1
|
Eranda DHU, Chaijan M, Panpipat W, Karnjanapratum S, Cerqueira MA, Castro-Muñoz R. Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. Int J Biol Macromol 2024; 280:135661. [PMID: 39299417 DOI: 10.1016/j.ijbiomac.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.
Collapse
Affiliation(s)
- Don Hettiarachchige Udana Eranda
- Doctor of Philosophy Program in Agro-Industry and Biotechnology, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
2
|
Gangadharan G, Gupta S, Kudipady ML, Puttaiahgowda YM. Gallic Acid Based Polymers for Food Preservation: A Review. ACS OMEGA 2024; 9:37530-37547. [PMID: 39281951 PMCID: PMC11391454 DOI: 10.1021/acsomega.4c05642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
The extensive usage of nonbiodegradable plastic materials for food packaging is a major environmental concern. To address this, researchers focus on developing biocompatible and biodegradable food packaging from natural biopolymers, such as polysaccharides, proteins, and polyesters. These biopolymer-based packaging materials extend the shelf life of food due to their inherent antimicrobial and antioxidant properties. An important additive that enhances these beneficial effects is gallic acid (GA), a naturally occurring phenolic compound. GA exhibits potent antioxidant activity by scavenging free radicals and excellent antimicrobial activity against a wide range of bacteria by disrupting cell membranes. These gallic acid based active packaging solutions have demonstrated remarkable abilities to inhibit lipid oxidation, enzymatic browning, and microbial contamination and even retard the ripening processes in mushrooms, walnuts, strawberries, fresh-cut apples, bananas, fish, pork, and beef. This review focuses on the antioxidant, antibacterial, and food preservation capabilities of GA-incorporated biodegradable food packaging materials as an eco-friendly alternative to conventional plastic packaging.
Collapse
Affiliation(s)
- Gayathri Gangadharan
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
| | - Sonali Gupta
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
| | - Manas Laxman Kudipady
- Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
| |
Collapse
|
3
|
Boonprab K, Chirapart A, Effendy WNA. Edible-algae base composite film containing gelatin for food packaging from macroalgae, Gracilaroid (Gracilaria fisheri). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6987-7001. [PMID: 38619109 DOI: 10.1002/jsfa.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Conventional petroleum-based packaging films cause severe environmental problems. In the present study, bio-edible film was introduced as being safe to replace petroleum-based polymers. A food application for edible sachets and a composite edible film (EF) from marine algae, Gracilaria fisheri (GF) extract, were proposed. RESULTS Carbohydrates were the most prevalent component in fresh GF fronds. Under neutral conditions comprising 90 °C for 40 min, the structure of the extract was determined by Fourier transform infrared to be a carrageenan-like polysaccharide. Glycerol was the best plasticizer for EF formation because it had the highest tensile strength (TS). The integration of gelatin into the algal composite film with gelatin (CFG) was validated to be significant. The best casting temperatures for 2 h were 70 and 100 °C among the four tested temperatures (25, 60, 70 and 100 °C). Temperatures did not result in any significant (P ≤ 0.05) differences in any character (color values, TS, water vapor permeability, oxygen transmission, thickness and water activity), except elongation at break. Visually, the CFG had a slightly yellow appearance. The best-to-worst order of film stability in the three tested solvents was oil, distilled water (DW) and ethanol. Its stability in ethanol (0-100%), temperature of DW (30-100 °C) and pH (3-7 in DW) demonstrated inverse relationships with the concentration or different conditions, except for pH 8-10 in DW. All treatments were significantly (P ≤ 0.05) different. CONCLUSION The novel material made from polysaccharides from algae, G. fisheri, was used to improve EF. The edible sachet application is plausible from the EF. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kangsadan Boonprab
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Anong Chirapart
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
4
|
Zhang Y, Feng X, Shi D, Ibrahim SA, Huang W, Liu Y. Properties of modified chitosan-based films and coatings and their application in the preservation of edible mushrooms: A review. Int J Biol Macromol 2024; 270:132265. [PMID: 38734346 DOI: 10.1016/j.ijbiomac.2024.132265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Edible mushrooms are prone to deteriorate during storage. A Single chitosan film or coating has limitations in preservation. Therefore, this article focused on the improvement of modified chitosan-based films and coatings on properties related to storage quality of edible mushrooms (e.g.: safety, barrier, mechanical, antioxidant and antibacterial properties). Besides, the application of chitosan-based materials in the preservation of mushrooms was also discussed. The modified chitosan film and coating can slow down the respiration of mushrooms, inhibit the growth of microorganisms, protect antioxidant compositions, and regulate the activity of related enzymes, thus improving the quality and prolonging the shelf life of mushrooms. Meanwhile, the added ingredients improve the water and gas barrier properties of chitosan through volume and group occupation, and reduce the light transmittance of chitosan through light transmission, scattering and absorption. Essential oils and polyphenolic compounds had a better enhancement of antioxidant and antimicrobial properties of chitosan.
