1
|
Cai W, Fei L, Zhang D, Ni H, Peng B, Zhao X, Zhang Q, Tang F, Zhang Y, Shan C. Impact of ultra-high-pressure treatment on microbial community composition and flavor quality of jujube juice: Insights from high-throughput sequencing technology, intelligent bionic sensory system, and metabolomics approach. Food Res Int 2024; 191:114688. [PMID: 39059944 DOI: 10.1016/j.foodres.2024.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Ultra-high-pressure (UHP1) technology for cold pasteurization is a viable alternative to traditional heat sterilization for preserving food nutrients and flavor compounds during fruit juice processing. In this study, cutting-edge techniques, including high-throughput sequencing technology, intelligent bionic sensory systems, and metabolomics, were used to examine the impact of UHP treatment on microbial community composition, odor, and taste quality of jujube juice. The UHP treatment demonstrated its effect by inducing a reddish-yellow color in the jujube juice, thereby enhancing its brightness, overall color, and stability. The most significant enhancement was observed at 330 MPa. The microorganisms responsible for spoilage and deterioration of jujube juice during storage were categorized into three clusters: bacterial clusters at 0-330 MPa, 360-450 MPa, and 480-630 Mpa. The results showed no distinct distribution patterns for fungi based on the pressure strength. The dominant bacterial genera were Lactobacillus, Nocardia, Achromobacter, Enterobacter, Pseudomonas, Mesorhizobium, and Rhodococcus, whereas the dominant fungal genera were yeast and mold. Notably, Lactobacillus, Achromobacter, Enterobacter, and Pseudomonas were responsible for the significant differences between the 360 MPa to 450 MPa and 480 MPa to 630 MPa clusters in terms of bacterial spoilage, whereas Torulaspora, Lodderomyces, Wickerhamomyces, and Fusarium were the primary fungal spoilage genera. UHP treatment exerted no significant impact on the taste of jujube juice but influenced its sourness. Treatment at 330 MPa had the most pronounced effect on the presence of aromatic compounds and other odorants, which were substantially increased. Further analysis revealed the prevalence of organic acids, such as malic acid, succinic acid, and tartaric acid, in jujube juice and demonstrated a consistent relationship between changes in organic acids and sourness. In addition, nine distinct odorants with VIP values greater than 1 were identified in the jujube juice. Among these, methyl acetate and methyl caproate exhibited substantial increases following the UHP treatment at 330 MPa.
Collapse
Affiliation(s)
- Wenchao Cai
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Liyue Fei
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Dongsheng Zhang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Office of the Party Committee of Xinjiang Production and Construction Corps, Urumqi, Xinjiang 830000, China
| | - Hui Ni
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Bo Peng
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xinxin Zhao
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qin Zhang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Fengxian Tang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yan Zhang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Chunhui Shan
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
2
|
Cai W, Zhuang H, Wang X, Fu X, Chen S, Yao L, Sun M, Wang H, Yu C, Feng T. Functional Nutrients and Jujube-Based Processed Products in Ziziphus jujuba. Molecules 2024; 29:3437. [PMID: 39065014 PMCID: PMC11279998 DOI: 10.3390/molecules29143437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Jujube (Ziziphus jujuba Mill.) is the first tree species in China, with a long history and abundant yield. However, fresh jujubes have a short shelf-life and are not resistant to storage. Therefore, more and more processed jujube products are being studied. These processed products can extend the shelf-life of jujubes and attract widespread attention for their rich functional nutrients. This review summarized changes in nutrients of fresh jujube and processed products and the research progress of different preparation methods of jujubes. Meanwhile, the pharmacological effects of bioactive components in jujube-based products were concluded. Jujube and its processed products contain rich polysaccharides, vitamin C, and other functional nutrients, which are beneficial to humans. As the initial processing method for jujubes, vacuum freezing or microwave drying have become the most commonly used and efficient drying methods. Additionally, processed jujube products cannot be separated from the maximum retention of nutrients and innovation of flavor. Fermentation is the main deep-processing method with broad development potential. In the future, chemical components and toxicological evaluation need to be combined with research to bring consumers higher quality functional jujube products and ensure the sustainable development of the jujube industry.
