starter culture or enzyme can improve fermentation in fish or other products. However, little research has been carried out on the effects of coupling starter cultures with lipase on the microbial community and product quality. Suanzhayu is a Chinese fermented fish product that mainly relies on spontaneous fermentation, resulting in an unstable flavor and quality. The present study investigated the impact of lipase and Lactiplantibacillus plantarum 1-24-LJ on the quality of Suanzhayu. RESULTS Inoculation decreased pH and 2-thiobarbituric acid reactive substances (TBARS) values, and also helped the dominance of the strain in the ecosystem, whereas lipase addition raised TBARS values and had little effect on pH, water activity (aw ) and microbiota. The addition of lipase and/or Lpb. plantarum increased the content of alcohols, aldehydes, ketones, esters and umami amino acids. The co-additions with the most significant effect and the total contents of volatile compounds (VCs) and free amino acids (FAAs) were 1801.92 g per 100 g and 21 357.05 mg per 100 g, respectively. Former-Lactobacillus was negatively correlated with pH, aw and Prevotella, but positively with VCs (ethyl ester of heptanoic acid, ethyl ester of octanoic acid) and FAAs (Tyr, Phe). Furthermore, adding Lpb. plantarum 1-24-LJ alone or in combination with lipase shortened the fermentation process. CONCLUSION The present study provides a recommended Suanzhayu process approach for improving product quality and flavor, as well as shortening fermentation time, by adding Lpb. plantarum 1-24-LJ with or without lipase. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zuoli Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Ruohan Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Wenhuan Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Huipeng Liang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yingxi Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| |
Collapse
|
6
|
Mayta-Apaza AC, Rocha-Mendoza D, García-Cano I, Jiménez-Flores R. Characterization and Evaluation of Proteolysis Products during the Fermentation of Acid Whey and Fish Waste and Potential Applications. ACS FOOD SCIENCE & TECHNOLOGY 2022; 2:1442-1452. [PMID: 36161074 PMCID: PMC9487912 DOI: 10.1021/acsfoodscitech.2c00157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Reduction of waste in the food industry is critical to sustainability. This work represents one strategy of valorizing waste streams from the dairy (acid whey) and fisheries industries (fish waste) using fermentation. The main approach was to characterize the peptides produced by this fermentation under three conditions: (1) fermentation without adding inoculum; (2) with the addition of a single lactic acid bacterial strain; and (3) the addition of a consortium of lactic acid bacteria. Previous results indicated that the rapid acidification of this fermentation was advantageous for its food safety and microbial activity. This work complements our previous results by defining the rate of peptide production due to protein digestion and using two-dimensional (2D) gel electrophoresis and proteomic analysis to give a more detailed identification of the peptides produced from different waste streams. These results provide important information on this process for eventual applications in industrial fermentation and, ultimately, the efficient valorization of these waste streams.
Collapse
Affiliation(s)
- Alba C. Mayta-Apaza
- Department
of Food Science and Technology, Parker Food Science and Technology
Building, The Ohio State University, Columbus, Ohio 43210, United States
| | - Diana Rocha-Mendoza
- Department
of Food Science and Technology, Parker Food Science and Technology
Building, The Ohio State University, Columbus, Ohio 43210, United States
| | - Israel García-Cano
- Department
of Food Science and Technology, Parker Food Science and Technology
Building, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Food Science and Technology, National
Institute of Medical Sciences and Nutrition Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico
| | - Rafael Jiménez-Flores
- Department
of Food Science and Technology, Parker Food Science and Technology
Building, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Liu A, Yan X, Shang H, Ji C, Zhang S, Liang H, Chen Y, Lin X. Screening of Lactiplantibacillus plantarum with High Stress Tolerance and High Esterase Activity and Their Effect on Promoting Protein Metabolism and Flavor Formation in Suanzhayu, a Chinese Fermented Fish. Foods 2022; 11:foods11131932. [PMID: 35804748 PMCID: PMC9265898 DOI: 10.3390/foods11131932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 01/31/2023] Open
Abstract
In this study, three Lactiplantibacillus plantarum, namely 3-14-LJ, M22, and MB1, with high acetate esterase activity, acid, salt, and high-temperature tolerance were selected from 708 strains isolated from fermented food. Then, L. plantarum strains MB1, M22, and 3-14-LJ were inoculated at 107 CFU/mL in the model and 107 CFU/g in actual Suanzhayu systems, and the effects during fermentation on the physicochemical properties, amino acid, and volatile substance were investigated. The results showed that the inoculated group had a faster pH decrease, lower protein content, higher TCA-soluble peptides, and total amino acid contents than the control group in both systems (p < 0.05). Inoculation was also found to increase the production of volatile compounds, particularly esters, improve the sour taste, and decrease the bitterness of the product (p < 0.05). L. plantarum M22 was more effective than the other two strains in stimulating the production of isoamyl acetate, ethyl hexanoate, and ethyl octanoate. However, differences were discovered between the strains as well as between the model and the actual systems. Overall, the isolated strains, particularly L. plantarum M22, have good fermentation characteristics and have the potential to become excellent Suanzhayu fermenters in the future.