Collapse
Affiliation(s)
- Yingqi Zhang
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, China; Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, United States
| | - Defang Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, China; Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Salam A Ibrahim
- Department of Family and Consumer Sciences, North Carolina A&T State University, 171 Carver Hall, Greensboro, NC 27411, United States
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Xie D, Ma H, Xie Q, Guo J, Liu G, Zhang B, Li X, Zhang Q, Cao Q, Li X, Ma F, Li Y, Guo M, Yin J. Developing active and intelligent biodegradable packaging from food waste and byproducts: A review of sources, properties, film production methods, and their application in food preservation. Compr Rev Food Sci Food Saf 2024; 23:e13334. [PMID: 38563107 DOI: 10.1111/1541-4337.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Food waste and byproducts (FWBP) are a global issue impacting economies, resources, and health. Recycling and utilizing these wastes, due to processing and economic constraints, face various challenges. However, valuable components in food waste inspire efficient solutions like active intelligent packaging. Though research on this is booming, its material selectivity, effectiveness, and commercial viability require further analysis. This paper categorizes FWBP and explores their potential for producing packaging from both animal and plant perspectives. In addition, the preparation/fabrication methods of these films/coatings have also been summarized comprehensively, focusing on the advantages and disadvantages of these methods and their commercial adaptability. Finally, the functions of these films/coatings and their ultimate performance in protecting food (meat, dairy products, fruits, and vegetables) are also reviewed systematically. FWBP provide a variety of methods for the application of edible films, including being made into coatings, films, and fibers for food preservation, or extracting active substances directly or indirectly from them (in the form of encapsulation) and adding them to packaging to endow them with functions such as barrier, antibacterial, antioxidant, and pH response. In addition, the casting method is the most commonly used method for producing edible films, but more film production methods (extrusion, electrospinning, 3D printing) need to be tried to make up for the shortcomings of the current methods. Finally, researchers need to conduct more in-depth research on various active compounds from FWBP to achieve better application effects and commercial adaptability.
Collapse
Affiliation(s)
- Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
6
|
Płoska J, Garbowska M, Rybak K, Berthold-Pluta A, Stasiak-Różańska L. Study on application of biocellulose-based material for cheese packaging. Int J Biol Macromol 2024; 264:130433. [PMID: 38408577 DOI: 10.1016/j.ijbiomac.2024.130433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Bacterial cellulose (BC, biocellulose) is a natural polymer of microbiological origin that meets the criteria of a biomaterial for food packaging. The aim of the research was to obtain biocellulose and test its chemical as well as physical characterization as a potential packaging for Dutch-type cheeses. Four variants of biocellulose-based material were obtained: not grinded and grinded variants obtained from YPM medium (YPM-BCNG and YPM-BCG, respectively) and not grinded and grinded variants from acid whey (AW) (AW-BCNG and AW-BCG, respectively). It was demonstrated that AW-BCNG exhibited the highest thermostability and the highest degradation temperature (348 °C). YPM-BCG and YPM-BCNG demonstrated higher sorption properties (approx. 40 %) compared to AW-BCG and AW-BCNG (approx. 15 %). Cheese packaged in biocellulose (except for YPM-BCNG) did not differ in water, fat, or protein content compared to the control cheese. All of the biocellulose packaging variants provided the cheeses with protection against unfavourable microflora. It was demonstrated that cheeses packaged in biocellulose were characterized by lower hardness, fracturability, gumminess, and chewiness than the control cheese sample. The results obtained indicate that BC may be a suitable packaging material for ripening cheeses, which shows a positive impact on selected product features.