Collapse
Affiliation(s)
- Weitong Cai
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Haining Zhuang
- School of Health and Society Care, Shanghai Urban Construction Vocational College, Shanghai 201100, China
| | - Xiaoyu Wang
- Hunan Wuzizui Industrial Group Co., Ltd., Xiangtan 411228, China
| | - Xia Fu
- Hunan Wuzizui Industrial Group Co., Ltd., Xiangtan 411228, China
| | - Sheng Chen
- Hunan Wuzizui Industrial Group Co., Ltd., Xiangtan 411228, China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| |
Collapse
|
3
|
Suo A, Wu C, Fan G, Li T, Wu F, Cong K. Optimization of fermentation conditions and quality evaluation of Chaenomeles sinensis glutinous rice wine. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1138-1147. [PMID: 38562590 PMCID: PMC10981636 DOI: 10.1007/s13197-024-05934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/19/2022] [Accepted: 01/09/2024] [Indexed: 04/04/2024]
Abstract
The present study was conducted to optimize fermentation conditions for preparation of Chaenomeles sinensis Glutinous Rice Wine (CRW). The dynamic changes of main substances in the liquor during fermentation process, aroma components, biologically active substances and antioxidant capacity in the CRW after 6 months of aging were tested. The results showed that under optimized conditions, the yield and alcohol content of wine was 44.97 and 20.00%, respectively. After aging, 64 aroma components were detected in the wine, mainly alcohols and esters. The alcohol content of the CRW was 14.8%. Polyphenols and flavonoids reached 0.23 g/L and 0.037 g/L respectively. Furthermore, the CRW had an excellent free radical scavenging ability. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05934-0.
Collapse
Affiliation(s)
- Andi Suo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Fangfang Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Kaiping Cong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| |
Collapse
|
10
|
Cai W, Tang F, Wang Y, Zhang Z, Xue Y, Zhao X, Guo Z, Shan C. Bacterial diversity and flavor profile of Zha-Chili, a traditional fermented food in China. Food Res Int 2021; 141:110112. [PMID: 33641979 DOI: 10.1016/j.foodres.2021.110112] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/18/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Zha-chili is a traditional Chinese fermented food with special flavor, which is often used as an appetizer in condiments and an important energy source. The final quality of zha-chili is closely related to its microbial community structure. However, the differences of bacterial diversity in zha-chili from different regions and how bacterial species affect zha-chili fermentation process and flavor quality have not been reported. In this study, the bacterial diversity and flavor quality of zha-chili samples from different regions were analyzed using Illumina Miseq high-throughput sequencing, electronic nose and electronic tongue technology. Twenty-three bacterial phyla and 665 bacterial genera were identified in all zha-chili samples. Firmicutes, Proteobacteria and Actinobacteria were the dominant bacterial phyla in zha-chili samples, while Lactobacillus, Pseudomonas, Pediococcus, Weissella and Staphylococcus were the dominant bacterial genera. The bacterial community structure of zha-chili samples from different regions was significantly diverse (p < 0.05). The flavor of zha-chili samples also varied in different regions, and the discrepancy of taste was much greater than that of aroma. Moreover, there were significant correlations (p < 0.05) between 6 dominant bacterial genera and 8 flavor indicators (3 aroma indicators, 5 taste indicators). In addition, the results of microbiome phenotypes prediction by BugBase and bacterial functional potential prediction using PICRUSt showed that eight out of nine predicted phenotypic functions of zha-chili samples from different regions were significantly different (p < 0.05), bacterial metabolism was vigorous in the zha-chili samples, and Lactobacillus was the dominant bacterial genus involved in metabolism during fermentation.
Collapse
Affiliation(s)
- Wenchao Cai
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China
| | - Fengxian Tang
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China
| | - Zhendong Zhang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China
| | - Yuang Xue
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China
| | - Xinxin Zhao
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China.
| | - Chunhui Shan
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China.
| |
Collapse
|