Collapse
Affiliation(s)
- Aoxue Liu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Xu Yan
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Hao Shang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Sufang Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Huipeng Liang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Yingxi Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (A.L.); (X.Y.); (H.S.); (C.J.); (S.Z.); (H.L.); (Y.C.)
- Department of Agricultural, Forest, and Food Science, University of Turin, Grugliasco, 10095 Turin, Italy
- Correspondence: ; Tel.: +86-0411-86318675; Fax: +86-0411-86318655
| |
Collapse
|
8
|
Characterization of a lactic acid bacteria using branched-chain amino acid transaminase and protease from Jinhua Ham and application in myofibrillar protein model. Meat Sci 2022; 191:108852. [DOI: 10.1016/j.meatsci.2022.108852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 01/12/2023]
|
9
|
Gao P, Cao X, Jiang Q, Liu S, Xia W. Improving the quality characteristics of rice mash grass carp using different microbial inoculation strategies. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Technological Parameters, Anti- Listeria Activity, Biogenic Amines Formation and Degradation Ability of L. plantarum Strains Isolated from Sheep-Fermented Sausage. Microorganisms 2021; 9:microorganisms9091895. [PMID: 34576790 PMCID: PMC8470431 DOI: 10.3390/microorganisms9091895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to identify and characterize, from a technological and safety point of view, the lactic acid bacteria (LAB) isolated from traditional sheep-fermented sausage. First, LABs were identified then were screened for some technological parameters such as acidifying and growth ability, proteolytic and lipolytic activity and for antimicrobial activity. Finally, biogenic amine production and degradation abilities were also evaluated. This research reveals the predominance of Lactiplantibacillus (L.) plantarum on LAB community. Almost all L. plantarum strains were active against Listeria monocytogenes strains (inhibition zone diameters > 1 cm). None of the tested strains were positive in histidine (hdcA), lysine (ldc) and tyrosine (tyrdc) decarboxylase genes and only one (L. plantarum PT9-2) was positive to the agmatine deiminase (agdi) gene. Furthermore, given the positive results of the sufl (multi-copper oxidase) gene detection, all strains showed a potential degradation ability of biogenic amines.
Collapse
|
11
|
Zhu N, Wang SW, Zhao B, Zhang SL, Zang MW, Wu QR, Li S, Qiao XL. Label-free proteomic strategy to identify proteins associated with quality properties in sauced beef processing. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Feng L, Tang N, Liu R, Gong M, Wang Z, Guo Y, Wang Y, Zhang Y, Chang M. The relationship between flavor formation, lipid metabolism, and microorganisms in fermented fish products. Food Funct 2021; 12:5685-5702. [PMID: 34037049 DOI: 10.1039/d1fo00692d] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Traditional fermented fish products are favored due to their unique flavors. The fermentation process of fish is accompanied by the formation of flavor substances through a complex metabolic reaction of microorganisms, especially lipolysis and lipid oxidation. However, it is difficult to precisely control the reaction of microorganisms during the fermentation process in modern industrial production, and fermented fish products have lost their traditional characteristic flavors. The purpose of this review is to summarize the different kinds of fermented fish, core microorganisms in it, and flavor formation mechanisms, providing guidance for industrial cultural starters. Future research on the flavor formation mechanism is necessary to confirm the relationship between flavor formation, lipid metabolism, and microorganisms to ensure stable flavor and safety, and to elucidate the mechanism directly toward industrial application.
Collapse
Affiliation(s)
- Lin Feng
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Nianchu Tang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Mengyue Gong
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Zhangtie Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yiwen Guo
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yandan Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yao Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Ming Chang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Ding W, Liu Y, Zhao X, Peng C, Ye X, Che Z, Liu Y, Liu P, Lin H, Huang J, Xu M. Characterization of volatile compounds of Pixian Douban fermented in closed system of gradient steady-state temperature field. Food Sci Nutr 2021; 9:2862-2876. [PMID: 34136154 PMCID: PMC8194942 DOI: 10.1002/fsn3.2242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
As an essential flavor condiment in Sichuan cuisine, Pixian Douban (PXDB) is usually produced by open fermentation process in strip pools or ceramic vats. In this study, an experiment of PXDB fermentation was conducted for 90 days in a closed system of gradient steady-state temperature field (GSTF). To investigate the characterization of volatile compounds of PXDB in the closed system, the volatiles in three kinds of samples including samples of GSTF (SGT), samples of constant temperature (SCT), and samples of traditional fermentation (STF) were analyzed. The results showed that 75, 67, and 68 volatile compounds were detected in SGT, SCT, and STF, respectively. Compared with the traditional fermentation, the process in the closed system of GSTF was conducive to produce more kinds of esters and alcohols. A total of 22 major aroma active compounds were identified in three samples by combination analyses of gas chromatography-olfactometry (GC-O) and odor activity value (OAV). The appearance, smell, texture, and taste of the three different samples had shown different changes, but the sensory characteristics of the SGT were more similar to those of the STF by quantitative descriptive analysis (QDA) and principal component analysis (PCA). This study indicated that the closed system of GSTF could be applied in PXDB fermentation to obtain higher quality products, which brought a bright prospect of replacing the traditional fermentation process to realize the controllable industrialized production of PXDB.
