1
|
Liu S, Shi T, Yu J, Li R, Lin H, Deng K. Research on Bitter Peptides in the Field of Bioinformatics: A Comprehensive Review. Int J Mol Sci 2024; 25:9844. [PMID: 39337334 PMCID: PMC11432553 DOI: 10.3390/ijms25189844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Bitter peptides are small molecular peptides produced by the hydrolysis of proteins under acidic, alkaline, or enzymatic conditions. These peptides can enhance food flavor and offer various health benefits, with attributes such as antihypertensive, antidiabetic, antioxidant, antibacterial, and immune-regulating properties. They show significant potential in the development of functional foods and the prevention and treatment of diseases. This review introduces the diverse sources of bitter peptides and discusses the mechanisms of bitterness generation and their physiological functions in the taste system. Additionally, it emphasizes the application of bioinformatics in bitter peptide research, including the establishment and improvement of bitter peptide databases, the use of quantitative structure-activity relationship (QSAR) models to predict bitterness thresholds, and the latest advancements in classification prediction models built using machine learning and deep learning algorithms for bitter peptide identification. Future research directions include enhancing databases, diversifying models, and applying generative models to advance bitter peptide research towards deepening and discovering more practical applications.
Collapse
Affiliation(s)
| | | | | | | | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| |
Collapse
|
2
|
Singh S, Jha B, Tiwari P, Joshi VG, Mishra A, Malik YS. Recent approaches in the application of antimicrobial peptides in food preservation. World J Microbiol Biotechnol 2024; 40:315. [PMID: 39249587 DOI: 10.1007/s11274-024-04126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Antimicrobial peptides (AMPs) are small peptides existing in nature as an important part of the innate immune system in various organisms. Notably, the AMPs exhibit inhibitory effects against a wide spectrum of pathogens, showcasing potential applications in different fields such as food, agriculture, medicine. This review explores the application of AMPs in the food industry, emphasizing their crucial role in enhancing the safety and shelf life of food and how they offer a viable substitute for chemical preservatives with their biocompatible and natural attributes. It provides an overview of the recent advancements, ranging from conventional approaches of using natural AMPs derived from bacteria or other sources to the biocomputational design and usage of synthetic AMPs for food preservation. Recent innovations such as structural modifications of AMPs to improve safety and suitability as food preservatives have been discussed. Furthermore, the active packaging and creative fabrication strategies such as nano-formulation, biopolymeric peptides and casting films, for optimizing the efficacy and stability of these peptides in food systems are summarized. The overall focus is on the spectrum of applications, with special attention to potential challenges in the usage of AMPs in the food industry and strategies for their mitigation.
Collapse
Affiliation(s)
- Satparkash Singh
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
| | - Bhavna Jha
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Pratiksha Tiwari
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Adarsh Mishra
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Yashpal Singh Malik
- ICAR-IVRI (Mukteswar Campus), Mukteswar, Nainital, Uttarakhand, 263138, India
| |
Collapse
|
3
|
Xia R, Xiao H, Xu M, Hou L, Han Y, Zhou Z. Insight into the inhibitory activity and mechanism of bovine cathelicidin BMAP 27 against Salmonella Typhimurium. Microb Pathog 2024; 187:106540. [PMID: 38190945 DOI: 10.1016/j.micpath.2024.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
This study synthesized an antimicrobial peptide based on the bovine cathelicidin BMAP 27 sequence. It was found to have a broad spectrum of antibacterial activity, with exceptionally high activity against Salmonella. However, the antibacterial mechanism of BMAP 27 against Salmonella remains unclear. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of BMAP 27 against Salmonella enterica serovar Typhimurium were determined to be 2 μM and 4 μM, respectively. After treatment with 2 MIC of BMAP 27, the absorbance of DNA in centrifugal supernatant increased from 0.244 to 1.464, and that of protein rose from 0.174 to 0.774, respectively. BMAP 27 has compromised the cell membrane as observed through field emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), and confirmed by the propidium iodide (PI) test. The alkaline phosphatase (AKP) enzyme activity in the supernatant of the 2 MIC treatment group was 2.15 times higher than the control group, indicating extracellular membrane damage. BMAP 27 treatment increased intracellular ROS levels as tested by dichlorofluorescein diacetate (DCFH) staining. DNA interaction analysis revealed that BMAP 27 has a binding affinity towards DNA, causing its characteristic bands to disappear and peak intensity at 260 nm to reduce. Molecular docking identified its potential binding mode with DNA. The crystal violet biofilm staining results demonstrated that BMAP 27 inhibited S. Typhimurium biofilm formation by 43.1 % and cleared mature biofilms by 53.62 %. Confocal Laser scanning electron microscopy (CLSM) observed that BMAP 27 could kill bacteria within the biofilm and dislodge bacteria from the surface of glasses. Swimming tests identified that the motor capacity of S. Typhimurium was diminished by BMAP 27. By counting the total bacteria, BMAP 27 was revealed to exert bacteriostatic effects in chilled pork and orange juice, which might provide a basis for its application in the inhibition of Salmonella.