Collapse
Affiliation(s)
- J Płoska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland.
| | - M Garbowska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| | - K Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| | - A Berthold-Pluta
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| | - L Stasiak-Różańska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| |
Collapse
|
7
|
Vosough Kia M, Ehsani M, Hosseini SE, Asadi GH. Fabrication and characterization of transparent nanocomposite films based on poly (lactic acid)/polyethylene glycol reinforced with nano glass flake. Int J Biol Macromol 2024; 254:127473. [PMID: 37858646 DOI: 10.1016/j.ijbiomac.2023.127473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Developing new biodegradable packaging with superior properties and advanced functionalities is one of the most emerging research areas of interest in food packaging. In this study, PLA/PEG-based nanocomposite films incorporated with different amounts of nano glass flake (NGF) (0, 0.5, 1, and 2 phr) were fabricated via casting solution for applications in food packaging. The ATR-FTIR displayed no chemical interaction between the PLA/PEG-based matrix and NGF particles. The scanning electron microscopy (SEM) observations exhibited a relatively smooth and homogeneous surface without defects. Incorporation of the NGF into the PLA/PEG-based matrix did not affect the color and opacity of the fabricated films. The prepared nanocomposite films were highly transparent and exhibited superior properties such as increased hydrophobicity, appreciable oxygen barrier properties, and enhanced thermal stability. Dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) analysis confirmed the existence of a single glass-transition temperature (Tg) as evidence of miscibility. According to the research results, the PLA/PEG/NGF1 nanocomposite film significantly offered the best overall performance. This work has developed new insight into the potential application of nano glass flakes in food packaging.
Collapse
Affiliation(s)
- Mahboubeh Vosough Kia
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Ehsani
- Department of Polymer and Textile, South Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Plastics, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran.
| | - Seyed Ebrahim Hosseini
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gholam Hassan Asadi
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Chettri S, Sharma N, Mohite AM. Edible coatings and films for shelf-life extension of fruit and vegetables. BIOMATERIALS ADVANCES 2023; 154:213632. [PMID: 37742558 DOI: 10.1016/j.bioadv.2023.213632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
The execution of the edible coatings and films for food preservation; vegetables, fruits, meat, and dry fruits has been ladened in history. The study of literature portrays enough pieces of evidence dating back from centuries of coatings or films being utilized for the conservation of numerous fruits and vegetables to stretch their average shelf-life. The mechanism that remains operative in extending the shelf-life of fruits and vegetables beyond the normal shelf-life is the controlled entry and exit of moisture and gases. The non- biodegradable packaging which is also non-sustainable can be substituted with compostable and edible coatings and films made up of natural biopolymers. Therefore, keeping in mind the environment and consumer safety, a score of research has been going on from former decades for the development of edible coatings and films with efficient shelf life-extending qualities. The films composed of proteins exhibit a good mechanical strength while the polysaccharide composed films and coatings show efficient gas blocking qualities, however, both lack moisture shielding attributes. These shortcomings can be fixed by combining them with lipids and or some appropriate hydrocolloids. The edible coatings and films have been integrated with various food products; however, they haven't been completely successful in substitution of the total fraction of their non-edible counterparts. The implementation of edible coatings and films have shown to serve an immense value in extending the shelf-life of fruits and vegetables along with being a sustainable and eco-friendly approach for food packaging.