Collapse
Affiliation(s)
- Wenwu Ding
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Yan Liu
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Xiaoyan Zhao
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Changbo Peng
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Xiaoqing Ye
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Zhenming Che
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Yi Liu
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Ping Liu
- College of Food and BioengineeringXihua UniversityChengduChina
| | - Hongbin Lin
- College of Food and BioengineeringXihua UniversityChengduChina
| | | | - Min Xu
- College of Food and BioengineeringXihua UniversityChengduChina
| |
Collapse
|
14
|
Hydrolysis of raw fish proteins extracts by Carnobacterium maltaromaticum strains isolated from Argentinean freshwater fish. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00589. [PMID: 33489790 PMCID: PMC7811128 DOI: 10.1016/j.btre.2021.e00589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/05/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022]
Abstract
Carnobacterium and Vagococcus genera were identified from Paraná River freshwater fishes. Low acidifying and antilisterial Carnobacterium strains were selected. Proteolysis of raw fish extract by C. maltaromaticum strains was confirmed. C. maltaromaticum strains may be used as functional cultures to develop novel LPFP.
Lactic acid bacteria (LAB) isolated from freshwater fish (hatcheries and captures) from Paraná river (Argentina) were analyzed by using culture-dependent approaches. The species belonging to Carnobacterium (C.) divergens, C. inhibens, C. maltaromaticum, C. viridans and Vagococcus (V.) salmoninarum were identify as predominant by RAPD-PCR and 16 s rRNA gene sequencing. C. maltaromaticum (H-17, S-30, B-42 and S-44) grew in raw fish extract and slightly reduced the medium pH (5.81–5.91). These strains exhibited moderate fish sarcoplasmic protein degradation (≤ 73 %) releasing small peptides and free amino acids, being alanine, glycine, asparagine and arginine concentrations increased in a higher extent (17.84, 1.47, 1.26 and 0.47 mg/100 mL, respectively) by S-44 strain at 96 h incubation. Interestingly C. maltaromaticum H-17 was able to inhibit Listeria monocytogenes. Results suggest that these strains would contribute to the development of new safe and healthy fishery products with improved nutritional and sensory characteristics.
Collapse
|
15
|
Bacterial Diversity Analysis and Evaluation Proteins Hydrolysis During the Acid Whey and Fish Waste Fermentation. Microorganisms 2021; 9:microorganisms9010100. [PMID: 33406784 PMCID: PMC7824499 DOI: 10.3390/microorganisms9010100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
The disposal of acid whey (Aw), a by-product from fermented products, is a problem for the dairy industry. The fishery industry faces a similar dilemma, disposing of nearly 50% of fish processed for human consumption. Economically feasible and science-based alternatives are needed to overcome this problem. One possible solution is to add value to the remaining nutrients from these by-products. This study focuses on the breakdown of nutrients in controlled fermentations of Aw, fish waste (F), molasses (M), and a lactic acid bacteria (LAB) strain (Lr). The aim was to assess the dynamic variations in microbial diversity and the biochemical changes that occur during fermentation. Four treatments were compared (AwF, AwFM, AwFLr, and AwFMLr), and the fermentation lasted 14 days at 22.5 °C. Samples were taken every other day. Colorimetric tests for peptide concentrations, pH, and microbial ecology by 16S-v4 rRNA amplicon using Illumina MiSeq were conducted. The results of the microbial ecology showed elevated levels of alpha and beta diversity in the samples at day zero. By day 2 of fermentation, pH dropped, and the availability of a different set of nutrients was reflected in the microbial diversity. The fermentation started to stabilize and was driven by the Firmicutes phylum, which dominated the microbial community by day 14. Moreover, there was a significant increase (3.6 times) in peptides when comparing day 0 with day 14, making this treatment practical and feasible for protein hydrolysis. This study valorizes two nutrient-dense by-products and provides an alternative to the current handling of these materials.
Collapse
|
16
|
Kęska P, Stadnik J, Wójciak KM, Neffe‐Skocińska K. Physico‐chemical and proteolytic changes during cold storage of dry‐cured pork loins with probiotic strains of LAB. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Paulina Kęska
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 20‐704 Lublin Poland
| | - Joanna Stadnik
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 20‐704 Lublin Poland
| | - Karolina Maria Wójciak
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 20‐704 Lublin Poland
| | - Katarzyna Neffe‐Skocińska
- Department of Food Gastronomy and Food Hygiene Faculty of Human Nutrition and Consumer Sciences Warsaw University of Life Sciences – SGGW Nowoursynowska 159 C 02‐776 Warsaw Poland
| |
Collapse
|
17
|
Lu Y, Chi Y, Lv Y, Yang G, He Q. Evolution of the volatile flavor compounds of Chinese horse bean-chili-paste. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|