Collapse
Affiliation(s)
- Rui Xia
- Department of Food Science and Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, China
| | - Huazhi Xiao
- Department of Food Science and Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, China
| | - Min Xu
- Department of Food Science and Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, China
| | - Luying Hou
- Department of Food Science and Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, China
| | - Ye Han
- Department of Food Science and Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, China
| | - Zhijiang Zhou
- Department of Food Science and Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
4
|
Zhang M, Wang L, Tang W, Xing Y, Liu P, Dang X. Antibacterial mechanism of the novel antimicrobial peptide Jelleine-Ic and its efficacy in controlling Pseudomonas syringae pv. actinidiae in kiwifruit. PEST MANAGEMENT SCIENCE 2023; 79:3681-3692. [PMID: 37184207 DOI: 10.1002/ps.7548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) poses a severe threat to kiwifruit production. Because of the insufficient efficacy and environmental safety of available treatments, novel antibacterial agents should be urgently developed. Antimicrobial peptides (AMPs) can be used as antimicrobials for disease control. In this study, we designed a novel AMP, Jelleine-Ic, and evaluated its antibacterial activity and mechanism of action against Psa. RESULTS Jelleine-Ic with a half-maximal effective concentration of 1.67 μg/mL exhibited stronger antibacterial activity than did parent Jelleine-I. Jelleine-Ic targeted the Psa membrane, increased membrane permeabilization and dissipated membrane potential, resulting in calcium leakage. Electron microscopy revealed that Jelleine-Ic disrupted cell morphology and caused intracellular alterations. Moreover, this AMP penetrated the cell membrane, bound to DNA, and reduced the expression of genes related to DNA replication and repair. Jelleine-Ic also reduced esterase activity and induced intracellular reactive oxygen species generation. This peptide inhibited the development of Psa canker. The control efficiency of Jelleine-Ic against Psa in the leaf discs and leaves of kiwifruit was 81.83% and 70.53%, respectively, which was superior to that of the commercial agricultural streptomycin. Furthermore, Jelleine-Ic upregulated the expression of kiwifruit defense genes (PR-10 and WRKY70a). CONCLUSION Jelleine-Ic effectively controls Psa in vitro and in vivo, and may be developed as a bactericide for plant disease control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingyu Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lifang Wang
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Wei Tang
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Yue Xing
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Pu Liu
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xiangli Dang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Dho M, Candian V, Tedeschi R. Insect Antimicrobial Peptides: Advancements, Enhancements and New Challenges. Antibiotics (Basel) 2023; 12:952. [PMID: 37370271 DOI: 10.3390/antibiotics12060952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Several insects are known as vectors of a wide range of animal and human pathogens causing various diseases. However, they are also a source of different substances, such as the Antimicrobial Peptides (AMPs), which can be employed in the development of natural bioactive compounds for medical, veterinary and agricultural applications. It is well known that AMP activity, in contrast to most classical antibiotics, does not lead to the development of natural bacterial resistance, or at least the frequency of resistance is considered to be low. Therefore, there is a strong interest in assessing the efficacy of the various peptides known to date, identifying new compounds and evaluating possible solutions in order to increase their production. Moreover, implementing AMP modulation in insect rearing could preserve insect health in large-scale production. This review describes the current knowledge on insect AMPs, presenting the validated ones for the different insect orders. A brief description of their mechanism of action is reported with focus on proposed applications. The possible effects of insect diet on AMP translation and synthesis have been discussed.