Collapse
Affiliation(s)
- Shristy Chettri
- Amity Institute of Food Technology, Amity University, Noida, U.P., India
| | - Neha Sharma
- Amity Institute of Food Technology, Amity University, Noida, U.P., India
| | - Ashish M Mohite
- Amity Institute of Food Technology, Amity University, Noida, U.P., India.
| |
Collapse
|
9
|
Matloob A, Ayub H, Mohsin M, Ambreen S, Khan FA, Oranab S, Rahim MA, Khalid W, Nayik GA, Ramniwas S, Ercisli S. A Review on Edible Coatings and Films: Advances, Composition, Production Methods, and Safety Concerns. ACS OMEGA 2023; 8:28932-28944. [PMID: 37599927 PMCID: PMC10433350 DOI: 10.1021/acsomega.3c03459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023]
Abstract
Food is a crucial source for the endurance of individuals, and quality concerns of consumers are being raised with the progression of time. Edible coatings and films (ECFs) are increasingly important in biobased packaging because they have a prime role in enhancing the organoleptic characteristics of the food products and minimizing the spread of microorganisms. These sustainable ingredients are crucial for a safer and healthier environment. These are created from proteins, polysaccharides, lipids, plasticizers, emulsifiers, and active substances. These are eco-friendly since made from innocuous material. Nanocomposite films are also beginning to be developed and support networks of biological polymers. Antioxidant, flavoring, and coloring compounds can be employed to improve the quality, wellbeing, and stability of packaged foods. Gelatin-enhanced fruit and vegetable-based ECFs compositions have the potential to produce biodegradable films. Root plants like cassava, potato, and sweet potato have been employed to create edible films and coatings. Achira flour, amylum, yam, ulluco, and water chestnut have all been considered as novel film-forming ingredients. The physical properties of biopolymers are influenced by the characteristics, biochemical confirmation, compatibility, relative humidity, temperature, water resistance, and application procedures of the components. ECFs must adhere to all regulations governing food safety and be generally recognized as safe (GRAS). This review covers the new advancements in ECFs regarding the commitment of novel components to the improvement of their properties. It is expected that ECFs can be further investigated to provide innovative components and strategies that are helpful for global financial issues and the environment.
Collapse
Affiliation(s)
- Anam Matloob
- National
Institute of Food Science & Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hudda Ayub
- National
Institute of Food Science & Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Mohsin
- National
Institute of Food Science & Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saadia Ambreen
- University
Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Faima Atta Khan
- Department
of Food Science, Faculty of Life Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sadaf Oranab
- Department
of Biochemistry, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Abdul Rahim
- Department
of Food Science, Faculty of Life Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Waseem Khalid
- University
Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Gulzar Ahmad Nayik
- Department
of Food Science & Technology, Government
Degree College Shopian Gagran 192303, Jammu and Kashmir, India
| | - Seema Ramniwas
- University
Centre for Research and Development, Chandigarh
University, Gharuan, Mohali 140413, Punjab India
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
- HGF
Agro, Ata Teknokent, TR-25240 Erzurum, Turkey
| |
Collapse
|
10
|
Xia R, Hou Z, Xu H, Li Y, Sun Y, Wang Y, Zhu J, Wang Z, Pan S, Xin G. Emerging technologies for preservation and quality evaluation of postharvest edible mushrooms: A review. Crit Rev Food Sci Nutr 2023; 64:8445-8463. [PMID: 37083462 DOI: 10.1080/10408398.2023.2200482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Edible mushrooms are the highly demanded foods of which production and consumption have been steadily increasing globally. Owing to the quality loss and short shelf-life in harvested mushrooms, it is necessary for the implementation of effective preservation and intelligent evaluation technologies to alleviate this issue. The aim of this review was to analyze the development and innovation thematic lines, topics, and trends by bibliometric analysis and review of the literature methods. The challenges faced in researching these topics were proposed and the mechanisms of quality loss in mushrooms during storage were updated. This review summarized the effects of chemical processing (antioxidants, ozone, and coatings), physical treatments (non-thermal plasma, packaging and latent thermal storage) and other emerging application on the quality of fresh mushrooms while discussing the efficiency in extending the shelf-life. It also discussed the emerging evaluation techniques based on the various chemometric methods and computer vision system in monitoring the freshness and predicting the shelf-life of mushrooms which have been developed. Preservation technology optimization and dynamic quality evaluation are vital for achieving mushroom quality control. This review can provide a comprehensive research reference for reducing mushroom quality loss and extending shelf-life, along with optimizing efficiency of storage and transportation operations.