Collapse
Affiliation(s)
- Matteo Dho
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Valentina Candian
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Rosemarie Tedeschi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
6
|
Shen P, Ding K, Wang L, Tian J, Huang X, Zhang M, Dang X. In vitro and in vivo antimicrobial activity of antimicrobial peptide Jelleine-I against foodborne pathogen Listeria monocytogenes. Int J Food Microbiol 2023; 387:110050. [PMID: 36508953 DOI: 10.1016/j.ijfoodmicro.2022.110050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
As a human foodborne pathogen, Listeria monocytogenes can cause severe human listeriosis and develop resistance to antibiotics. Antimicrobial peptides (AMPs) are produced from all kingdoms of life and regarded as promising alternatives to conventional antibiotics. Jelleine-I is an AMP identified from honeybees royal jelly. In this study, we explored the activity and action mechanism of Jelleine-I against L. monocytogenes. We found its minimum inhibitory concentration to be 12.5 μg/mL. Membrane permeability analysis revealed that Jelleine-I increased L. monocytogenes cell membrane permeability, causing calcium leakage. Scanning, transmission electron microscopy and fluorescence microscopy revealed that Jelleine-I destroyed membrane integrity, disrupted intracellular structures and interacted with the bacterial DNA. DNA binding analysis demonstrated that Jelleine-I bound to bacterial genomic DNA. Results of reverse transcription-quantitative PCR revealed that Jelleine-I affected bacterial DNA replication gene expression levels. Moreover, Jelleine-I induced cellular reactive oxygen species (ROS) production from fluorescence intensity analysis, and inhibited bacterial biofilm formation. Results of immunomodulation in Galleria mellonella revealed that Jelleine-I increased host hemocyte counts, upregulated host AMP gene (Gloverin and Cecropin D) expression, and inhibited proinfammatory cytokine (tumor necrosis factor α and interleukin 6) production induced by bacterial infection. It efficiently killed bacteria and increased the survival rate of infected insects to 70 %. Furthermore, Jelleine-I increased the G1 to S phase transition in mammalian cells from cells cycle analysis, and cytotoxicity assay results indicated that it promoted cell proliferation without hemolysis or cytotoxicity. Collectively, Jelleine-I possesses antimicrobial, immunomodulatory and cell proliferative activities, and is a promising candidate for preventing L. monocytogenes emergence and dissemination.
Collapse
Affiliation(s)
- Panpan Shen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kang Ding
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Lifang Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jinhuan Tian
- Department of Material Science and Engineering, College of Chemistry and Material, Jinan University, Guangzhou 510632, China
| | - Xiuhong Huang
- Department of Material Science and Engineering, College of Chemistry and Material, Jinan University, Guangzhou 510632, China
| | - Mingyu Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiangli Dang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Nano-Conjugated Food-Derived Antimicrobial Peptides As Natural Biopreservatives: A Review of Technology and Applications. Antibiotics (Basel) 2023; 12:antibiotics12020244. [PMID: 36830155 PMCID: PMC9952009 DOI: 10.3390/antibiotics12020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
In recent years, microbial food safety has garnered a lot of attention due to worldwide expansion of the food industry and processed food products. This has driven the development of novel preservation methods over traditional ones. Food-derived antimicrobial peptides (F-AMPs), produced by the proteolytic degradation of food proteins, are emerging as pragmatic alternatives for extension of the shelf-life of food products. The main benefits of F-AMPs are their wide spectrum antimicrobial efficacy and low propensity for the development of antibiotic resistance. However, direct application of F-AMPs in food limits its efficacy during storage. Therefore, the development of nanocarriers for the conjugation and distribution of potential AMPs may hold great potential to increase their bioactivity. This review highlights the significance of F-AMPs as a feasible and sustainable alternative to conventional food preservatives. The most recent developments in production, characterization, and mode of action of these AMPs against planktonic and biofilm forming pathogens are thoroughly discussed in this work. Moreover, nano-conjugation of F-AMPs with different nano-carriers and potential future application in food packaging are emphasized. This review may aid in comprehending the nano-conjugation of F-AMPs and offer insightful recommendations for further exploration and potential uses in the food processing industry.
Collapse
|
8
|
Karami Z, Duangmal K. Health Promoting and Functional Activities of Peptides from Vigna Bean and Common Bean Hydrolysates: Process to Increase Activities and Challenges. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zohreh Karami
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kiattisak Duangmal
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Emerging Processes for Food Functionality Design Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Li S, Hao Z, Xu H, Gao Y, Zhang M, Liang J, Dang X. Silencing β-1,3-glucan binding protein enhances the susceptibility of Plutella xylostella to entomopathogenic fungus Isaria cicadae. PEST MANAGEMENT SCIENCE 2022; 78:3117-3127. [PMID: 35442542 DOI: 10.1002/ps.6938] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The diamondback moth, Plutella xylostella is a notorious pest of brassicaceae crops globally and has developed serious resistance to insecticide. Insects primarily rely on their innate immunity to defense against various pathogens. In this study, we investigated the immunological functions of a β-1,3-glucan binding protein from P. xylostella (PxβGBP) and evaluated its potential for biocontrolling P. xylostella. RESULTS The open reading frame of PxβGBP is 1422 bp encoding 473 amino acids residues. PxβGBP contained a CBM39 domain, a PAC domain and