Collapse
Affiliation(s)
- Rongrong Xia
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhenshan Hou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Heran Xu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yunting Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yong Sun
- Beijing Academy of Food Sciences, Beijing, China
| | - Yafei Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jiayi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zijian Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
11
|
Assessment of chitosan/pectin-rich vegetable waste composites for the active packaging of dry foods. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
12
|
Polysaccharide-Based Biodegradable Films: An Alternative in Food Packaging. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Packaging can mitigate the physical, chemical, and microbiological phenomena that affects food products’ quality and acceptability. However, the use of conventional packaging from non-renewable fossil sources generates environmental damage caused by the accumulation of non-biodegradable waste. Biodegradable films emerge as alternative biomaterials which are ecologically sustainable and offer protection and increase food product shelf life. This review describes the role of biodegradable films as packaging material and their importance regarding food quality. The study emphasizes polysaccharide-based biodegradable films and their use in foods with different requirements and the advances and future challenges for developing intelligent biodegradable films. In addition, the study explores the importance of the selection of the type of polysaccharide and its combination with other polymers for the generation of biodegradable films with functional characteristics. It also discusses additives that cause interactions between components and improve the mechanical and barrier properties of biodegradable films. Finally, this compilation of scientific works shows that biodegradable films are an alternative to protecting perishable foods, and studying and understanding them helps bring them closer to replacing commercial synthetic packaging.
Collapse
|
13
|
Ma J, Ye G, Jia S, Ma H, Jia D, He J, Lv J, Chen X, Liu F, Gou K, Zeng R. Preparation of chitosan/peony (Paeonia suffruticosa Andr.) leaf extract composite film and its application in sustainable active food packaging. Int J Biol Macromol 2022; 222:2200-2211. [DOI: 10.1016/j.ijbiomac.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
14
|
Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biodegradable films emerge as alternative biomaterials to conventional packaging from fossil sources, which, in addition to offering protection and increasing the shelf life of food products, are ecologically sustainable. The materials mostly used in their formulation are based on natural polysaccharides, plasticizing agents, and bioactive components (e.g., antimicrobial agents or antioxidants). The formulation of biodegradable films from polysaccharides and various plasticizers represents an alternative for primary packaging that can be assigned to specific food products, which opens the possibility of having multiple options of biodegradable films for the same product. This review describes the main characteristics of the most abundant polysaccharides in nature and highlights their role in the formulation of biodegradable films. The compilation and discussion emphasize studies that report on the mechanical and barrier properties of biodegradable films when made from pure polysaccharides and when mixed with other polysaccharides and plasticizing agents.
Collapse
|
15
|
Yang X, Yang K, Wang X, Shi Y, Chen L, Meng D. Postharvest treatment of arginine maintains the storage quality of fresh‐cut button mushrooms (
Agaricus bisporus
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao‐Min Yang
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 People’s Republic of China
| | - Ke‐Xin Yang
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 People’s Republic of China
| | - Xiu‐Hong Wang
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 People’s Republic of China
| | - Yuan‐Yuan Shi
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 People’s Republic of China
| | - Lan Chen
- Tianjin Shengtianli Material Technology Co Ltd, Tianjin 300454 People’s Republic of China
| | - De‐Mei Meng
- State Key Laboratory of Food Nutrition and Safety College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 People’s Republic of China
- Tianjin Gasin‐DH Preservation Technology Co Ltd, Tianjin 300300 People’s Republic of China
| |
Collapse
|
16
|
Aydin G, Zorlu EB. Characterisation and Antibacterial Properties of Novel Biodegradable Films Based on Alginate and Roselle ( Hibiscus sabdariffa L.) Extract. WASTE AND BIOMASS VALORIZATION 2022; 13:2991-3002. [PMID: 35222746 PMCID: PMC8856933 DOI: 10.1007/s12649-022-01710-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/01/2022] [Indexed: 06/01/2023]
Abstract
Composite films were prepared with alginate and roselle extract (HE) at different concentrations (1%, 3%, and 5% w/v) via solvent casting technique and analyzed in terms of physical, mechanical, and antibacterial properties. The incorporation of HE into alginate films resulted in rough and heterogeneous surface characteristics with increasing concentrations of HE. The thickness and water vapor permeability of alginate-HE composite films were significantly higher (p < 0.05) compared to pure alginate films. Moreover, water content, solubility, swelling, tensile strength, and elongation at break value of the composite films decreased (p < 0.05) with increasing concentrations of the extract. FTIR spectra revealed shifts and intensity variations in the composite films and the formation of new peaks suggesting a possible interaction between alginate and HE. Alginate-HE films exhibited good antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria. The antibacterial effect of the films, more pronounced against Gram-positive bacteria, increased with higher amounts of HE. The resulting films may be utilised as new biodegradable, antibacterial films in the food packaging industry to prolong shelf life and preserve food safety. Graphical Abstract Supplementary Information The online version of this article (10.1007/s12649-022-01710-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gulsum Aydin
- Biotechnology Department, Faculty of Sciences, Selcuk University, Konya, Turkey
| | - Elif Busra Zorlu
- Biotechnology Department, Faculty of Sciences, Selcuk University, Konya, Turkey
| |
Collapse
|
17
|
Nesic A, Meseldzija S, Cabrera-Barjas G, Onjia A. Novel Biocomposite Films Based on High Methoxyl Pectin Reinforced with Zeolite Y for Food Packaging Applications. Foods 2022; 11:foods11030360. [PMID: 35159510 PMCID: PMC8834260 DOI: 10.3390/foods11030360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Pectin is a natural biopolymer with broad applications in the food industry and it is suitable to prepare edible films to prolong food shelf-life. However, the main limitation of pectin-based films is their poor mechanical and barrier properties. Zeolite Y is a hydrophobic clay that can be used as film reinforcement material to improve its physicochemical and mechanical properties. In this work, the influence of high methoxyl citrus and apple pectin on physicochemical properties of biopolymer films modified with zeolite Y (0.05–0.2 wt%) was investigated. The films were characterized by FTIR, TGA, WAXD, mechanical analysis, and water vapor permeability analysis, and a potential film application is presented. The WAXD and FTIR analysis demonstrated that the strongest interaction between pectin chains and zeolite Y occurred when citrus high methylated pectin was used. Adding 0.2 wt% of zeolite Y into citrus high methylated pectin matrix enhanced the tensile strength by 66%, thermal stability by 13%, and water vapor barrier by 54%. In addition, fruit shelf-life test was performed, where strawberries were sealed in film. It was shown that sealed strawberries maintained a better color and healthy appearance than the control treatment after 7 days at 10 °C. This study enabled the development of biocomposite films with improved properties for potential application in food packaging.
Collapse
Affiliation(s)
- Aleksandra Nesic
- Department of Chemical Dynamics and Permanent Education, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia;
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, BioBio, Concepción 3349001, Chile;
- Correspondence:
| | - Sladjana Meseldzija
- Department of Chemical Dynamics and Permanent Education, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, BioBio, Concepción 3349001, Chile;
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia;
| |
Collapse
|
18
|
Khwaldia K, Attour N, Matthes J, Beck L, Schmid M. Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:1218-1253. [DOI: 10.1111/1541-4337.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Nouha Attour
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Julia Matthes
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Luisa Beck
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Markus Schmid
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| |
Collapse
|
19
|
Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. EMERGENT MATERIALS 2022; 5:873-921. [PMID: 34849454 PMCID: PMC8614084 DOI: 10.1007/s42247-021-00319-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 05/09/2023]
Abstract
The greater awareness of non-renewable natural resources preservation needs has led to the development of more ecological high-performance polymeric materials with new functionalities. In this regard, biobased composites are considered interesting options, especially those obtained from agro-industrial wastes and by-products. These are low-cost raw materials derived from renewable sources, which are mostly biodegradable and would otherwise typically be discarded. In this review, recent and innovative academic studies on composites obtained from biopolymers, natural fillers and active agents, as well as green-synthesized nanoparticles are presented. An in-depth discussion of biobased composites structures, properties, manufacture, and life-cycle assessment (LCA) is provided along with a wide up-to-date overview of the most recent works in the field with appropriate references. Potential uses of biobased composites from agri-food residues such as active and intelligent food packaging, agricultural inputs, tissue engineering, among others are described, considering that the specific characteristics of these materials should match the proposed application.