a GH16 domain and shared evolutionary conservation with other lepidoptera βGRPs. PxβGBP was strongly expressed in the third instar larvae and fat body. PxβGBP transcript levels increased significantly after the challenge with microbes, including Isaria cicadae, Escherichia coli and Staphylococcus aureus. PxβGBP was identified in P. xylostella larvae challenged by I cicadae, but not in the naïve insects. Recombinant PxβGBP can directly bind fungal and bacterial cells, and also agglutinate the cells of I cicadae, S. aureus and E coli in a zinc-dependent manner. Knockdown of PxβGBP via RNA interference significantly down-regulated the expression of antimicrobial peptide gene gloverin, and enhanced the susceptibility of P. xylostella to I. cicadae infection, leading to high mortality. CONCLUSION These results indicated that PxβGBP plays an important role in the immune response of P. xylostella against I. cicadae infection, and could serve as a potential novel target for pest control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuangshuang Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zhongping Hao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Huihui Xu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yan Gao
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mingyu Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jian Liang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiangli Dang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Ding K, Shen P, Xie Z, Wang L, Dang X. In vitro and in vivo antifungal activity of two peptides with the same composition and different distribution. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109243. [PMID: 34768011 DOI: 10.1016/j.cbpc.2021.109243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/01/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022]
Abstract
Candida albicans can cause local or systemic diseases when host immune status is disrupted. Drug resistance to C. albicans highlights the necessity of novel antifungal drugs. Antimicrobial peptides exhibit potential as antifungal drugs. PAF26 was found to exhibit favorable activity against plant pathogenic fungi. However, it showed low antifungal activity against C. albicans. Here, P255 and P256 with the same composition and different distribution were derived from PAF26. P256 exhibited higher antifungal activity against C. albicans than did P255 and PAF26. P256 and P255 exhibited synergism when combined with amphotericin B (AMB). Both peptides reduced cell wall integrity, rapidly increased membrane permeability, disrupted cell morphology and intracellular alterations. The peptides affected the expression of fungal DNA replication and repair, cell wall synthesis and ergosterol synthesis genes. They increased cellular reactive oxygen species production and bound with fungal genomic DNA. Antibiofilm activities were observed when peptide alone or combined with AMB. Finally, these peptides protected 70% of Galleria mellonella from infection-caused death. Insects treated with peptides exhibited fewer infection foci compared with the untreatment. These results demonstrate the therapeutic potential of the peptides, particularly P256 with clear amphipathicity, in the development of therapies for C. albicans infections.
Collapse
Affiliation(s)
- Kang Ding
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Panpan Shen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Lifang Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiangli Dang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
11
|
Liu Y, Sameen DE, Ahmed S, Dai J, Qin W. Antimicrobial peptides and their application in food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Smaoui S, Ben Hlima H, Fourati M, Elhadef K, Ennouri K, Mellouli L. Multiobjective optimization of
Phoenix dactylifera
L. seeds extraction: Mixture design methodology for phytochemical contents and antibacterial activity. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Slim Smaoui
- Laboratory of Microorganisms and Biomolecules Center of Biotechnology of Sfax University of Sfax Sfax Tunisia
| | - Hajer Ben Hlima
- Algae Biotechnology Unit Biological Engineering Department National School of Engineers of Sfax University of Sfax Sfax Tunisia
| | - Mariam Fourati
- Laboratory of Microorganisms and Biomolecules Center of Biotechnology of Sfax University of Sfax Sfax Tunisia
| | - Khaoula Elhadef
- Laboratory of Microorganisms and Biomolecules Center of Biotechnology of Sfax University of Sfax Sfax Tunisia
| | - Karim Ennouri
- Laboratory of Microorganisms and Biomolecules Center of Biotechnology of Sfax University of Sfax Sfax Tunisia
| | - Lotfi Mellouli
- Laboratory of Microorganisms and Biomolecules Center of Biotechnology of Sfax University of Sfax Sfax Tunisia
| |
Collapse
|
14
|
Suppression of Transferrin Expression Enhances the Susceptibility of Plutella xylostella to Isaria cicadae. INSECTS 2020; 11:insects11050281. [PMID: 32380643 PMCID: PMC7290965 DOI: 10.3390/insects11050281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 01/31/2023]
Abstract
Transferrins (Trfs) are multifunctional proteins with key functions in iron transport. In the present study, a Trf (PxTrf) from Plutella xylostella was identified and characterized. The PxTrf consisted of a 2046-bp open reading frame, which encoded a 681 amino acid protein with a molecular weight of 73.43 kDa and had an isoelectric point of 7.18. Only a single iron domain was predicted in the N-lobe of PxTrf. Although PxTrf was expressed ubiquitously, the highest levels of expression were observed in the fourth instar larvae. PxTrf transcript level was highest in fat bodies among various tissues. The PxTrf transcript levels increased significantly after the stimulation of pathogens. A decrease in PxTrf expression via RNA interference enhanced the susceptibility of P. xylostella to the Isaria cicadae fungus and inhibited hemocyte nodulation in response to the fungal challenge. In addition, a considerable increase in the pupation rate was observed in larvae treated with double-stranded PxTrf (dsPxTrf). Overall, according to the results, PxTrf may participate in P. xylostella immunity against fungal infection and insect development.
Collapse
|