Collapse
Affiliation(s)
- Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7 (8000), Bahía Blanca, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| |
Collapse
|
20
|
Dias MV, Azevedo VM, Ferreira LF, Oliveira ACS, Borges SV, Fátima Ferreira Soares N, Medeiros EAA, Deus Souza Carneiro J. Chitosan‐nanocomposites as a food active packaging: Effect of addition of tocopherol and modified montmorillonite. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marali Vilela Dias
- Department of Food Science Federal University of Lavras Lavras MG Brazil
| | | | - Laura Fonseca Ferreira
- Biomaterials Engineering Postgraduated Program Universidade Federal de Lavras Lavras MG Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Iñiguez-Moreno M, Ragazzo-Sánchez JA, Calderón-Santoyo M. An Extensive Review of Natural Polymers Used as Coatings for Postharvest Shelf-Life Extension: Trends and Challenges. Polymers (Basel) 2021; 13:polym13193271. [PMID: 34641086 PMCID: PMC8512484 DOI: 10.3390/polym13193271] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
Global demand for minimally processed fruits and vegetables is increasing due to the tendency to acquire a healthy lifestyle. Losses of these foods during the chain supply reach as much as 30%; reducing them represents a challenge for the industry and scientific sectors. The use of edible packaging based on biopolymers is an alternative to mitigate the negative impact of conventional films and coatings on environmental and human health. Moreover, it has been demonstrated that natural coatings added with functional compounds reduce the post-harvest losses of fruits and vegetables without altering their sensorial and nutritive properties. Furthermore, the enhancement of their mechanical, structural, and barrier properties can be achieved through mixing two or more biopolymers to form composite coatings and adding plasticizers and/or cross-linking agents. This review shows the latest updates, tendencies, and challenges in the food industry to develop eco-friendly food packaging from diverse natural sources, added with bioactive compounds, and their effect on perishable foods. Moreover, the methods used in the food industry and the new techniques used to coat foods such as electrospinning and electrospraying are also discussed. Finally, the tendency and challenges in the development of edible films and coatings for fresh foods are reviewed.
Collapse
|
22
|
Abstract
Dextran is an exopolysaccharide (EPS) synthesized by lactic acid bacteria (LAB) or their enzymes in the presence of sucrose. Dextran is composed of a linear chain of d-glucoses linked by α-(1→6) bonds, with possible branches of d-glucoses linked by α-(1→4), α-(1→3), or α-(1→2) bonds, which can be low (<40 kDa) or high molecular weight (>40 kDa). The characteristics of dextran in terms of molecular weight and branches depend on the producing strain, so there is a great variety in its properties. Dextran has commercial interest because its solubility, viscosity, and thermal and rheological properties allow it to be used in food, pharmaceutical, and research areas. The aim of this review article is to compile the latest research (in the past decade) using LAB to synthesize high or low molecular weight dextran. In addition, studies using modified enzymes to produce dextran with specific structural characteristics (molecular weights and branches) are addressed. On the other hand, special attention is paid to LAB extracted from unconventional sources to expose their capacities as dextran producers and their possible application to compete with the only commercial strain (Leuconostoc mesenteroides NRRL B512).
Collapse
|